NEWTON--A DYNAMIC PROGRAM
ANALYSIS TOOL CAPABILITIES SPECIFICATION

by
Jonathan D. Feiber

Richard N. Taylor
Leon Osterweil

Department of Computer Science
University of Colorado
Boulder, Colorado 80309

CU-CS-200-81 February, 1981

This material is based upon work supported by the National
Science Foundation under Grant No. MCS8000017, and
DOE Grant No. DE-AC02-80ER10718.

Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and
do not necessarily vreflect the views of the National
Science Foundation.

I. Introduction

This paper contains a specification for a dynamic program test-
ing aid for Fortran programs, called Newton. Like most contemporary
dynamic testing tools Newton aids the testing process by effecting the
instrumentation of subject programs and then collecting, organizing
and reporting the results of executing the instrumented program. This
process is illustrated in Figure 1.1.

The Newton specification has been developed over a period of
several months of reading, evaluation and original thought. It has
been significantly influenced by earlier work in this area. Most
specifically, the early work of Fosdick [FOSD74], Ramamoorthy [RAMA75],
Fairley [FAIR75], Stucki [STUC73], and Brown [BROW73] established the
pattern for subsequent dynamic testing systems. Stucki [STUC75] and
Fairley [FAIR75] first most cogently advanced the notion of dynamic
assertion checking. Taylor [TAYL80] imprcved upon these ideas and
formalized the assertion Tanguage upon which Newter's is based.

Perhaps the most original aspects of Newton are those which are
present because Newton, unlike most earlier dynamic test tools, is
designed to be integrated into a comprehensive tool environment, called
TOOLPACK. Thus it is expected that Newton will not be directly accessible
by end users, but rather will be invoked through the TOOLPACK user
interface. The usage of Newton, and other TOOLPACK tools, will, moreover,
be enhanced by the support of other system utilities such as the TOOLPACK
data base/information management system and diagnostic output browsing
facilities [0STE81]. Because of this, the Newton specification focuses
more on the capabilities to be provided and Tess on human interfaces.

For example, Newton users will have considerable flexibility in
selection from among a considerable number of instrumentation options.
This has typically been considered necessary, but a definite drawback
is that it can be intimidating, especially to novice users. This
situation is helped considerably by thinking of Newton as being embedded
in TOOLPACK. Any set of selected options can be given a name and stored
in the TOOLPACK data base as a Test Options Packet. Experienced users,
or the system creators can initially create these packets and store them

User's source

program

—
Hewton
instrumentor

Instrumented
nrogram

Fortran

compiler
&)

Newton
Run—Time‘
Library /

Executable
module

Newton ‘
, Qoﬁgggggﬂcy Execution
Report (NCH) |
generators ,fQiQQPPStic
perusg?daids {_output

Figure 1.1: Use of Dynamic Test Tools

under write protection for later use by novice users having no need to
understand the option specification language. More advanced or sophis-
ticated users can copy and then modify these packets or create their
own packets according to their own particular requirements. With these
usage scenarios in mind we have permitted ourselves the Tuxury of an
extensive command language.

Similarly, with the prospect of a facility for browsing a diagnostic
output data base in mind, we have permitted ourselves the Tuxury of
hypothesizing extensive and detailed outputs from the imbedded test
probes. The effectiveness of many earlier dynamic test systems was
severely reduced because their output was voluminous, unstructured and
inaccesible by tools for browsing. Other tools strove for comprehen-
sibility by restricting diagnostic output. In Newton we enable the
user to specify the emission of complete and comprehensive outputs from
embedded probes. These outputs are then considered to go into a
structured data base. The data base is to be queriable effectively with
the aid of interactive browsers either after termination of the run, or
during the execution of the test run in response to user specifiable
breakpoint commands, or after detection of a program error on assertion violation.

2.0 User Communication with Newton

Newton requires that the user specify a text file containing
syntactically correct FORTRAN 77 source text, a Newton Test Option
Packet.

2.1 Test Option Packet

The Test Option Packet (TOP) provides procram analysis control
over the user FORTRAN 77 source text. Each TOP is a named set of
program analysis commands and program analysis scope information.

2.1.1 Test Option Packet Soruces

LIBRARY TOPs - Newton maintains 2 distinct libraries of TOPs
that are available to the user. A system Tibrary of general purpose
TOPs is supplied with Newton:; and Newton provides the facilities for
creation and maintenance of user Tibraries of TOPs.

USER TOPs - individual Newton users may create and edit TOPs via

a set of Newton command Tanguage primitives and an editor. These user
TOPs as well as the system TOPs become a part of the TOOLPACK data base,
and remain throughout the life of the database. Users must assign
unique names to each of their own TOPs.

3.0 Newton Capabilities

Below are outlined the test options available to the Newton user.
Newton test options are divided into two catagories:

TOP analysis commands - these are Newton analysis features that
are controlled via Program Analysis Commands (PACs) within the TOP.

Embedded Analysis Commands - these are Newton program assertions and
directives that are embedded within the user FORTRAN 77 source text
in the form of special comments.

3.1 TOP PAC's

A TOP PAC has two parts, the analysis command itself and Range
Specifiers.

Program Analysis Commands (PAC) are single line directives that
appear within the Test Option Packet to control program analysis options.
The presence or absence of a program analysis command controls the status
of that analysis capability. The necessity of certain capabilities
being active in some form at all times causes Newton to assume a default
status for certain capabilities. Command scope may be Timited by use
of a named program range specifier, The Program Analysis Commands are
order independent, except that range specifiers must be defined before
being used.

3.1.1 Command Syntax
Program Analysis Commands have the following syntax:

COMMAND NAME {,option,option,...,option}{;program unit range}
program unit range :: = program unit range name | program unit | program unit

dewey decimal range, dewey decimal range,...,dewey decimal range |

program unit range, program unit range

array range :: = array|array(£bound:ubound, £bound:ubound,... Lbound:ubound)]

array range, arrvay range

Each command is assigned a unique command name, some commands require
control options for specifying use. Program unit range specifications
may reference other program unit range specifications by name (see
Section 3.3).

3.1.2 Source Text Statement Numbering

Newton allows the user to choose from three alternative methods for
numbering executable FORTRAN 77 source text statements. Each method
allows the user to specify an optional increment for statement numbering.
Only one numbering method may be used throughout the user FORTRAN 77 source
text. Statement numbering is used in reporting analysis results.

3.1.2.1 Absolute Sequential Order

Statement numbering via an ascending integer statement number through-
out the user's FORTRAN 77 source text (Figure 3.1) by specifying the PAC:
ABSOLUTE NUMBERING {,increment}

3.1.2.2 Routine Relative Sequential Order

Statement numbering via a six character identifier (local routine name,
blank filled) and an ascending integer relative to routine location
(Figure 3.2) by specifying the PAC:

ROUTINE NUMBERING {,increment}
3.1.2.3 Dewey Decimal

Statement numbering via a six character identifier (local routine name,
blank filled) followed by the Towest hierarchical Tevel of neighboring
dewey decimal numbers found as Tabels within the assertion language for
that routine (see below), and then by an ascending integer relative to
routine Tocation (Figure 3.3) by specifying the PAC:

DEWEY DECIMAL NUMBERING {,increment}
3.1.3 Program Analysis Commands
3.1.3.1 Sequence and Counting Options

Newton provides the user with various options for monitoring program
execution sequence and statement execution frequency. These capabilities
are provided by inserting instruments in the source code prior to each

18

[¢]

98

-6-

FIGURE 3.1

sample report resulting from the use of the progrom cnolysis commond:

ABSOLUTE NUMBERING. 25

PROGRAM LISTING STATEMENT NUMBER

PROGRAM TEST

CALCULATE SIGMA FOR 2 ARRAYS OF 18 VARIABLES EACH

COMMON ~STORAG, ACIB) ,B(18)
DATA AR/12.9,34.9,2.8,65.9,3.89,12.12,4.9,6.9,12.08,9.8~
DATA B-93.8,56.9,89.0,120.8,32.0,45.8,56.1,45.08,79.2,56.9/

CALL SIGMACA,ASIGMA)Y 8

CALL SIGMACR,BSIGMAY 25
WRITEC(G, 18) A.ASIGMA,B.BSIGMA 58
FORMAT(1X, 18F7.2,4X, 1F8.4)

END 75

SUBROUTINE SIGMACARRAY.ZSIGMA)
DIMENSION ARRAY(18)

CALL MEAN(ARRAY.ZMEAN) 168
5UM = 8.8 125
DO 75 I=1,18 158
SUM = SUM + ((ARRAY(I)-ZMEAN)*(ARRAY(I)-ZMEAN)) 175
CONTINUE 200
Z51GMA = SORTC(SUM-(18.8-1.8)) 225
RETURN 258
END 275

SUBROUTINE MEANCVARS,RMN)
DIMENSION VARS(18)

TO0TAL = 8.8 30a
DO 98 I=1,18 325
TOTAL = TOTAL + VARS(D) 358
CONTINUE 3r3
RMN = TOTAL-18.8@ 488
RETURN 425

EMD 458

i@

75

S8

_7-

FIGURE 3.2

sample report resulting from the use of the progrom onalysis command:

ROUTINE NUMBERING.25

PROGRAM LISTING

PROGRAM TEST

CALCULATE SIGMA FOR 2 ARRAYS OF 18 VARIABLES EACH

COMMON ~STORARG, AC18),B(18)

DATA A-12.9.34.9,2.8,65.9,3.89,12.12,4.9,6.9,12.8.9.8/
DATA B/99.8.56.9,89.0,120.08,32.8,45.8,56.1,45.8.79.2,.56.9/

CALL SIGMACA,ASIGMAY

CALL SIGMACB,BSIGMAD
WRITE(E,.18) A,ASIGMA,B.BSIGMA
FORMATC(1X, 1BF7.2,4X,. 1F8.4)
END

SUBROUTINE SIGMA(ARRAY,ZSIGMA)

DIMENSION ARRAY(18)

CALL MERNCARRAY.ZMEAN)

5UM = B.8@

Do 75 I=1,18

SUM = SUM + ((ARRAY(I)-ZMEAN)*(ARRAY(I)-ZMEAN))
CONTINUE

ZSIGMA = SORTC SUM-(18.8-1.8))

RETURN

END

SUBROUTINE MEAN(VARS,RMN)
DIMENSION VARS(18)

TOTAL = 8.8

DD 98 I=1.18

TOTAL = TOTAL + YARS(ID)
CONTINUE

RMN = TOTAL-18.8
RETURN

END

TEST
TEST
TEST

TEST

SIGMA
SIGMA
SIGMA
SIGMA
SI1GMA
SIGMA
SIGMA
SIGMA

MEAN
MEAN
MEAN
MEAN
MEAN
MEAN
MEAN

STATEMENT NUMBER

4]
25
Sa

75

8
25
5@
7S
188
125
150
175

23
58
75
g8
125
158

18

S8

-8-

FIGURE 3.3

somple report resulting from the use of the progrom onaolysis command:

DEWEY DECIMAL NUMBERING

PROGRAM LISTING

PROGRAM TEST

CALCULATE SIGMA FOR 2 ARRAYS OF 18 VARIABLES EACH

COMMON /STORAG~. ACIB),BUIB)

DATA A/12.9,34.9,2.8,65.9,3.89,12.12,4.9,6.9,12.08,3.8~/
DATA B-95.8.56.9,89.08,120.8,32.8,45.08,56.1,45.8,79.2,56.9/

CALL SIGMACA.ASIGMA)

CALL SIGMAC(B,.BSIGMAY
WRITE(6.18) A,ASIGMA.B,BSIGMA
FORMAT(1X, 18F7.2.4X, 1F8.4)
END

SUBROUTINE SIGMACARRAY,ZSIGMAY
DIMENSION ARRAY(18)

ASSERT 1.1

CALL MEAN(ARRAY,ZMEAN)

ASSERT 1.2

suM = 8.8

DO 75 I=1.18

ASSERT 1.2.1

SUM = SUM + C(CARRAYC(I)-ZMEAN)*(ARRAY(I)-ZMEAN))
END ASSERT 1.2.1

COMTINUE

END ASSERT 1.2

Z51GMA = SORTC SUMA(1B.8-1.8))
RETURN

END ASSERT 1.1

END

SUBROUTINE MEAN(VARS,RMN)
DIMENSION VARS(18)
ASSERT 1.1

TOTAL = 8.8

b0 58 I=1.18

ASSERT 1.1.1

TOTAL = TOTAL + VARSC(D)
END ASSERT 1.1.1
CONTIHUE

RMN = TOTAL-18.8
RETURN

END ASSERT 1.1

END

TEST
TEST
TEST

TEST

SIGMA

SIGMA
SIGMA

SIGMA
SIGMA

SIGMA
SIGMA

SI1GMA

MEAN
MEAN

MEAN
MEAN
MEAN
MEAN

MEAN

g-1
g-2
8-3

a-4

STATEMENT NUMBER

event of the type being monitored. These instruments, when ex%guted create
sequence monitoring packets, each consisting of the calling program unit
Tocation (program unit statement number and execution count) and the type
of the event.

When event sequencing reporting is specified by the user, these sequence
monito}ing packets are stored on circular 1ists, with the most recent events
being placed at the head of the list and the oldest entry being automat-
ically deleted. The user may optionally specify the lengths of the various
lists. When event count reporting is specified by the user, the packets are
used only to create and maintain the requested counters and are not stored.

3.1.3.1.1 Statement Execution Sequence

Newton allows the user to capture and store the sequential order of
statement execution as a 1ist of source text statement numbers (Figure 3.4)
by specifying the PAC:

EXECUTION SEQUENCE {,Timit} {;range}

Where Timit is an integer upper bound on the number of statement execution
entries retained in the circular list. Each time a statement within the
specified range is executed its statement number is added to the 1ist.
Statements that fall outside the range are indicated by a special marker
reserved for that purpose in the execution sequence Tist.

3.1.3.1.2 Statement Execution Frequency

Newton allows the user to specify that an integer count of the
number of times each statement was executed (Figure 3.5) be reported
by specifying the PAC:

EXECUTION COUNT {;range}

Each time a statement within the range is executed its integer count is
incremented by one.

3.1.3.1.3 Statement Type Frequency

Newton allows the user to store an integer execution frequency count
for types of FORTRAN 77 statements, arithmetic operations, and subprogram
calls (Figure 3.6) by specifying the PAC:

STATEMENT TYPE COUNT, Keyword, Keyword,...,Keyword,{;range}

-10-

FIGURE 3,4

sample report resulting from the use of the progrom analysis command:

EXECUTION SEQUENCE, 125;:TEST,SIGMA

the following report ossumes the progrom ond statement numbering in FIGURE 3.2

EXECUTION SEQUENCE BY STATEMENT NUMBER

LAST STATEMENT EXECUTED IS THE LAST ELEMENT IN LIST

Folokdoleiok DENOTES STATEMENTS EXECUTED OUTSIDE OF RANGE

TEST B
SIGMA

4

ARk

SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
S1GMA
SIGMA
SI1GMA
SIGMA
SIGMA

25
5@
75
1eg
75
108
73
168
75
168
73
1688
75
168
7S
188

51GMA
SI1GMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA

75
108
7S
168
73
168
125
158

TEST 25

SIGMA

8

SRRk

SIGMA
SIGMA
S1GMA
SIGMA
SIGMA
SIGMA
51GMA

25
50
7S
168
75
188
75

SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SI1GMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
SIGMA
S1GMA
SIGMA
SIGMA
SIGMA

125
150

TEST 58
TEST ¥5

-11-

FIGURE 3.5

sample report resulting from the use of the progrom onalysis commond:

EXECUTION COUNT

EXECUTION COUNT PROGRAM LISTING

PROGRAM TEST

c
C - CALCULATE SIGMA FOR 2 ARRAYS OF 18 VARIABLES EACH
cC
COMMON ~STORAG- ACIB),BC18)
DATA A/12.9.34.9,2.8,65.9,3.89,12.12,4.9,6.9.12.8,9.8~/
DATA B~99.8,56.9.89.0,120.68,32.0,45.9,56.1,45.08,79.2.56.9~
1 CALL SIGMACA.ASIGMAD
1 CALL SIGMA(B.BSIGMA)
1 WRITE(6. 18 A,ASIGMA.B,.BSIGMA
18 FORMATUOIX, 18F7.2,4X,2F8.4)
1 END
SUBROUTINE SIGMACARRAY,ZSIGMA)
DIMENSION ARRAY(18)
2 CALL MEANC(ARRAY, ZMEAM)
2 SUM = 8.8
2 DO ¥vS I=1.18
28 SUM = SUM + ((ARRAY(I)-ZMEAN) *(ARRAY (1) ~-ZMEANY)
28 73 CONTINUE
2 Z8IGMA = SART(SUM-(18.8~-1.8))
2 RETURN
END
SUBROUTINE MEAM(VARS,RMN)
DIMENSION YARS(18)
2 TOTAL = B.8
2 DO 38 I=1,18
28 TOTAL = TOTAL + YARSC(ID
28 98 CONTINUE
2 RMN = TOTAL-18.0
2 RETURH

END

-12-

FIGURE 3.6

sample report resulting from the use of the progrom cnalysis commond:

STATEMENT TYPE COUNT.ASSIGNMENT.CONTROL : MEAN

STATEMENT TYPE FREQUENCY COUNT

STATEMENT TYPE FREGUENCY COUNT

ASS IGNMEMT 26

CONTROL 22

-13-

Where Keyword is one of the following identifiers: ASSIGNMENT, CONTROL,
I/0, PROGRAM UNITS, OPERATORS. These‘KeyworqE“are used to specify for
which type of FORTRAN 77 statements Newton should store an execution
frequency count. Each time a type of FORTRAN 77 statement specified by
a Keyword is executed within the range, its count is incremented by one.

3.1.3.1.4 Program Unit Calling Sequence

Newton aTlows the user to maintain a subroutine calling sequence
1ist for program execution (Figure 3.7) by specifying the PAC:

PROGRAM UNIT SEQUENCE {,1imit} {;range}

Where Timit is an integer upper bound on the number of calling sequence
entries retained in the circular list. Each time a program unit is called
within the range specified, the program unit call is added to the program
unit calling sequence 1ist. Program unit calls that fall outside the
range are indicated by a special marker reserved for that purpose in

the program unit calling sequence Tist.

3.1.3.1.5 Program Unit Call Frequency

Newton allows the user to maintain count of the number of calls on
each program unit (Figure 3.8) by specifying the PAC:

PROGRAM UNIT COUNT {;range}

Each time a program unit is called within the range its integer count is
incremented by one.

3.1.3.1.6 Transfer of Control Sequence

Newton allows the user to monitor the transfer of control sequence
within a range by maintaining a list of statement pairs consisting of the
originating statement number and the destination of transfer of control
statement number (Figure 3.9). This is done by specifying the PAC:

TRANSFER SEQUENCE {,1imit}{;range}

where 1imit is an integer upper bound on the number of pairs of statement
number entries retained in the circular Tist. Statement numbers that
fall outside the range are indicated by a special marker reserved for
that purpose in the transfer of control sequence buffer.

-14-

FIGURE 3.7

sample report resulting from the use of the progrom anolysis commond:

PROGRAM UNIT SEQUENCE

the following report assumes the progrom ond stoatement numbering in FIGURE 3.2

o o i e e S O S 48 G € o Tan. M O S s e e WL W S S S W S S Y i S . o) T Y S o W £ S

PROGRAM UNIT CALLING SEQUENCE

LAST PROGRAM UMIT CALLED IS THE LAST ELEMENT IN LIST

soioiokdok DENOTES PROGRAM UNITS CALLED OUTSIDE OF RANGE

CALLING STATEMENT NUMBER ~ EXECUTION COUNT PROGRAM UNIT CALLED
TEST B ~ 1 S1GMA
SiGMA 8 ~ 1 MEAN
TEST 25 ~ 1 SIGMA

SiGMA @ ~ 2 MEAN

-15-

FIGURE 3.8

sample report resulting from the use of the progrom onalysis commond:

PROGRAM UNIT COUNT

the following report assumes the progrom ond stotement numbering in FIGURE 3.2

PROGRAM UNIT CALLING FREQUENCY

dloloielolok DENOTES PROGRAM UMITS CALLED OUTSIDE OF RANGE

SUBROUTINE NAME CARLL COUNT

SIGMA 2

MEAN 2

-16-

FIGURE 3.9

sample report resulting from the use of the program onalysis commands

TRANSFER SEQUENCE,23:SIGMA.1.2

the following report assumes the progrom ond stoatement numbering in FIGURE 3.3

TRANSFER OF CONTROL SEQUENCE

LAST TRANSFER OF CONTROL IS THE LAST ELEMENT IN LIST

sifctotekior DENOTES TRANSFER OF CONTROL OUTSIDE OF RANGE

Rickdoiolok ~ SIGMA 1.2-1 SIGMA 1.2-3 7 soiololokiok
SIGMA 1.2-1 ~ SIGMA 1.2-2
SIGMA 1.2-2 ~ SIGMA 1.2.1-1
SIGMA 1.2.1-1 ~ SIGMA 1.2-3
siGMA 1.2-3 ~ SIGMA 1.2.1-1
SiGMA 1.2.1-1 ~ SIGMAR 1.2-3
SIGMA 1.2-3 ~ SIGMA 1.2.1-1
SIGMA 1.2.1-1 ~» SIGMA 1.2-3
SIGMA 1.2-3 ~ SIGMA 1.2.1-1
SIGMA 1.2.1-1 ~» SIGMA 1.2-3
SIGMA 1.2-3 ~ SIGMA 1.2.1-1
SIGMA 1.2.1-1 ~ SIGMA 1.2-3
SIGMA 1.2-3 ~ SIGMA 1.2.1-1
SIGMA 1.2.1-1 ~ SIGMA 1.2-3
SIGMA 1.2-3 ~ SIGMA 1.2.1-1
SIGMA 1.2.1-1 ~ SIGMA 1.2-3
SIGMA 1.2-3 ~ SIGMA 1.2.1-1
SIGMA 1.2.1-1 ~ SIGMA 1.2-3
SIGMR 1.2-3 ~ S5IGMA 1.2.1-1
SIGMA 1.2.1-1 ~ SIGMA 1.2-3
SIGMA 1.2-3 ~» SIGMA 1.2.1-1
SIGMA 1.2.1-1 ~ SIGMA 1.2-3

-17-

3.1.3.1.7 Transfer of Control Frequency

Newton allows the user to maintain an integer frequency count for
each entry in the transfer sequence 1ist (Figure 3.10) by specifying the PAC:

TRANSFER COUNT { ;range}
3.1.3.2 Program Unit Parameter Monitoring

Newton provides the user with three options for monitoring program
unit parameters during program unit calls. In each case a parameter monitor-
ing list is built. Each entry in a parameter monitoring 1ist consists of
the program unit location of the call (program unit statement number and
statement execution count) and the program unit parameters passed. These
parameter monitoring list entries are stored as a circular Tist, with
current events being placed at the head of the Tist. The user may specify
an optional Timit for the length of the list. Program unit calls that
fall outside the range are indicated by a special marker reserved for
that purpose in the program unit parameter monitoring sequence list.

3.1.3.2.1 Parameter Monitoring by Value

Newton allows the user to maintain a list each of whose entries
consists of the values of all parameters passed to and returned from a
program unit for each program unit call encountered (Figure 3.11) by
specifying the PAC:

PARAMETER VALUES {,NO ARRAY} {,Timit} {;range}

NO ARRAY 1is a keyword that allows the user to conserve internal storage by
not requiring storage of values for arrays. Limit is an optional integer
upper bound on the number of parameter monitoring entries retained in the
circular list. Undefined values are denoted by a special marker reserved
for that purpose in the parameter value sequence

3.1.3.2.2 Parameter Monitoring by Names

Newton allows the user to maintain a Tist of actual parameter names
used at each program unit call within the range (Figure 3.12) by specifying
the PAC:

PARAMETER NAMES {,1imit}{;range}

~18-

FIGURE 3.10

sample report resulting from the use of the progrom onalysis commond:

TRANSFER COUNT:SIGMA, 1.2

the following report ossumes the program and stotement numbering in FIGURE 3.3

TRANSFER OF CONTROL FREQUENCY

sfolooiolok. DENOTES TRANSFER OF CONTROL OUTSIDE OF RANGE

TRANSFER PAIR COUNT
sordorsolek # SIGMA 1.2-1 1
SIGMA 1.2-1 ~ SIGMA 1.2-2 1
SIGMA 1.2-2 ~ SIGMA 1.2.1-1 1
SIGMA 1.2.1-1 7 SIGMA 1.2-3 18
SIGMA 1.2-3 ~ SIGMA 1.2.1-1 g

SIGMA 1.2-3 - sicloksiokoiek 1

-19-

FIGURE 3,11

sample report resulting from the use of the progrom onolysis command:

PARAMETER VALUES.MO ARRAY, 188

the following report assumes the progrom ond statement numbering in FIGURE 3.2

PARAMETER MONITORING BY VALUE

LAST PROGRAM UNIT CALL IS THE LAST ELEMENT IN LIST
*doiotokdok DENOTES PROGRAM UNIT CALL OUTSIDE OF RANGE

XAXRKKAX DENOTES VALUE UNDEFINED AT CALLING LOCATION

STATEMENT NUMBER ~ EXECUTION COUNT PARAMETER VYALUE (PASSED) ~ (RETURNED)

TEST 8 ~ 1 (AL XXKHRXKY 7 (A,25.88)
SIGMA 8 ~ 1 (ARRAY .. XXXKHXXX) /7 (ARRAY,. 16.53)
TEST 25 ~ 1 (B, XXxxxXX) ~ (B,76.31)

SIGMA 8 ~ 2 (ARRAY. 16.53) ~ (ARRAY,67.98)

-20-

FIGURE 3.12

sample report resulting from the use of the progrom onolysis command:

PARAMETER NAMES. 188

the following report assumes the program ond stotement numbering in FIGURE 3.2

PARAMETER MONITORING BY NAME

LAST PROGRAM UNIT CALL IS THE LAST ELEMENT IN LIST

sololookdok DENOTES PROGRAM UNIT CALL OUTSIDE OF RANGE

STATEMENT NUMBER ~ EXECUTION COUNT PARAMETER NAME
TEST 6 ~ 1 (A.ASIGMAY
SiGMA 6 ~ 1 (ARRAY.ZMEAND
TEST 25 ~ 1 (B.BSIGMA)

SicMR 8 ~ 2 (ARRAY . ZMEAN)

-21-

where Timit is an integer upper bound on the number of parameter name
entries retained in the circular Tist. Newton uses a special marker to
indicate which parameters are expressions.

3.1.3.2.3 Parameter Bindings

Newton allows the user to maintain a Tist of the value bindings of
formal parameters (Figure 3.13) by specifying the PAC:

PARAMETER BINDINGS {,Tlimit}{;range}

where Timit is an integer upper bound on the number of parameter binding
entries retained in the circular Tist. The information reported at the

program unit calling location is the binding of the formal parameters to
names. Newton may have to trace back through several program unit calls
in order to determine what the bindings in effect at this call are.

3.1.3.3 Value Evolution Monitoring

Newton provides the user with the following options to monitor the
evolution of values in program variables by constructing various value
evolution monitoring 1ists. Each entry in a value evolution monitoring
list consists of the program unit Tocation where a new value was assigned
(program unit statement number and execution count) and the assigned
value or array index. These value evolution entries are stored as a
circular 1ist, with current events being placed at the head of the Tist.
The user may specify an optional 1imit for the length of the Tist.

Value evolution is divided into two categories: arrays and simple
variables.

3.1.3.3.1 Arrays
3.1.3.3.1.1 Value Evolution by Index

Newton allows the user to monitor the value evolution of program
arrays by storing a sequential history of evolution for each array element.
A new value evolution entry is added to the appropriate sequence each
time an assignment to a particular array element takes place within the
range (Figure 3.14) by specification of the PACs:

ARRAY VALUE, array range {,1imit}{;range’

20

FIGURE3.13

sample report resulting from the use of the progrom onolysis commond:

FARAMETER BINDINGS, 188

the following report ossumes the progrom ond statement numbering in FIGURE 3.2

PRRAMETER MONITORING BY BINDING

LAST PROGRAM UNIT CALL IS THE LAST ELEMENT IN LIST

soproookk DENOTES PROGRAM UNIT CALL DUTSIDE OF RANGE

STATEMENT NUMBER ~ EXECUTION COUNT PARAMETER BIWDING
TEST 8 ~ 1 (A, ASIGMAY
SIGMA @ ~ 1 (AL, ASIGMAY
TEST 25 ~ 1 (B,BSIGMA)

SIGMA @8 ~ 2 (B,BSIGMA)

-23-

FIGURE 3.14

somple report resulting from the use of the program onalysis command:

ARRAY YALUE.DISPLAY, IARRAY, 180

on the following somple progrom text:

PROGRAM DISPLAY
DIMENSION IARRAY(3)

DU 18 I=5,8

DO 18 J=1.3

IARRAYLI) =
1@ CONTINUE

TsJ

END

YALUE EVOLUTION BY SEQUENCE

LAST ARRAY ELEMENT SET IS THE LAST ELEMENT IN LIST

#oklokiiok. DENOTES ARRAY ELEMENTS SET OUTSIDE OF RANGE

STATEMENT NUMBER ~ EXECUTION COUNT

ARRAY ELEMENT IARRAY(1)
DISPLAY 128
DISPLAY 126
DISPLAY 128
DISPLAY 128

NN NN
i I N

ARRAY ELEMENT IARRAY(Z)
DISPLAY 128
DISPLAY 128
DISPLAY 128
DISPLAY 128

NN NN
- 0 U7 M

ARRAY ELEMENT IARRAY(3)
DISPLAY 128
DISPLAY 128
DISPLAY 128
DISPLAY 128

NN N
e WO Y O

DISPLAY 1@@
DISPLAY 118
DISPLAY 126
DISPLAY 138

YALUE

0o~y

~24-

or:
ARRAY VALUE,ALL{,1imit}{;range}

where array range allows the specification of range within program arrays.
ALL is a keyword that allows reference to all arrays not explicitly
referenced in previous array value PACs. Limit is an integer upper bound
on the number of array value entries retained in the circular Tist.

3.1.3.3.1.2 Value Evolution by Sequence

Newton also allows the user to monitor the value evolution of
program arrays by storing a sequential history of evolution for each
program array. In this case a list entry consists of a pair, the first
element of which is the value assigned and the second element of which
is the array index to which it was assigned. A new value evolution entry
is added to an array's sequence each time an assignment to an array
element takes place within the range (Figure 3.15). This monitoring is
effected by specification of the PACs:

ARRAY INDEX, array range {,1imit}{;range}
or:’
ARRAY INDEX,ALL{,Timit}{;range}

where array range allows the specification of range within program arrays.
ALL is a keyword that allows reference to all arrays not explicitly
referenced in previous array index PACs. Limit is an integer upper bound
on the number of array index entries retained in the circular Tist.

3.1.3.3.2 Value Evolution of Simple Variables

Newton allows the user to monitor the value evolution of simple
program variables by storing a sequential history of evolution for each
program variable. A new value evolution Tist entry is added to a program
variable sequence each time an assignment is made to the specified variable
within the range (Figure 3.16) by specification of the PACs:

VARIABLE,program unft,variabTe,variab]e,...,variab1e{,11mit}{;range}

or:

VARIABLE,ALL{,Timit}{;range}
where ALL is a keyword that causes the monitoring of all variables not
explicitly named in previous variable PACs. Limit is an integer upper
bound on the number of variable entries retained in the circular Tist.

18

_25-

FIGURE 3.15

sample report resulting from the use of the progrom onaluysis commond:

ARRAY INDEX.DISPLAY.IARRAY, 180

on the following somple progrom text:

PROGRAM DISPLAY

DIMENSION IARRAY(3)

DO 18 I=5,8
DO 16 J=1,3
IARRAYC(I) =
CONTINUE

IxJ

END

VALUE EVOLUTION BY INDEX

LAST ARRAY ELEMENT SET IS THE LAST ELEMENT IN LIST

sfoockiok DENOTES ARRAY ELEMENTS SET OUTSIDE OF RANGE

STATEMENT NUMBER ~ EXECUTION COUNT ~ ARRAY ELEMENT

DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY

128
128
126
128
128
128
128
126
128
128
128
126

NN N NN NNNNNN

IARRAY (1)
IARRAY(2)
IARRAY(3)
IARRAY (1)
IARRAY (22
IARRAY(3)
IARRAY (1)
IARRAY(2)
IARRAY(3)
18 7 IARRAY (1)
11 7 IARRAY(2)
12 7 IARRAY(3)

DO O U1 o NN e
NN NN N NN NN

DISPLAY 188
DISPLAY 118
DISPLARY 128
DISPLAY 13@

VALUE

-26-

FIGURE 3,16

sumple report resulting from the use of the progrom onalysis commaond:

YARIABLE, MEAN, TOTAL, 168

the following report assumes the progrom ond statement numbering in FIGURE 3.2

P T Ty e——— [—— - o e e i s

VALUE EVOLUTION

LAST VARIABLE SET IS THE LAST ELEMENT IN LIST

Flooloioiok. DENOTES VARIABLE SET OUTSIDE OF RANGE

STATEMENT NUMBER ~ EXECUTION COUNT ~ VARIABLE NAME VALUE
MEAN B ~ 1 ~ TOTAL g.a
MERAN 58 ~» 1 ~ TOTAL 12.8
MEAN 5@ ~ 2 ~ TOTAL 47.8
MEAN 58 ~ 3 / TOTAL 98.6
MEAN 58 ~ 4 7 TOTAL 116.5
MEAN 5B ~# 5 ~ TOTAL 128.39
MEAN 58 ~ 6 ~ TOTAL 132.51
MEAN 58 ~» 7 ~/ TOTAL 137.41
MEAN 58 ~» 8 ~ TOTAL 144.31
MEAN 58 ~ 3 ~ TOTAL 156.31
MEAN 58 ~ 18 ~ TOTAL 165.31
MEAN B8 ~» 2 ~ TOTAL 8.0
MEAN 58 ~ 11 ~ TOTAL 99.8
MEAN 58 ~ 12 ~ TOTAL 155.9
MERN 58 ~ 13 ~ TOTAL 244.9
MERN 568 ~ 14 ~ TOTAL 364.9
MEAM 58 ~ 15 ~ TOTAL 396.9
MEAN 58 ~ 16 ~ TOTAL 441.9
MERM 58 ~ 17 ~ TOTAL 498.8
MEAN 58 ~ 18 ~ TOTAL 543.0
MEAN S8 ~ 19 ~ TOTAL 622.2
MEAN 58 ~ 28 ~ TOTAL 679.1

-27-

3.1.3.4 Variable Extremal Value Monitoring

Newton provides the user with the following options to monitor the
extremal values of program variables. Each entry in an extremal value
list consists of the program unit location where the assignment of an
extremal value occurred (program unit statement number and execution count)
and the assigned value. These extremal value entries are stored as a
circular 1ist, with current events being placed at the head of the Tist.
The user may specify an optional Timit for the length of the Tist.

3.1.3.4.1 Minimum and Maximum Values

Newton allows the user to maintain a Tist of the minimum and
maximum values assigned to program variables (Figure 3.17) by specification
of the PACs:

MIN/MAX{,array rangel}{program unit,variable,variable,...,variable,
{,Timit}{;range}

or:
MIN/MAX,ALL{,Timit}{;range}

where array range allows the specification of range within program arrays.
ALL is a keyword that allows reference to all program variables not ex-
plicitly referenced in previous minimum and maximum value PACs. Limit is
an integer upper bound on the number of minimum and maximum value entries
retained in the circular Tist.

3.1.3.4.2 First and Last Values

Newton allows the user to store the first and last values assigned
to program variables (Figure 3.18) by specification of the PACs:

FIRST/LAST{,array rangel}{,program unit,variable,variable,...,

variab1e}{,Timit}{;range}
or:
FIRST/LAST,ALL{,T1imit}{;range}

where array range allows the specification of range within program arrays.
ALL 1is a keyword that allows reference to all program variables not ex-
plicitly referenced in previous first and last value PACs. Limit is an
integer upper bound on the number of first and Tast value entries retained
in the circular Tist.

-28-

FIGURE 3,17

sample report resulting from the use of the progrom onalysis commonds:

MIN/MAX, SIGMA, ZMEAN. SUM, ZS IGMA, 168
MIN/MAX, MEAN, TOTAL ,RMN, 188

the following report assumes the progrom ond statement numbering in FIGURE 3.2

MINIMUM AND MAXIMUM VALUE

Fiokdiookk DENOTES VARIABLE SET OUTSIDE OF RANGE

NAME ~ STATEMENT NUMBER ~ EXECUTION COUNT YALUE
ZMEAN ~ SIGMA B8 ~ | MINIMUM: 16.53
ZMEAN ~ SIGMA 8 ~ 2 MAXIMUM: &67.5@
SUM ~ SIGMA 25 7 1 MINIMUM: 8.8
SUM ~ SIGMA 75 ~ 28 MAXIMUM: 52411.9
ZSIGMA ~ SIGMA 125 ~ 1 MINIMUM: 25.88
ZsiGMA ~» SIGMA 125 ~ 2 MAXIMUM: P6.31
TOTAL ~ MEAN @ ~ 1 MINIMUM: g.8
TOTAL ~ MEAN 58 ~ 28 MAXIMUM: 679.89
RMN ~ MEAN 188 ~ 1 MINIMUM: 16,53

RMN ~ MEAN 188 ~ 2 MAXIMUM: 67.98

-29-

FIGURE 3.18

somple report resulting from the use of the progrum cnolysis commonds:

FIRST/LAST,SIGMA, ZMEAN, SUM, ZS IGMA, 188
FIRST/LAST, MEAM. TOTAL,.RMN, 108

the following report assumes the progrom ond statement numbering in FIGURE 3.2

o e o e o s o, e W i K W A S e S ST D S e . S, A RS N Sk i S S S S S S S D B

FIRST AND LAST YALUE

seioloiciellk DENOTES VARIABLE SET OUTSIDE OF RANGE

NAME ~ STATEMENT NUMBER ~ EXECUTION COUNT YALUE
ZMEAN ~ SIGMA 8 ~ | FIRST: 16.53
ZMEAN ~ SIGMA 8 ~ 2 LAST: 67.90
SUM ~ SIGMA 25 ~ 1 FIRST: 8.0
sUM ~ SIGMA 75 ~ 28 LAST: 52411.9
Z5IGMA ~ SIGMA 125 ~ 1 FIRST: 25.88
ZSIGMA ~ SIGMA 125 ~ 2 LAST: 76.31
TOTAL ~ MEAN B8 ~ 1 FIRST: ©.8
TOTAL ~ MEAN 58 ~ 28 LAST: 679.89
RMN ~ MEAN 188 -~ 1 FIRST: 16.53

RMN ~ MEAN 1@8 ~ 2 LAST: 67.58

-30-
3.1.3.5 Program Error Conditions

Newton allows the user to check for certain program execution errors.
Detection of any of the following error conditions results in error infor-
mation being stored in Newton's diagnostic data base and program control
being transferred to the Newton Contingency Handler.

3.1.3.5.1 Subscript Range Checking

Newton allows the user to effect a check of each index used in an
array subscripting operation: to be sure it is within the range declared
for that array. This is accomplished by specification of PACs:

SUBSCRIPT RANGE,array rangef;range’

or:.
SUBSCRIPT RANGE,ALL{;Pange}

where array range allows the specification of range within program arrays.
ALL is a keyword that effects monitoring of all arrays not explicitly
named in previous subseript range PACs. '

3.1.3.5.2 Division by 0

Newton a]]éws the user to check for a 0 divisor before each division
operation by specifying the PAC:

DIVISION{;range}
3.1.3.5.3 Underflow/Overflow Errors

Newton allows the user to check for underflow and overflow in
arithmetic operation by specifying the PAC:

OVERFLOW/UNDERFLOW{ ;range}
3.1.3.5.4 Square Root of Negative Numbers

Newton allows the user to check for a negative argument before each
square root operation by specifying the PAC:

NEGATIVE SQRT{;range}
3.1.3.5.5 Common and Natural Log of Nonpositive Argument

Newton allows the user to check for a negative or zero argument
before each common or natural Tog operation by specifying the PAC:

NONPOSITIVE LOG{;range}

-31-

3.2 Embedded Analysis Commands
3.2.1 Program Assertions and Value Keeping Statements

Newton gives the user the capability to use program assertions and
value keeping. Assertions and value keeps are special program statements
that are used to capture the intent of the program. Newton requires that
program assertions and value keeping statements be embedded in the form of
special comments within the user source text.

3.2.1.1 Newton Assertion Language Definition
3.2.1.1.1 Notation

The grammar used to describe the assertion and statistics gathering
languages is a variant of BNF, described below.

i) Nonterminals are underlined, e.g., assert statement

i1) Terminals composed of Latin letters are printed in upper case and
enclosed in quotes, e.g., "ASSERT"
iii) Items which are optional are enclosed in braces, e.qg.,
{"GLOBAL"}
iv) Items suffixed with an asterisk (*) may appear zero or more times
v) Items suffixed with a plus sign (+) may appear one or more times
vi) Multiple productions corresponding to a single non-terminal are
listed on successive lines. The non-terminal and the ::=
sign only appear on the first production.

-32-

3.2.1.1.2 Assert Statement Grammar

ASSERT statement ::=vc "{special Tabel}"ASSERT"{"GLOBAL"}ext-logical-exp

{control}
special Tabel ::= integer "."{integer{"."integer}*}{"."}
ext-Togical-exp ::= value{relop value}*
expression Tist{"NOT*} ™IN" range{range}*
control ::= "ON""TRUE"program unit
"ON""FALSE"program unit
value ::= {quantifier} relational expression

u(n va]ue n)u

expression 1ist ::= arithmetic expression {arithmetic expression}*
relop ::= ".CAND."

".COR."
quantifier ::= "FOR""ALL" quantifier completion
"EXISTS" quantifier completion
quantifier completion ::= integer variable range{,integer variable rangel}l*

range ::= "(" constant {"TO"constant}")"

end ASSERT stmt ::= "C""END""ASSERT" special label
statistics value ::= {name} "$""("special label")"

-33-

3.2.1.1.3 Context Sensitive Rules

1. No two ASSERT statements may have the same special label.

2. Multiple ASSERT GLOBAL/END ASSERT statements are possible, and
nesting is required.

3. ASSERT/END ASSERT with same label must be in sequential order with
END ASSERT following ASSERT

4. The special label on assert statements must begin in columns 3-5.

3.2.1.1.4 Assertion Semantics

1. Any and all ASSERT statements may be labeled with a Dewey decimal
number. Their instrumentation may be controlled by an external mechanism
which references these numbers.

2. The ASSERT GLOBAL statement specifies a condition which much
continuously hold over a range of the program. This range is demarcated
by the ASSERT statement and the END ASSERT statement whose special
labels match. If no such END ASSERT statement exists or if the ASSERT
statement is unlabeled, the assertion applies to all program text
following the ASSERT statement in the current static scope (at the sub-
program Tevel). The expressions Tisted must not reference any variables
where scope is smaller than the range of the assertion. Note that if
subscripted variables (or otherwise parameterized expressions) are used
in the assertion, the entire expression is re-evaluated each time a check
is required. Thus, if the expression was A(I) = 1, then the subscript I
is evaluated anew at each check point.

3. "Threshold" control may be achieved in the followina manner.
The special value VIOLATE(special label) may be used within any comparison

in an assertion. Its value is the number of times the referenced asser-
tion has been violated. If no reference (special Tlabel) is provided, the

number of violations of the current assertion is taken.

4. Special value statistics value may be used within any extended

logical expression. statistics value allows the value of any FORTRAN 77

expression which is saved in a KEEP to be referenced in an assertion.

“34-

The optional name which precedes the label allows a particular value to
be referenced out of several saved at the KEEP (there may have been a
Tist of expressions to KEEP). The name supplied must be textually
identical to one of the expressions listed in the KEEP.

5. Quantifiers on comparisons allow the formation of powerful
assertions. The quantifier completions presented allow for Tooping
constructs. When used with FOR ALL, the assertion must hold true as the
integer variable assumes each of the values specified in the range. When
multiple integer variables and ranges are specified, the assertion must

hold for every combination of integer-variable and value. When used
with EXISTS, the assertion must hold true for at least one integer-
variable and value (or combination thereof, if several integer variable
ranges are specified).

6. The IN range specification indicates that each value specified
in the expression list must 1ie within one of the ranges provided. A
range may consist of a single value. Ranges may only be specified for
integer and real valued expressions.

3.2.1.1.5 Assertion Violations

When an assertion violation occurs, the user has the option to have
control transferred to a user specified program unit (the program unit is
Wnamed in the ASSERT statement), or if no routine is specified control is
transferred to the Newton Contingency Handler. If control is transferred
to a user program unit, the program unit must contain either a RETURN
statement to resume program execution or a STOP statement to terminate

program execution.

3.2.1.2.1 Value Keeping Statement

value keeping statement ::= "C"{special Tabel}"KEEP" "GLOBAL"function
"C"{special Tabel}"KEEP"expression{qualifier}

end keep statement ::= "C""END""KEEP" special label

qualifier ::= “IF”cdﬁﬁafison
label stmt ::= "C'special label

end Tabel stmt ::= "C""END"special Tlabel

-35-

Context Sensitive Rules.

1. No two KEEP statements may be labeled with the same number.

2. Multiple KEEP GLOBAL / END KEEP pairs are possible, and nesting
is not required.

3. Tlabel stmt / end Tabel stmt must be in sequential order with
end Tabel stmt following label stmt

4. The special Tabel on value keeping statements must begin in
coluiins 3-5. |

3.2.1.2.2 Value Keeping Statement Semantics

1. A1l KEEP statements may be Tabeled with a Dewey decimal number.
As such they are individually named and their instrumentation may be
controlled in a sophisticated manner by an external mechanism.

2. The KEEP GLOBAL statement specifies a list of functions which
are to be called after every (applicable) statement within the textual
scope defined by the KEEP GLOBAL statement and the END KEEP statement
whose special Tlabels match. If no matching END KEEP is found, such a
statement is generated at the end of the current textual scope (at the
subprogram Tevel).

3. The functions which may be invoked at each (appropriate) state-
ment are as follows:

normal function — A general FORTRAN 77 function which will be called
after the execution of each statement. This provision is in keeping
with the overall criterion of providing a general syntax. ImpTemen-
tation restrictions, however, are almost certain. The function name
may be followed by a 1ist of parameters. The scope of the parameters
must be consistent with the scope of the keep. statistics value is

a legal parameter.

4. If GLOBAL 1is not specified, the KEEP statement refers only to
the program state defined at the point of the KEEP.

5. The expressions in the expression Tist may be any computable
expression (including FORTRAN normal functions) and is subject to the
rules provided for functions in rule 3 above, statistics value is a
Tegal part of an expression.

-36-

6. If a KEEP statement has a qualifier phrase, the information re-
quested will be kept only if the conditionismet. Evaluation of the
condition 1is subject to the extensions and restrictions applied to normal
functions in rule 3 above.

3.2.1.3 Sample Usages of the Assertion and Value Keeping Facility

1) ¢ ASSERT A.EQ.B+C
A simple arithmetic relationship which must be true at the point of
assertion placement.

2) C ASSERT A.LE.5 .CAND. F(X).EQ.F(Z)
Two arithmetic relationships. The second relationship is checked
(causing evaluation of the functions) if and only if A < 5.

3) C ASSERT VIOLATE.LT.4.CAND; F(X).EQ.O
F(X) will only be compared with zero if this assertion has been
violated at most four times.

4) C ASSERT GLOBAL X.GT.O
X must remain positive from the assertion through the end of the
current scope (either procedure, task, or program end).

5) C 1.1 ASSERT GLOBALX.GT.O

X must remain positive throughout this region
END ASSERT 1.1

6) ASSERT X IN(1 TO 6)(12)
The condition 1<X<6 or X-12 must be satisfied.
7) C 1.1 KEEP X
The current value of X is retained for later use in an assertion.

8) C ASSERT X$(1.1).EQ.X
Asserts that the last value of X stored at KEEP 1.1 is equal to the
current value of X.

9) C ASSERT $(1.1).EQ.X
Same as example 8. This syntax is valid if KEEP 1.1 only retained

variable X.
10) C KEEP X IF F(X).LE.5
The value of X will be retained only if F(X)<5.

11)

12)

13)

14)

15)

3.2.2

-37-
o ASSERT X.LT. 0.. .COR. ERROR
This example illustrates how special processing may be performed
on assertion violation. If X is not less than zero then (presumably)
something has gone awry in the program. In order to gather as much
information as possible, a user-supplied function is called which

may, for example, print out a helpful message.

C ASSERT FORALL I(1 TO 10), J(1 TO 5) A(I).LT.B(J)
This assertion is equivalent to the Togical conjunction of the
following assertions.

= I >
NN TN
.. NN’._J LY
B
| sl el
o e e |
jvsRvo eyl
NS S
N G

A(10).LT.B(5)
In other words, each element of A must be less than every element of B.

C ASSERT FOR ALL I(1 TO 10) A(I).LE.A(I+1)
This asserts that the first 11 elements of A are sorted in ascending order.

C ASSERT EXISTS N (4 TO 100) A**N_.EQ.B**N+C**N

This assertion declares that there exists at least 1 value of N between

4 and 100 inclusive such that AN = N + CN, for values A,B, and C. (This
assertion will fail, of course, if A,B, and C are integers and

(A)(B)(C) = 0).

C KEEP MAX(X,$(22.))

Assuming that function MAX returns the larger of its two arguments,

this KEEP will retain the maximum value of X which occurs at this state-

ment. (MAX must also be able to detect that $(22.) is undefined on

the first call of the function. This ability is implementation dependent).
Program Breakpoint

Program breakpoints give the user the ability to interrupt program

execution and examine the contents of Newton's diagnostic Database via

-38-

‘the Newton Contingency Handler. The user also has the option to transfer
control to a user specified program unit when a breakpoint is encountered.
If control is transferred to a user program unit, the named program unit
controls program execution.

Breakpoints may also be contingent upon user defined events (an event
being the same as an assertion language ext-logical-exp). Breakpoint events
are evaluated over the range of the entire Tocal routine when the keyword
GLOBAL 1is present.

Embedded Command: C BREAKPOINT {"GLOBAL"}{ext-logical-exp}{program unit)

3.2.2.1 Sample Usages of Program Breakpoint

1) ¢ BREAKPOINT
Unconditionally halt program execution and transfer control to the Newton
Contingency Handler whenever this command is encountered.

2) ¢C BREAKPOINT GLOBAL X.GT.O DEBUG

If at any time during execution of the current routine the value of X
becomes greater than 0, program control is transferred to the user
routine DEBUG

3) ¢C BREAKPOINT FORALL I(1 TO 10), J(1 TO 5) A(I,J).LE.O

As execution passes the site of this statement, check all values of array A
within the specified indices and if any value is less than or equal to O
transfer control to the Newton Contingency Handler

3.2.3 Program Timing

Newton provides the user with program "STOPWATCHES" to monitor pro-
gram execution. The user is given access to and control over variables in
the Newton diagnostic Database which can be manipulated as though they
were stopwatches. This is done by means of embedded command of the form:

C STOPWATCH, Keyword,Keyword,. .. ,Keyword;name

where name is the user defined name of the program STOPWATCH. STOPWATCH
names are separate from program variables and must be distinct from program
variable names. Keyword is either NEW, RESET, START, ELAPSED, or STOP.
RESET resets the "stopwatch" to zero. START has the effect of beginning
the measurement of elapsed time by the named STOPWATCH by reading and

-39-

storing the clock in the host system which measures the amount of time
remaining out of the user's maximum time Timit specification (i.e., the
user's "countdown timer.") ELAPSED updates the elapsed time in the STOPWATCH
by reading the countdown timer again, computing the difference, and storing
it. STOP updates the elapsed time and stops timing for the STOPWATCH.

New STOPWATCHES are declared when the user assigns a previously unused
STOPWATCH name and the keyword NEW to the STOPWATCH command. New
STOPWATCHes are set to zero when they are declared.

3.2.3.1 Sample Usages of Program Timing

1) ¢ STOPWATCH, NEW, START; CLOCK
A new STOPWATCH variable CLOCK is declared and timing is begun.

2) C STOPWATCH, ELAPSED; CLOCK
The amount of measured elapsed time since the last start of STOPWATCH
CLOCK is placed in CLOCK.

3) ¢ STOPWATCH, STOP; CLOCK
Same as example 2 except the STOPWATCH CLOCK is now stopped.

4) C STOPWATCH, RESET, START; CLOCK
STOPWATCH CLOCK is reset to zero and timing is begun.

3.3 Limiting Program Analysis Scope

Newton gives the user the ability to 1imit the scope of program
analysis. The user may use a program analysis command that references
dewey decimal number Tabels within the assertion language to define and
name a range of program source text. This range may be used on PAC's to
1imit the application of Newton program analysis. If no range name is
present a PAC is active over the entire execution unit. The user may
specify the PAC:

PROGRAM UNIT RANGE,Namef;program unit,program unit,...,
program unit}{;program unit, dewey decimal range,

dewey decimal range, ..., dewey decimal range}

Name is the user declared range.
A special PAC is available to 1imit Newton evaluation of embedded
commands:
EMBEDDED COMMANDS ;range

Global assertions are inactive unless assertions are active over the entire

range.

-40-

4.0 Newton Contingency Handler

The Newton Contingency Handler (NCH) is available to users to
examine and change certain program attributes during program execution.
Users may enter the NCH via:

BREAKPOINT— execution of certain types of breakpoint commands within
the user source text results in user entry to the NCH.

EXECUTION ERROR— Newton detection of a test option violation (Newton
execution error) results in user entry to the NCH.

ASSERTION VIOLATION — certain types of assertion 1anguage violations
result in user entry to the NCH.

Below are the options available to users while in the NCH:
4.1 Queries

Newton allows the user to browse through program attributes with
the following options.

4.1.1 Sequence and Counting

The user is allowed to examine any information returned from the
sequence and counting program analysis options up to the point of program
execution interruption.

4.1.2 Source Text
The user is allowed to examine the program source text.
4.2 Information Saving During Breakpoints

The user has the capability to save program information during a
breakpoint. A "saved" breakpoint consists of the value of every program
variable in the symbol tables being written as a record in the Breakpoint
Saved Table (BST). The maximum number of records in the BST is a TOOLPACK
defined parameter. BST records are maintained as a circular list with
new entries placed at the beginning of the list.

4.3 Value Changing

The user has the capability to change the value of any program
variabTle.

4]~

If the NCH detects that the user has changed the value of any variable
when the user NCH session is over the NCH forces a special system break-
point save. This system breakpoint save is entered into the BST as a
non-deletable record. If the BST fills with non-deletable records the
NCH will not allow any further value changing.

4.4 Return Options

The user has the option to:
® return to user program execution

e return to TOOLPACK control
4.5 NCH Non-Interactive Users

NCH non-interactive users are treated as a special case and are
routed depending on the entry mode to the NCH:

NCH entry via breakpoint — the system initiates a user breakpoint
save and returns to user program execution.

NCH entry via Newton execution error — the system initiates a user
breakpoint save and returns to TOOLPACK control mode.

NCH entry via assertion violation — the system initiates a user
breakpoint save and an entry to a special assertion violation table and
returns to user program execution.

-42-

Acknowledgments

The Newton assertion language definition is adapted from a paper
written by Richard Taylor.

The University of Colorado Software Validation Group provided many
helpful suggestions and comments.

William Mesch assisted in the preparation of a preliminary version
of Newton.

REFERENCES

[BROW73]

[FAIR75]

[FOSD74]

[0STE81]

[RAMA75]

[STUC73]

[STUC75]

[TAYL80]

-43-

J. R. Brown, A. J. DeSalvio, D. E. Heine, and J. G. Purdy,
"Automated Software Quality Assurance," in Program Test Methods,
(W. C. Hetzel, ed.) Prentice-Hall, Englewood Cl1iffs, N.J.,

1973, pp. 181-203.

R. E. Fairley, "An Experimental Program Testing Facility,"
Proc. First National Conf. on Software Eng., IEEE Cat.
#75CH0992-8C pp. 47-55 (1975).

L. D. Fosdick, "BRNANL - A Fortran Program to Identify Basic
Blocks in Fortran Programs," Department of Computer Science,
University of Colorado, Boulder, Colo., Technical Report,
CU-CS-040-74.

L. J. Osterweil, "TOOLPACK - A preliminary Design and
Architecture," Dept. of Computer Science, University of
Colorado, Boulder, Colo., Technical Report (to appear Spring 1981).

C. V. Ramamoorthy and S.-B. F. Ho, "Testing Large Software With
Automated Software Evaluation Systems," IEEE Transactions on
Software Engineering, SE-1 pp. 46-58 (March 1975).

Stucki, L. G., "Automatic Generation of Self-Metric Software,"
Proceedings IEEE Symposium on Computer Software Reliability,

New York, N.Y. (April 1973) IEEE #73CH0741-9CSR, pp. 94-100.

L. G. Stucki and G. L. Foshee, "New Assertion Concepts in
Self-Metric Software," Proceedings 1975 International Conference
on Reliable Software, IEEE Cat. #75-CH0940-7CSR pp. 59-71.

R. N. Taylor, "The Design of Dynamic Assertion Verification
Language," ACM SIGPLAN Notices, (January 1980).

