SAM/SAL Report
and User Manual

Michael A. Gallucci

Department of Computer Science
University of Colorado
Boulder, Colorado 80309

CU~-CS5-198~-81 February, 1981

This material is based upon work supported
by the National Science Foundation grants
#MCS8000017 and #MCS77-02194, Department of
Energy grant #DE-AC02-80ER10718, and Army Re-
search Office grant #DAAG 29-80-C-0094.

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

Unclassifiad
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entored)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. 50VT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
CU-CS- 198-81
4. TITLE (and Subtitie) 5 TYPE OF REPORT & PERIOD COVERED

SAL/SAM Report and User Manual

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 5. CONTRACT OR GRANT NUMBER(s)
Michael A. Gallucci #DAAG 29-80-C-0094
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
i1, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U. 2. Army Research Office February 1981
Post Office Box 12211 13. NUMBER OF PAGES
Research Triangle Park, NC 27709 85

14, MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of thia report)

Unclassifiled

155, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE
NA

16, DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

NA

18. SUPPLEMENTARY NOTES

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

attributed grammars, language syntax, Janguage semantics,
programming languages, annotated flowgraphs, static program analysis

20. ABSTRACT (Continue on reverse side If necessary and ldentify by block number)

This document describes the SAM/SAL system implemented at the University
of Colorado during 1980. SAM is a Static Analysis Machine with a Static Analysis
Language, SAL. The main purpose of SAM/SAL is to specify arbitrary programming
languages so that when programs in the specified language are run through the
SAM/SAL system, an annotated flowgraph representation of the program is generated}

FORM
EDITION OF | NOV 65 1§ = . .
DD |, an s 1473 IS OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

THE FINDINGS IN THIS REPORT ARE NOT TO BRE
CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE
ARMY POSITION, UNLESS SO DESIGNATED BY
OTHER AUTHORIZED DOCUMENTS.

Any opinions, findings, and conclusions or
recommendations expressed in this publica-
tion are those of the author and do not
necessarily reflect the views of the Na-
tional Science Foundation.

Abstract

This document describes the SAM/SAL system implemented
at the University of Colorado during 1980. SAM is a Static
Analysis Machine with a Static Analysis Language, SAL. The
main purpose of SAM/SAL is to specify arbitrary programming
languages so that when programs in the specified language
are run through the SAM/SAL system, an annotated flowgraph
representation of the program is generated.

D WN

e]
N b

. I s o & e
T WWwWwww Wk~
¢« s e e @
UL W

NN NDNNNNDNDNNNDN

°

WNNNNNDMNINDNDN RN
WONOULD W

. s ° o 8
* . ° ° ® °

*

WWWwWwwwwwbw wwww

®

FN N NN
BSWw N

® ° .

°

NN DN
N

oo ;g
e

Table of Contents

The SAM/SAL System
Introduction
PUTPOSE ¢ v eoosceosooons
Motivation ...eiceeeces
Design Requirements ...
Syntax Notation
Language Outline

© ¢ ¢ ¢ 8 0 8 ° & o

Lexical Elements
Characters
Comments .eoececcososscoce
Lexical Units0...
Names
Numbers
LiteralsS ceeescesoceneaes
Delimiters

e © 6 3 © 6 ¢ 6 » 2 6 5 ¢ © 0 © @

® 6 6 » » 8 3 0 ¢ 6 ® 8 0 o

°© 8 6 6 ¢ B & 8 s o 0 @

Lexical-Unit Restrictions

SpPacesS ceisocococsccocses
Reserved Words «....c..
Preamble
Scanner Specification .
Data Structure Control
MAXSETS . veeeecsoscons .
MAXSETSIZE «ceoeeeconss
MAXDPNODES «.ccevesooss
MAXEDGES +.ccevesceonas
MAXPARSENODES .cccoosee
MAXSYM
MAXCHAR «.ovevao e v
MAXATTBLCK . vcceoecsoes
MAXPACKET ce o
Grammar Output Control

6 ® 6 5 © @ 5 & € 5§ © & & & ® o

e © o o & 8 8 8 o

Declarations

.

e ¢ v 8 5 5 06 o

® 8 8 2 9 & ©
e e e 6 e o o
® s o 2 8 & 6 o

® 8 6 ¢ 6 5 8 8 @ & 8 B

Object Class Declarations

Actions
Flowgraph Node Types
Other Declarations
Language Specifications
Grammar Attributes
Grammar Attribute Part
Grammar Attribute Part

Type Restrictions
Language Rules ...

.....

Table of Contents

© ® e 5 o 6 @ 0 & ® 6 5 D B & 6 © 6 6 & © 6 © ©

¢ s 8 8 6 &6 ¢ b e 8 @

8 8 0 ¢ 6 © 6 &6 & o

°

e s 8 5 0 ¢ 2 o

Syntax

Semantics
Primitive Grammar Variables

° s @
o 8 o
e o e

e 5 6 & & & o

Ud W W e

WO OXIIOOO

3}
®

.
®
°

LI
B
.
W N+

-
.

e
.

W N

e
°
0

MM NN N

°
°

gty aa
W N b et

BN NN R

()

°

N b

[N

P W W NN

i S g

. .

°
®

®
°

°
e

®
°

®
°

W ONOUTD WN

°
®

°
°

°
°
Y

o e s
w N -

®
°

Twwwpmwwwowwowwnoww oo wwww

RN N NN NNNDNDN NN R b e et ot e pd b
OCONOUTUWUTUL R W -

e

Q0
’_l

Table

Syntax RUlesoeesevscaonocnoceses
Syntax Rule SyntaX ...ceescosocnceocs
Syntax Rule / Scanner Interface
Syntax Rule Restrictions ..cceeoceeoses

Semantilc RULES ot eeeeeeeosoosoocsesses

Evaluation Order of Semantic Rules ..
Interphase Ordering «.ceeeesesososess
Intraphase Ordering ...eeeeeseescocos
Evaluation Order Restrictions
Semantic Rule SyntaxX «oeseeesceeesess
Semantic Rule SemanticCs ..veveeeoosos

Procedural Specificationsccee..

References t.coeeeecooocsooecsooscossas

Using SAM/SAL on the CU CDC Cyber ...
Compiling a SAL Program, S «.eeeeeees
Generating the Evaluators .seeoeoceess

Parser Generation .ccoeeecocosocsoosssea

Semantic Evaluator Ceneration
Using the EvaluatorsS ...eceeoeococons

Using the ParSer .civseecoeoeocenceees

Using the Semantic Evaluator
Fancy Display ceeecesoscoscoesoccacona

The Standard Environment ...cceoeeeoo.
Standard TYPES ceveevconoosososasocace
Set TYPES i evesesscsosoossssosacansss
SYmboOl TYPES o eeeeoconssossossnsssens
Symbol Attribute TYPES .veevseeoscoss
Object Class TYPES «sveoesoe oo eeanes
Packet TYPES cecoevcesoevsonosscconsse
Parameter Building Types ..c.... o ee
Callgraph TYPES «ceocsoosossssocsasasne
PArse—-Tree TYPES «otseesssoecceosnnss
Other TYPES v oessvsccsnsoscccsasas
Standard Procedures/Functions
Set ROULINES v vrviovonsacnsccooccss
Symbol ROULINES «eosevecroosoocosansse

Symbol Attribute Routinescecoee..

Object-Class ROULINES teveeesnconceen
Packet ROULINES o veevoooncocnnoscan
Use=Table RoOUtINES +eceessecas e vs e
Flowgraph Routineseoocoveosssces
Expression-~Tree ROULINes +.eeeveooeas
Parameter Building Routines
Callgraph ROULINES cvvieocesvoocnoesaa
Parse~Tree RoOUtinesccocvccoocss
Other Routines ...ieooeescevoconsooens

Output Tables Format ...c.e... e e s e e s
Data Structure Representations

Contents
oee 23
oo 24
oo 24
.o 25
oo e 25
.o 26
oo 26
oo 27
oo s 27
oo 28
oo 29
oo e 32
oo 34
e s 35
. s 35
P 36
P 36
.o 38
PN 38
N 38
o e 39
e s 39
oo 40
oo 40
e oo 40
e e 40
oo 40
PN 40
o e 41
oo 41
oo 41
oo e 41
oo 41
oo e s 41
oo e 41
.o 44
oo 46
o e e 46
oo s 47
v o 47
oo 49
oo 51
oo 52
PN 53
‘oo 55
e oo 55
oo e 56
oo 56

Table of Contents iii

C.2 File FOrmat ..ueeieeeesceocoscosossssocsnoecass 59
D. SAM/SAL System Sample Program «..eeeeeeeeos. 63
D.1 TURINGOL: A SAL PrOQFaNM «oeosececsosessossesso 64
D.2 Sample TURINGOL PrOgram «.oesecesosoescscsss 77
D.3 Output Report for Sample Program coeesecaacn 78
D.4 Tables File for Sample Program «...coceeeees 79
D.5 User—-Readable Report of Tables File ...ceo.. 82
D.6 Graphic Display of Tables File .icieevoeecees 85

Figures

Figure 1.1 SAM/SAL SyStemoeeeeeeos

Figure C.1 Callgraph Node StruUCtUre ..veeeeeeesooeeoss 56
Figure C.2 Action Packet StruUCtuUre «..eeeeeeereeennees 56
Figure C.3 Fp-Node StruUCtUre «eeeeceereceenaceenseness 56
Figure C.4 Flowgraph Node StruCture ..ceeeeeeeeeeceens 57
Figure C.5 Expression-Tree Node Structulrec.... 57
Figure C.6 Use-Table NOde StrUCLUre ...veeeeeeeeneeens 58
iv

Figures

CHAPTER 1

The SAM/SAL System

1.1. Introduction

1l.1.1. Purpose

This document describes the SAM/SAL system implemented
at the University of Colorado during 1980. SAM, an acronym
for Static Analysis Machine, is the current name given to
the whole system. SAL, an acronym for Static Analysis
Language, is the specification language provided by SAM
through which most of SAM's descriptive capabilities are
manifested. Since SAL is such an integral part of the
overall system, the system will often be referred to as
SAM/SAL.

The main purpose of SAM/SAL is to provide a capability
for specifiying arbitrary programming languages. A specifi-
cation is to be aimed at generating annotated flowgraphs for
programs written in the specified language. An annotation
is regarded as a define action occurring to a set of
defined objects. As an example, in a specification of the
language PASCAL, the user might want the PASCAL statement

X 1= Y+7

to generate a single flowgraph node n which is annotated
with the action REFERENCE to the set of objects {Y,Z} and
DEFINE to the set of objects {X}. In this case, the user
must be able to declare X, Y and Z as objects of some class,
declare the actions DEFINE and REFERENCE to be valid on sub-
sets of objects from this c¢lass, and specify that the
assignment statement above results in the creation of a
flowgraph node.

Figure 1.1 gives a graphic description of how SAM/SAL
works. At the top of the figure, a specification program 8
is submitted to SAL for compilation. Outputs from SAL are
then fed to an automatic parser generator and to a semantic
evaluator generator. A parser and semantic evaluator are
then produced. A typical program U written in the language
specified by S can then be fed to the generated parser; the
parser output is in turn fed to the generated semantic
evaluator; and the semantic evaluator in turn produces the
desired annotated flowgraphs associated with the program U
as specified by S.

The SAM/SAL System 1

The SAM/SAL System

SAL
Compiler
Semantid
Semantic
Parser Evaluator
Generator Generator

Semantic
Evaluator

:Symboli
N Table

Parser Semantic
Driver Evaluator
Driver

Figure 1.1 SAM/SAL System

The SAM/SAL System 3

Two output files are generated by the semantic evalua-
tor.

(1) Listings File.

The listings file contains (a) any system error mes-
sages resulting from the semantic evaluation phase, (b)
any special output requested by the user, and (c) a
listing of program statistics.

(2) Tables File.

The tables file 1is automatically generated by the
semantic evaluator upon successful semantic analysis of
the input. Primarily, this file contains a dump of the

symbol table, callgraph and flowgraphs generated by the
semantic evaluator for the input.

Details on how this system works on the CU CDC-Cyber
system are given in Appendix A.

1.1.2. Motivation

Research directed by Drs. Leon J. Osterweil and Lloyd
D. Fosdick has lead to the design and implementation of a
software tool, DAVE, which automatically detects certain
static-semantic and data-flow errors in ANSI Standard For-
tran programs [Fosd 76]. We recently completed a prototype
of a revised version of DAVE which facilitates automatic
modifications for some dialects of Fortran. Unfortunately,
all semantic specifications must be manually redesigned for
each such dialect.

The SAM/SAL system was motivated by the desire to have
a fully automated system which eliminates the ad hoc manner
of specifying programming languages and their dialects.

1.2. Design Requirements

SAL is a specification language in which other (pro-
cedural) programming languages are described. SAL was
designed to have the power to capture all syntax and seman-
tic descriptions of a large class of programming languages,
specifically for the purpose of generating annotated flow-
graphs for sample programs written in the sgpecified
language.

The device used for semantic specifications is a modi-
fied form of attributed grammars [Knuth 68]. It was the
intent of this design to take advantage of existing reli-
able, portable software tools. At a high level, we were
able to use an automatic parser generating system, CLEMSW,
implemented on the CU CDC Cyber by Geoffrey Clemm [Clemml

4 The SAM/SAL System

79]. The interface to this parse generator is automatically
provided by the SAM/SAL system. The SAL compiler itself and
the main driver for the semantic evaluator are written in a
slightly extended version of PASCAL. This allows modifica-
tions and extensions to be made to the SAL compiler very
easily, while providing reliable object code by taking
advantage of an already existing compiler. (This also lends
some portability to the SAM/SAL system -- a property not
originally in the design requirements and not completely
demonstrated vet). At the time of implementation, no CDC
Cyber attribute grammar systems were known to be available.
Consequently, the remainder of the SAM/SAL system was com-
pletely designed and implemented from scratch.

1.3. Synax Notation

Below is a description of the context-free syntax used
to describe SAL. This notation is a variant of the Backus-
Naur Form.

(a) Angled brackets enclose grammar variables, for example
<PROGRAM> <LIST OF ATTRIBUTES>
<STATEMENT> <SUB 12>

(b) Double-angled brackets enclose grammar variables whose
syntax and semantic rules are given in the PASCAL
Report and User's Manual [Jensen 747], for example

<<TYPE>> <<PROCEDURE OR FUNCTION DECLARATION>>

<KIDENTIFIER>>
(e¢) Reserved words and delimiters are enclosed in double
gquotes, for example

1] :ﬂll i .] IIBEGINII IIOBJECTII

(d) Square brackets enclose optional items, for example

<PROGRAM HEADING> [<PREAMBLE PART>] <DECLARATION PART>

(e) Braces enclose a repeated item. The item may appear
zero or more times, for example

<IDENT LIST> ::= <IDENTIFIER> {"," <IDENTIFIER>}

The SAM/SAL System 5

1.4. Language Outline

A SAL program is given by

<SAL PROGRAM> ::= "PROGRAM" <<IDENTIFIER>> "."
[<PREAMBLE SPECIFICATIONS>]
<DECLARATION SPECIFICATIONS>
<LANGUAGE SPECIFICATIONS>

<PROCEDURE SPECIFICATIONS> "."

Each of the four specification parts are described in detail
in Chapters 3 through 6 of this report. The program name
<<IDENTIFIER>> has no functional purpose other than to name
the SAL program.

A SAL program specifies a single programming language.
In some cases, the SAL program itself may serve as the
definition of the language. However, the intended use of a
SAL program is only to capture enough of the semantics of a
language (generally defined by other methods) to result in
the generation of annotated flowgraphs for programs written
in the specified language. As a result, not all language
semantics are necessarily specified.

CHAPTER 2

Lexical Elements

This chapter defines the lexical elements of SAL.

2.1. Characters

The basic character set consists of letters, digits,
special characters, the space character, and the end-of-line
character (denoted by EOL).

(a) Letters

ABCDEFGHIJKLMNOPQRSTUVWIXYZ

Implementation restrictions require that only upper
case letters be allowed.

(b) Digits
012345617829

(c) Special characters

"HE S ()LD T+ -/, 0

(d) The space character.
(e) The end-of-line character.
2.2. Comments
SAL recognizes two forms of comments:
(1) Inline comments
The construct
(* <any sequence of characters not containing "*)" > %)

is an inline comment. Below are two examples of inline
comments.

6 Lexical Elements

Lexical Elements 7

(2)

(* THIS IS A COMMENT ON ONE LINE *)

(*
THIS IS A COMMENT
OVER FOUR LINES
*)

Endline comments

The constructs

<any sequence of characters except EOL> EOL

or

$ <any sequence of characters except EOL> EOL

are endline comments. An example of an endline comment
is

#

ENDLINE COMMENTS ARE

NICE FOR RUNNING TEXT

ALONG SIDE ACTUAL SAL

CODE.

#
All endline comments begin with a "#" or "$" and are

terminated by the next end-of-line. An endline comment
beginning with "$" in addition causes a page-eject to
occur starting with the next line following the EOL.

2.3. Lexical Units
The lexical units of SAL include names, numbers, delim-
iters, and literals. Except as explicitly provided, no lex-

ical unit may contain imbedded spaces, comments, or EOL's.

E'E*i‘ Names

There are essentially three types of names recognized

as primitive token units:

(a)

Identifiers

The syntax for identifiers is as in the PASCAL Report,

and as such its token unit type is denoted by <<IDEN-
TIFIER>> (see Section 1.3(b)).

The length of an identifier is the number of characters
comprising its string.

(b)

(c)

Lexical Elements

Examples

START SUB1 A2B3 SAL X12345

Grammay identifiers
The syntax for <GRAMMAR IDENTIFIER> is

<GRAMMAR IDENTIFIER> ::=
"<" <LETTER> {<LETTER>|<DIGIT>|" "} "»"

The length of a grammar identifier is +the number of
characters between its enclosing angled brackets.

Examples
<PROGRAM> <DECLARATION PART>
<STATEMENT LIST> <FORTRAN 4>

Qualified grammar identifiers

The syntax for the token unit <QUAL GRAMMAR IDENTIFIER>

is

<QUAL GRAMMAR IDENTIFIER> ::=
"<" KLETTER> {<LETTER> |<DIGIT>|" "}
u(u <DIGIT> {<DIGIT>} u)u ll>ll

The length of a qualified grammar identifier 1is the
number of characters between its enclosing angled
brackets minus its parenthetic qualifier.

Examples
Qualified Grammar Identifier Length
<PROGRAM(1)> 7
<FORTRAN 4(3)> 9
<STATEMENT LIST(2)> 14
<Al 23 B(1)> 7

z.é.g. gumbers

There are two types of numbers recognized by SAL as

token units.

Lexical Elements 9

(a) Integers

The syntax for integers is

<INTEGER> ::= <<UNSIGNED INTEGER>>
Examples
12345 22222 5432 0
(b) Reals

The syntax for reals is

<REAL> ::= <<UNSIGNED REAL>>
Examples

1.4 25.6E~13 5.0E+12

0.3 1.498E1 3.14159

2.3.3. Literals

The token unit <LITERAL> is any sequence of characters
not containing EOL and enclosed between two double quotes.
To include a double quote in the literal, one writes the
gquote mark twice.

The length of a literal is the number of characters
between the two enclosing double quotes. Two consecutive
double quotes appearing within the literal are counted as a
single character.

Examples
it and " " are two literals of length one.
"AB" ang tmnmrne are two literals of length two.

"IS THIS A ""LITERAL""?" is a literal of length 20.

A literal must have a length greater than zero.

2.3.4. Delimiters

The characters

() [] + * / - P . H H < > b

10 Lexical Elements

serve as one-character delimiters.
The character strings

<> <= >= o=
serve as two-character delimiters.
The character string

PR
o & ™

serves as a three-character delimiter.

N

2.3.5. Lexical-Unit Restrictions

The current SAM/SAL implementation restricts the length
of an identifier (2.3.1(a)), grammar identifier (2.3.1(b)),
and qualified grammar identifier (2.3.1(c)) to be no more
than 30 characters. The length of a literal (2.3.3) may be
no more than 15 characters.

2

-4. Spaces

All lexical units may be seperated by sequences of
spaces, comments, or EOL's. The use of spaces, comments,
and EOL's is mainly to provide readability and textual
organization to the source program.

g.é. Reserved Words

The following identifiers are reserved words. The SAL
programmer may not use reserved words in a context other
than that explicit in the definition of SAL.

ACTION DO LABEL PREAMBLE SPECIFICATIONS
ACTIONS DOWNTO LANGUAGE PROCEDURE SYNTAX
AND ELSE MOD PROGRAM THEN
ARRAY END NIL RECORD TO
ATTRIBUTE FILE NODE REPEAT TOKEN
ATTRIBUTES FLOWGRAPH NOT RETURN TYPE
BEGIN FOR OBJECT RULES TYPES
CASE FUNCTION OF SCANNER UNTIL
CLASSES GOTO OR SEMANTIC VAR
CONS'T GRAMMAR OTHER SEMANTICS WHILE
DECLARATIONS IF PACKED SET WITH

DIV IN

CHAPTER 3

Preamble

A given implementation of SAM/SAL is expected to pro-
vide a standard environment of resources needed to aid the
SAL programmer in a language specification. The standard
environment should provide:

(a) A default lexical scanner.
(b) Predefined data-structures to represent

(1) Callgraph nodes and edges
(2) Flowgraph nodes and edges
(3) Object Classes

(4) Actions

(c) Appropriate predefined accessing functions and pro-
cedures for these structures.

A

A SAL preamble is an optional specification which allows the
user to extend or somewhat control this standard environ-

ment. Through the preamble, some implementation considera-
tions (which are otherwise meant to be invisible to the
user) are made visible. The form of a preamble is given by

<PREAMBLE SPECIFICATION> ::=
"PREAMBLE"
{ <IMPLEMENTATION SPECS> }
"END" "PREAMBLE"

«here the form and the content of the implementation specif-
ications may vary from one installation to another. The
current implementation specifications allowed on the CU CDC
Cyber include (a) a capability to override the default lexi-
cal scanner by introducing another scanner more specific to
the language being defined: (b) some capability to control
data-structure memory allocation; and (c) the capability to
control the form of the parser-grammar output. These three
capabilities are elaborated below.

3.1. Scanner Specification

This would be given by

<IMPLEMENTATION SPEC> ::= <SCANNER>

Preamble 11

12 Preamble

where the form of the scanner is as described in [Clemm2
79]. The scanner must return four "kept" token types.

(1) "IDNTFR" corresponding to <IDENTIFIER> in the user-
specified grammar.

(2) "STRING" corresponding to <STRING> in the user-
specified grammar.

(3) "CNSTNT" corresponding to <CONSTANT> in the user-
specified grammar.

(4) "FLOAT" corresponding to <FLOAT> in the user-specified
grammar .

In addition,

(5) if the user-specified grammar uses any special charac-
ter as a literal token unit and that character always
appears in literals of only length 1, then that charac-
ter 1is to be returned as the token type "SINGLE" from
the scanner, and

(6) if the user-specified grammar uses any special charac-
ter as a literal token wunit and that character may
appear in at least one literal of length greater than
one, then that character 1is to Dbe returned by the
scanner as the token type "MANY".

é.g. Data Structure Control

All data structures provided by the standard environ-

ment have a default size. Most of these structures may have
their default size changed by assigning a new size-value to
an appropriate identifier in the preamble. Such assignments

are given by the following syntax

<IMPLEMENTATION SPEC> ::

<PREAMBLE ID> " <INTEGER> "."
where
<PREAMBLE ID> ::= "MAXSETS" | "MAXSETSIZE" |
"MAXDPNODES" | "MAXEDGES" |
"MAXSYM" | "MAXCHAR" |
"MAXATTBLCK" | "MAXPACKET" |
"MAXPARSENODES"

3.2.1. MAXSETS (default 100)

This determines the number of SETS to be reserved in
the SAM/SAL set-pool. The amount of memory allocated for

Preamble 13

sets is then given by MAXSETS*MAXSETSIZE words.

3.2.2. MAXSETSIZE (default 10)

This determines the number of words to be used in a
set. For the CU CDC Cyber 59 bits of each word are used.

Thus if MAXSETSIZE=3 then each set represents 3 x 59 = 177
objects.

3.2.3. MAXDPNODES (default 2000)

.his determines the maximum number of dependency-graph
nodes that will be reserved by the semantic evaluator phase.
This graph controls the processing during semantic evalua-
tion and is of no direct interest to the user except that
its default size may be inadequate for semantic evaluation
of large source programs written in the language specified.

3.2.4. MAXEDGES (default 2500)

This determines the maximum number of dependency-graph
edges that will be reserved by the semantic evaluator phase.
This may need to be explicitly set if the default wvalue is
inadequate for semantic evaluation of large source programs
written in the specified language.

3.2.5. MAXPARSENODES (default 1000)

This determines the maximum number of parse-tree nodes
that will be reserved for the semantic evaluator phase.
This may need to be explicitly set if the default value is
inadequate for semantic evaluation of large source programs
written in the specified language. On the present implemen-
tation, each parse-tree node is two central memory words.

3.2.6. MAXSYM (default 250)

This determines the maximum number of symbol entries
that will be reserved for the symbol table during the seman-
tic evaluator phase. On the CDC Cyber, the total symbol

table size can be given by

MAXSYM * (1 + MAXCHAR/10)

central memory words where MAXCHAR (a multiple of 10) is the
maximum number of characters per symbol string.

3.2.7. MAXCHAR (default 10)

This determines the maximum number of c¢haracters per
symbol string and should Dbe a multiple of the number of
characters which can be packed into a central memory word
(in the case of the CDC Cyber series, a multiple of 10).

14 Preamble

3.2.8. MAXATTBLCK (default 250)

This determines the maximum number of symbol
attribute-blocks that will Dbe reserved for the semantic
evaluator phase. The attribute table size will then be
given by MAXATTBLCK * N words where N is the maximum number
of symbol attributes declared for a given object class (see
Section 4.1). Since a symbol may possess at most one attri-
bute block, it is always sufficient for MAXATTBLCK to be
less than or equal to MAXSYM.

3.2.9. MAXPACKET (default 250)

For the current implementation, a packet 1is a con-
venient storage unit which holds action annotations. As
such, flowgraph nodes, expression-tree nodes, and use-table
nodes are all packets. MAXPACKET determines the total
number of packets to be reserved by the semantic evaluator
phase. The amount of memory occupied by packet allocation

is
MAXPACKET * (2 + NUMACT)

words where NUMACT represents the total number of actions
declared by the user (see Section 4.2).

3.3. Grammar Output Control

Often in practice a group of syntax rules are alternate
rules for the same grammar variable. For example, the list
of rules

<A> ::=
<A> 2= <LC>
<A> = <D>

can be expressed in an "alternatives" form
<A> :2:= | <Cc> | <D»

By default, since syntax rules in SAL can never explicitly
be expressed in "alternatives" form (see Section 5.2.1.1),
they are not listed to the grammar output file in this form.
However, the parser generator wused for +the present SAL
implementation will require significantly less memory if the
grammar file generated by SAL were in "alternatives" form.
This can be achieved by the ALTERNATIVES command in the
preamble. The syntax for this command is

<IMPLEMENTATION SPEC> ::= "ALTERNATIVES" ;"

An example of a preamble is

Preamble

PREAMBLE
MAXSYM = 500;
MAXSETS = 800;
ALTERNATIVES;

END PREAMBLE

e e o S

15

INCREASES DEFAULT SYMBOL TABLE SIZE.
INCREASE DEFAULT SET-POOL SIZE.

WRITE GRAMMAR OUTPUT FILE
IN ALTERNATIVES FORM.

CHAPTER 4

Declarations

Recall that the key idea (see Section 1.1) of a SAL
rrogram is to be able to specify actions on objects at flow-
graph nodes. The primary purpose of the declarations sec-
tion 1is to provide a mechanism for the user to declare
classes of objects and actions for these objects in order to
reflect the type of node annotations desired on the output
flowgraphs. The syntax for the declarations specifications
section is

<DECLARATION SPECIFICATION> ::=
"DECLARATIONS"
<OBJECT CLASS DECLARATIONS>
<ACTION DECLARATIONS>
[<FLOWGRAPH NODE TYPES>]
<OTHER DECLARATIONS>
"END" "DECLARATIONS"

<OBJECT CLASS DECLARATIONS>, <ACTION DECLARATIONS>, <FLOW-
GRAPH NODE TYPES>, and <OTHER DECLARATIONS> are elaborated
further in Sections 4.1 through 4.4.

4.1. Object Class Declarations

It is convenient to think of objects as belonging to
classes, each class having its own set of actions. In PAS-
CAL, for example, the object classes might correspond to
variables, labels, procedures, functions, and the main pro-
gram. Of these five classes, the user may wish to associate
one or more actions with only the "variables" class. In the
object class declaration section, all object classes are
declared, along with a (possibly empty) 1list of object
attributes which objects in that c¢lass may possess. The
syntax for the object class declarations 1is

<OBJECT CLASS DECLARATIONS> ::=
"OBJECT" "CLASSES" ":"
<OBJECT CLASS SPEC>
{ <OBJECT CLASS SPEC> }

<OBJECT CLASS SPEC> ::=
<OBJECT CLASS»> ":"
“(" [<OBJECT ATTRIBUTE LIST>] ")" "."

16 Declarations

Declarations 17

<OBJECT CLASS> ::= <<IDENTIFIER>>
<OBJECT ATTRIBUTE LIST> ::= <OBJECT ATTRIBUTE SPEC>
{ ":;" <OBJECT ATTRIBUTE SPEC> }

<OBJECT ATTRIBUTE SPEC> ¢ :=
<OBJECT ATTRIBUTE> { "," <OBJECT ATTRIBUTE> }

"' K<KTYPE>>
<OBJECT ATTRIBUTE> ::= <<IDENTIFIER>>

For example, in a specification of PASCAL one might have

OBJECT CLASSES :

VARIABLES : ():

LABELS : (FN:FGNODE) ;

PROCEDURES: (PCALL:CALLPTR;PENTRY:FGNODE) ;
FUNCTIONS : (FCALL:CALLPTR;FENTRY:FGNODE);

This declares four object classes: VARIABLES, LABELS, PRO-
CEDURES, and FUNCTIONS. The class VARIABLES has no object
attributes associated with it. The object class LABELS has a
single attribute, FN, which is of the predefined flowgraph
node descriptor type FGNODE (see Section B.1.5). The object
classes PROCEDURES and FUNCTIONS each have two attributes
associated with them; the first (PCALL, and FCALL, respec-
tively) 1is of the predefined callgraph node descriptor type
CALLPTR (see Section B.1.7) and is to hold the callgraph
node for any object in either of these classes; the second
(PENTRY and FENTRY, respectively) is +to hold the "entry"
flowgraph node for any object in these classes.

An object can be inserted into a declared object class
via a semantic rule (see Section 5.2.2) or via a SAL pro-
cedure or function invoked by a semantic rule (see Section
4.4). Similarly, an attribute for an object can be given a
value via a semantic rule or via a procedure or function
invoked by a semantic rule.

An Obiject Attribute is different from a Grammar Attri-
bute (Section 5.1) and it is important that the user does
not confuse these two concepts. An Object Attribute annotes
the object (or symbol) which possesses it. It may be
defined, referenced, and redefined by use of Attribute Table
accessing functions (Section B.2.3). A Grammar Attribute,
on the other hand, annotates a parse tree node (or
equivalently, the grammar variable which names that node),
and is subject to the rigorous rules of attributed grammar

18 Declarations

evaluation [Knuth 68]. As such, a Grammar Attribute may be
defined or referenced in a semantic rule (Section 5.2.2),
but may never be redefined.

4.2, éctions

Actions are declared for object classes. Fach action
may affect only one object class, however an object class
may own zero or more actions. The syntax for action
declarations is

<ACTION DECLARATIONS> ::= "ACTIONS" ":"

<ACTION DEFINITION>
{ <ACTION DEFINITION> }

<ACTION DEFINITION> :
<ACTION> { ","™ <ACTION> } ":"
“ON" <OBJECT CLASS> ":"

<ACTION> ::= <<IDENTIFIER>>

Continuing with our PASCAL specification example, an action
declaration might be

ACTIONS :

DEFINE, REFERENCE, UNDEFINE : ON VARIABLES:
USED : ON LABELS;:

Such a declaration would allow the user to later associate
subsets of the object class VARIABLES with the actions
DEFINE, UNDEFINE, and REFERENCE, and associate subsets of

the object class LABELS with the action USED.

4.3. Flowgraph Node Types

The user is allowed to declare mnemonic names for the
node types of the flowgraphs to aid in program readability.
These names may then be used in a SAL statement which sets
the +type for a particular flowgraph node. These mhemonic
names are automatically retained by the semantic evaluator
phase for error reporting or user displays. The syntax for
the flowgraph node type declaration is

<FLOWGRAPH NODE TYPES> ::=
"FLOWGRAPH" "NODE" "TYPES" *:"
<NODE NAME> { "," <NODE NAME> } "."

<NODE NAME> ::= <<IDENTIFIER>>

An example of this declaration form for PASCAL is

Declarations 19

FLOWGRAPH NODE TYPES :
ENTRY, EXIT, ASSIGNMENT, GOTOSTMT, PROCCALL,
EMPTYSTMT, IFTEST, CASETEST, WHILETEST,
REPEATTEST, FORINIT, FORTEST, FORINCR, FORUNDF;

Each node name must be no more than ten characters in
length.

4.4. Other Declarations

The SAL user will often find it necessary to create
other procedures and functions based on the primitive capa-
~1ilities provided by the Standard Environment. The newly
created procedures and functions are typically higher level
routines which characterize functional properties of the
language being specified. The definitions of such pro-
cedures and functions are elaborated in the declaration
specifications section of the SAL program. Any constants,
types, or global variables may also be declared in this sec-
tion. The syntax for this is given by

<OTHER DECLARATIONS> ::=
<<CONSTANT DEFINITION PART>>
<<TYPE DEFINITION PART>>
<<VARIABLE DECLARATION PART>>
<<PROCEDURE AND FUNCTION DECLARATION PART>>

Note that any of the four parts above may be empty (as per
usual PASCAL syntax). The motivation for providing this
declaration form in SAL will become more apparent in Chapter
5 (specifically, see Sections 5.1.2.2 and 5.2.2.3(e)).

CHAPTER 5

Language Specifications

The language specifications section contains the pri-

mary information to specify a desired programming language.
The syntax for this section is

<LANGUAGE SPECIFICATIONS> ::=
"LANGUAGE" "SPECIFICATIONS"
<GRAMMAR ATTRIBUTE PART>
<LANGUAGE RULES>
"END" "LANGUAGE" "SPECIFICATIONS"

<GRAMMAR ATTRIBUTE PART> and <LANGUAGE RULES> are further
elaborated in Sections 5.1 and 5.2, respectively.

5.1. Grammar Attributes

This subsection allows the user to declare all of the
grammar variables to be used in the language specification.
For each such grammar variable a (possibly empty) 1list of
grammar attributes 1s also declared. FEach such attribute
must be given a type.

5.1.1. Grammar Attribute Part : Syntax

The syntax for the grammar attribute part is

<GRAMMAR ATTRIBUTE PART> ::=
"GRAMMAR" "ATTRIBUTES"
<GRAMMAR VAR ATTLIST>
{ <GRAMMAR VAR ATTLIST> }
"END" "GRAMMAR" "ATTRIBUTES"

<GRAMMAR VAR ATTLIST> ::= <GRAMMAR IDENTIFIER> ":"
{ <GRAMMAR ATTLIST>} ";"

<GRAMMAR ATTLIST> ::= <GRAMMAR ATT DECL>
{ ";" <GRAMMAR ATT DECL>}

<GRAMMAR ATT DECL> ::=
<GRAMMAR ATTRIBUTE> { "," <GRAMMAR ATTRIBUTE> }
""" K<KTYPE>>

20 Language S8Specifications

Language Specifications 21

<GRAMMAR ATTRIBUTE> ::= <<IDENTIFIER>>
An example of a grammar var attlist is
<LABELLED STATEMENT> :

LABELVAL : SYMBOL;
START, FINISH : FGNODE;

5.1.2. Grammar Attribute Part : Semantics

A grammar var attlist serves to declare a grammar vari-
able and its associated grammar attributes. Such a declara-
tion allows the user to later reference or define the attri-
buted wvariables (see Section 5.2.2.2) constructed from a
grammar variable and any one of its grammar attributes. For
a more complete discussion of the use and meaning of grammar
attributes, see [Knuth 68].

5.1.2.1. Primitive Grammar Variables

Four predefined grammar variables belong to the set of
terminal symbols of any user-specified grammar in SAL.
These four grammar variables are called primitive grammar
variables and include

<IDENTIFIER> <CONSTANT>
<FLOAT> <STRING>

These are the only four grammar variables allowed in the set
of terminals for any user-specified grammar in SAL. As men-
tioned later in the Syntax Rule / Scanner Interface section
(5.2.1.2), these terminal grammar variables name parse tree
leaf nodes associated with "kept" tokens ([Clemm2 79]) in
the source code of the parsed program being analyzed. A
kept token has two pieces of information of use to the SAL
programmer: (1) a symbol descriptor identifying the object
being kept, and (2) the token number for the occurrence of
the object in the source text. As such, for each of the
four primitive grammar variables there exists two predefined
grammar attributes; namely, VALUE of the standard type SYM-
. BOL (Section B.1.2) and TOKEN of the standard type INTEGER
(Section B.1.9). The VALUE and TOKEN attributes of any
primitive grammar variable are automatically set by SAM/SAL
to contain the symbol descriptor and token number, respec-
tively, of the associated token in the source text.

The SAL user must observe the following rules regarding
the declaration of primitive grammar variables.

(a) Only the four primitive grammar variables mentioned

above may possess grammar attributes named VALUE and
TOKEN.

22 Language Specifications

(b) A primitive grammar variable may possess no grammar
attributes other than VALUE and TOKEN.

(c) A user wishing to use any of the four primitive grammar
variables must still declare those grammar variables
(along with any of the two special grammar attributes

VALUE or TOKEN desired) according to the syntax rules
of Section 5.1.1.

This discussion on the Grammar Attribute Part in gen-
eral and the Primitive Grammar Variables in particular is
now best illustrated by the following example:

GRAMMAR ATTRIBUTES #
<PROGRAM> : ; # NO ATTRIBUTES
#
<IDENTIFIER> : #
VALUE : SYMBOL; # WILL ONLY USE "VALUE" ATTRIBUTE
OF THIS PRIMITIVE GRAMMAR VAR.
<STRING> : #
VALUE : SYMBOIL:; # WILL USE BOTH PREDEFINED ATTRI-
TOKEN : INTEGER; # BUTES FOR THIS PRIM. GRAMMAR VAR.
#
<CONSTANT> : #
VALUE : SYMBOL: # THIS IS OK, SINCE PRIMITIVE.
NUM : INTEGER; # INVALID... "NUM" IS NOT A VALID
ATTRIBUTE FOR A PRIM. GRAMMAR VAR
<STATEMENT> : #
START : FGNODE: # OK, SINCE "STATEMENT" IS NOT PRIM.
VALUE : SYMBOL: # INVALID... NONPRIMITIVE GRAMMAR
VAR MAY NOT HAVE ATTRIBUTE NAMED
" "VALUE" .
END GRAMMAR ATTRIBUTES #
Note that this example contains two (documented) errors.
Also, the attributed wvariables (see Section 5.2.2.2)

<IDENTIFIER>.VALUE, <STRING>.VALUE, and <CONSTANT»>.VALUE are
predefined to be the symbol descriptors to the identifier,
string, and constant, respectively, in the symbol table.
The attributed wvariable <STRING>.TOKEN is predefined to be
the token number for the occurrence of the string in the
source text associated with this parse-tree terminal. The
attributed variable <STATEMENT>.START is not predefined and

must be explicitly defined by a semantic rule (see Section
5.2.2).

5.1.2.2. Type Restrictions

For the current implementation of SAL, attribute types
must be either an INTEGER or subrange of INTEGER. If a
grammar attribute is conceived to be of some structured type
T (e.g. a PASCAL RECORD type), then the user should define
the type T in the type definition part and declare a

Language Specifications 23

variable V in the variable declaration part of the declara-
tion specification section (see Section 4.4), so that V 1is
some array of type T. V then acts as a pool of resources of
type T, and an index into V then acts as a descriptor to an
object of type T. Since such an index 1s a subrange of
INTEGER, this descriptor is a valid grammar attribute. This
is 1in fact how SETS, FLOWGRAPH NODES, CALLGRAPH NODES, etc.
are provided by the current Standard Environment. For any
such pool of structured objects declared by the user, the
user should also carefully provide accessing functions and
procedures to (1) allocate and deallocate an object in the
pool, and (2) set or get fields within such an object.

5.2. Language Rules

The syntax for the language rules subsection is

<LANGUAGE RULES> ::= "RULES"
<RULE>
{ <RULE>}
" END" "RULES"

<RULE> ::= <SYNTAX RULE>
" SEMANTICSY
["OBJECT" "SPECIFICATIONS"
<SEMANTIC RULE LIST>]
["ATTRIBUTE" "SPECIFICATIONS"
<SEMANTIC RULE LIST>]
["FLOWGRAPH" "SPECIFICATIONS"
<SEMANTIC RULE LIST>]
["ACTION" "SPECIFICATIONS"
<SEMANTIC RULE LIST>]
["OTHER" "SPECIFICATIONS"
<SEMANTIC RULE LIST>]
"END"

<BEMANTIC RULE LIST> ::= <SEMANTIC RULE>

<
{ ":" <SEMANTIC RULE> }

The syntax rule of any language rule is said to "govern" all
semantic rules 1in any semantic rule 1list of that same
language rule. <SEMANTIC RULE> is further elaborated in
Section 5.2.2.2.

5.2.1. sSyntax Rules

The collection of syntax rules, when combined, are to
form a context-free accepting grammar and tree-building
grammar for the specified language. If the language being
specified 1is not context free (e.g. Fortran 66), then the
user must carefully define a powerful lexical scanner in the

24 Language Specifications

preamble (see Section 3.1) to resolve all context—-sensitive
features.

5.2.1.1. Syntax Rule Syntax

The syntax of a syntax rule is

<SYNTAX RULE> ¢ :=
<GRAMMAR VARIABLE> "::=" <SYNTAX EXPRESSION>

<GRAMMAR VARIABLE> ::= <GRAMMAR IDENTIFIER> |
<QUAL GRAMMAR IDENTIFIER>

<SYNTAX EXPRESSION> ::= <SYNTAX UNIT> {<SYNTAX UNIT>}
<SYNTAX UNIT> ::= <GRAMMAR VARIABLE> | <LITERAL>
Examples
<PROGRAM> ::= <HEADING> ":" <DECLARATIONS> ":" <BODY> "."
<STMT LST(l)> ::= <STATEMENT> ":" <STMT LST(2)>
The presence of a qualifier in a grammar wvariable has
no effect on the syntax rule. Qualifiers are a semantic
device only (see Section 5.2.2.3(b)). Thus, the two syntax
rules below are grammatically indistinguishable:
<IDENT LIST(1)> ::= <IDENT LIST(2)> "," <IDENTIFIER>
<IDENT LIST> ::= <IDENT LIST> "," <IDENTIFIER>
The length of a grammar variable is the length of the
grammar identifier (Section 2.3.1(b)) or qualified grammar

identifier (Section 2.3.1(c)) which it derives.

5.2.1.2. Syntax Rule / Scanner Interface

In Section 3.1 it was mentioned that four special token
types must be provided by the lexical scanner. These types
correspond to the "kept" tokens ([Clemm2 79]) in a given
source stream, and correspond with the four primitive gram-
mar variables mentioned in Section 5.2.1.2. Explicitly,
this correspondence is given by

" IDNTRE" {-—> <KIDENTIFIER>
"STRING" {-=> <KSTRING>
"CNSTNT" {—=> <CONSTANT>
"FLOAT" <w=> <FLOAT>

This correspondence is automatically known to SAM/SAL. All

Language Specifications 25

final details of the interface protocol are automatically
handled by SAM/SAL.

5.2.1.3. Syntax Rule Restrictions

There are four restrictions to the collection of syntax
rules. The first two restrictions have to do with general
requirements of a context-free grammar. The last two res-
trictions are due to implementation requirements peculiar to
the automatic parser generator.

(1) There must exist exactly one grammar variable (called
the start variable) which is the left side of at least
one syntax rule and which appears on the right side of
no syntax rule.

(2) The primitive grammar variables (see Section 5.1.2.1)
may not appear on the left side of any syntax rule.

(3) The right side of a syntax rule may not be empty.
Unfortunately, +this may force a large increase in the
number of syntax rules than might otherwise be possible
if the empty production were permitted.

(4) The right side of a syntax rule may have at most seven
syntax units.

5.2.2. Semantic Rules

The semantic rules specified in SAL may be partitioned
into five phases: OBJECT SPECIFICATIONS, ATTRIBUTE SPECIFI-
CATIONS, FLOWGRAPH SPECIFICATIONS, ACTION SPECIFICATIONS,
and OTHER SPECIFICATIONS. The use of these phases is a sim-
ple variation on a pure attributed grammar as defined in
[Knuth 68], and is explained as follows. After some prac-
tice at using the pure nonprocedural attributed grammar dev-
ice, it became clear that a specification program using such
a device was intellectually more managable if it was at
least conceived of as a sequence of successive phases, where
the run~time completion of a phase could be characterized as
the completion of some conceptual user-level task. In a SAL
program, the user's job is to create objects (update a sym-
bol table), possibly decorate these objects (create object
attributes in an attribute table), build flowgraphs, anno-
tate flowgraph nodes with actions, and possibly perform
other miscellaneous activities on these structures. The
five phases mentioned above are intended to correspond to
these five conceptual activities. The semantic rules within
a phase are directed toward performing these corresponding
activities. The concept of partitioning semantic rules into
phases thereby allows a user to build or update global
structures (symbol table, attribute table, flowgraph node
table, edge 1lists, action packets, etc.) without having to

26 Language Specifications

pass copies of these large structures up and down the parse
tree.

This might be better realized with the following illus-
tration. In order to «c¢reate an object attribute in the
attribute table the object must first exist as a symbol
table entry. A semantic rule relying on either the object
being in the symbol table or one of its attributes being in
the attribute table must not execute until such table
updates have been made. One expensive (but pure) method of
signalling the semantic rule that the updates it requires
have indeed been made is to propogate a set of grammar
attributes up and down the parse tree to signal the comple-
tion of the symbol table update phase, and then propogate
another set of grammar attributes up and down the parse tree
to signal the end of the attribute table creation phase.
The propogation of such grammar attributes is costly both in
terms of memory (as many as two extra attributes needed per
parse tree node per phase) and in terms of time (each attri-
bute would have to be readied, scheduled, and computed).

With the semantic rule partitioning introduced in SAL,
all of this effort of defining and propogating extra grammar
attributes for end-of-phase signalling can be eliminated or
greatly reduced.

5.2.2.1. Evaluation Order of Semantic Rules

The collection of all semantic rules specify a nonpro-
cedural set of instructions. It is generally not clear from

the source text ordering of these rules what their actual
evaluation order might be.

5.2.2.1.1. 1Interphase Ordering

The phase-partitioning mentioned above (5.2.2) has the
following interpretation: no semantic rule in a given seman-
tic phase can execute until all semantic rules in any

preceding phase have executed. This of course implies an
ordering to the semantic phases. Explicitly, this ordering
is

(1) The OBJECT SPECIFICATIONS phase is first and therefore

has no preceding phase. All semantic rules in this
phase are therefore constrained by no rules from other
phases. The intent of this phase is to contain (among

other rules) those semantic rules which update the sym-
bol table by creating objects (symbols).

(2) The ATTRIBUTE SPECIFICATIONS phase is second. All
semantic rules in this phase execute only after the
semantic rules in the OBJECT SPECIFICATIONS phase have
executed. The intent of this phase is to be able to

Language Specifications 27

rely on the existence of a completed symbol table from
the previous phase so that any associated symbol attri-
butes may now be added to the attribute table.

(3) The FLOWGRAPH SPECIFICATIONS phase is third. The intent
of this phase 1is to build flowgraph nodes and edges
relying on the existence of a completed symbol table
and attribute table. A semantic rule in this phase may
execute only after all semantic rules 1in the OBJECT
SPECIFICATIONS and ATTRIBUTE SPECIFICATIONS phase have
executed.

(4) The ACTION SPECIFICATIONS phase is fourth. The intent
of this phase 1is to annotate the nodes in the flow-
graphs created by the previous (FLOWGRAPH SPECIFICA-
TIONS) phase. A semantic rule in this phase may exe-
cute only after all semantic rules in the OBJECT
SPECIFICATIONS, ATTRIBUTE SPECIFICATIONS, and FLOWGRAPH
SPECIFICATIONS phases have executed.

(5) The OTHER SPECIFICATIONS phase is fifth and last. The
intent of this phase is to allow the specification of
any additional semantic rules which may rely on the
existence of all tables and structures completed by the
previous four phases. A semantic rule in this phase
may execute only after all semantic rules in any of the
other four phases have executed.

5.2.2.1.2. Intraphase Ordering

Within a phase semantic rules are executed in an order
determined by their dependencies on the other grammar attri-
butes (see [Knuth 68]). 1In general this will not be a total
order 1in that at any given moment more than one semantic
rule may be ready for execution. The determination of gram-
mar attribute dependencies, detection of which semantic
rules at a given moment are ready for execution, and
scheduling of all "ready" rules for execution is automati-
cally handled by the SAM/SAL semantic evaluator.

An additional intraphase ordering imposed by SAL is
that all assignment rules are executed before any procedure
rule.

5.2.2.1.3. Evaluation Order Restrictions

It is possible to have a collection of semantic rules
which cannot all execute. A simple example of this is
illustrated by the following language rule.

28 Language Specifications

<A> ::=
SEMANTICS
OTHER SPECIFICATIONS
<A>.ATT1 := F1(.ATT1):
.ATT1 := F2(<A>.ATT1)
END

From the first semantic rule in the example it is clear that
<A>.ATT1 cannot be evaluated until after the evaluation of
.ATT1. But from the second rule we see that .ATTL
cannot be evaluated until after the evaluation of <A>.ATT1.

From the point of view of the SAM/SAL scheduler, a deadlock
exists.

A SAL program in which all semantic rules can be
evaluated without interdependency conflicts is called well
defined. A valid SAL program must be well-defined, and ~the
user must exercise care to ensure this behavior. The detec-
tion of any violations of a well-defined program occurs in

the semantic evaluation phase and not during program compi=-
lation.

Research performed by other authors ([Bochm 76], [Jazay
751, [Kasten 78], and [Kenned 76]) has been done to investi-
gate methods for improving semantic evaluation by enforcing
a fixed -evaluation strategy on the attribute grammar. In
all cases, these improvements were achieved Dby restricting

the class of attribute grammars accepted from the well-
defined class above.

5.2.2.2. Semantic Rule Syntax

The syntax for a semantic rule is

<SEMANTIC RULE> ::= <ASSIGNMENT RULE> | <PROCEDURE RULE>

<ASSIGNMENT RULE> ::=
<ATTRIBUTED VARIABLE> ":=" <SEMANTIC EXPRESSION>

<PROCEDURE RULE> ::=
<<IDENTIFIER>> {"(" <SEMANTIC EXPRESSION LIST> ")" }

<SEMANTIC EXPRESSION LIST> ::
<SEMANTIC EXPRESSION> {"," <SEMANTIC EXPRESSION>}

<ATTRIBUTED VARIABLE> ::=
<GRAMMAR VARIABLE> "." <GRAMMAR ATTRIBUTE>

L.anguage Specifications 29

<SEMANTIC EXPRESSION> ::=
<SEMANTIC SUBEXPRESSION>
<SET OP> <SEMANTIC SUBEXPRESSION> |
<SEMANTIC SUBEXPRESSION>

<SET OP> ::= "UNION" | "INTERSECTION" | "MINUS"

<SEMANTIC SUBEXPRESSION> ::=
<SEMANTIC TERM> <ADD OP> <SEMANTIC TERM> |
<SEMANTIC TERM>

<ADD OP> ::= "g" | "on

<SEMANTIC TERM> ::=

<SEMANTIC FACTOR> <MULT OP> <SEMANTIC FACTOR> |
<SEMANTIC FACTOR>

<MULT opP» P e I u/n

<SEMANTIC FACTOR> ::=
<INTEGER> | <REAL> | <<IDENTIFIER>> |
<FUNCTION REFERENCE> | <ATTRIBUTED VARIABLE> |
<<SIGN>> <SEMANTIC FACTOR> |
“(" <SEMANTIC EXPRESSTON> ")"

<FUNCTION REFERENCE> ::
<<IDENTIFIER>> {"(" <SEMANTIC EXPRESSION LIST> ")"}

5.2.2.3. Semantic Rule Semantics

(a) For an attributed variable appearing in any semantic
rule, the following must hold.

(1) The grammar attribute composing the attributed
variable must appear in the grammar attribute list
for the declaration of the associated (unquali-
fied) grammar identifier (see Section 5.1.2).

(2) The grammar variable part of the attributed vari-
able must appear in the syntax rule governing (see

Section 5.2) the semantic rule containing the
attributed variable.

(b) A qualified grammar identifier is syntactically inter-
preted no differently than the same grammar identifier

30

(c)

(a)

Language Specifications

without the qualifier. However, in semantic rules such
qualifiers are often needed to destinguish between two
Oor more occurrences of the same grammar variable. This
is best illustrated by an example of a language rule:

<ID LIST(1l)>» ::= <ID> "," <ID LIST(2)>
SEMANTICS
OBJECT SPECIFICATIONS
<ID>.ENVIRON := <ID LIST(1)>.ENVIRON
END

The syntax rule describes a subtree of the parse tree
rooted at <ID LIST(1)> and having two sons <ID> and
<ID LIST(2)>. The semantic rule explicitly assigns to
the ENVIRON attribute of <ID> the ENVIRON attribute of
the root of +this subtree. Without qualifiers on
<ID LIST> such a semantic rule would be ambiguous since
<ID LIST>.ENVIRON could refer to the ENVIRON attribute
of either the subtree root or the second son.

The qualifier numbering within a language rule is up to
the user. The only restriction is that a specific
qualified grammar variable may appear at most once in a
given syntax rule. Thus the following is invalid

<A(1)> ::= <A(1)> "ELSE"

since the qualified grammar variable <A(l)> appears
twice in the same syntax rule. The following two exam-
ples are valid

<A> ::= <A> "ELSE"
<B(1)> ::= <B(2)> <A(1l)> <A(2)>

In the first example, since <A> is not qualified it may
appear more than once in the syntax rule. However it
may not appear as part of an attributed variable in a
semantic rule since such an attributed variable would
result in an ambiguous reference. 1In the second exam-
ple, each qualified grammar variable is correctly used
at most once in the syntax rule.

The length of a grammar attribute 1is the number of
characters 1in the attribute name. The length of an
attributed variable is the length of its grammar vari-
able part (Section 5.2.1.1) plus the length of its
grammar attribute part plus one. For example, the
grammar attribute ENVIRON has length 7, and the attri-
buted variable <ID LIST(12)>.ENVIRON has length 15.
The current SAM/SAL implementation restricts the length
of any grammar attribute and attributed variable to be
no more than 30.

Language Specifications 31

(e) A Procedure Rule or Function Reference may apply to any
procedure or function declared either in the Standard
Environment (see Appendix B) or in the Other Declara-
tions section (see Section 4.4).

CHAPTER 6

Procedural Specifications

This final specification section of a SAL program
allows the user to perform any post semantic computations to
augment the output listing file of the semantic evaluator
phase of SAM/SAL. Any computations in this section will
automatically occur after all semantic rules have been com-
puted, and after the symbol table, callgraph tables, and
flowgraph tables have been dumped to the output tables file.
Thus any computations occuring in this section cannot alter
the output tables file. The computations may (and indeed
are intended to) add to the output listing file. All global
variables provided by the Standard Environment or declared
by the user in the Other Declarations part (4.4) are avail-
able for use here. This specification section was added to
the SAL language to provide the user with some post semantic
control. It is expected that in most SAL programs there
will no code in this specification section. The syntax for
the procedural specifications section is

<PROCEDURAL PART> ::=

"PROCEDURE" "SPECIFICATIONS"
<OTHER DECLARATIONS>

"BEGIN"

<<STATEMENTS> >

{ ";" <<STATEMENT>> }
1] END 111

"END" "PROCEDURE" "SPECIFICATIONS"

where <<STATEMENT>> has the usual PASCAL syntax and seman-

tics, and in particular may be empty. Examples of a pro-
cedural specification are

(1) PROCEDURE SPECIFICATIONS # EXAMPLE OF AN EMPTY
BEGIN # PROCEDURE SPECIFICATION
END #

END PROCEDURE SPECIFICATIONS #

and

32 Procedural Specifications

Procedural Specifications 33

(2) PROCEDURE SPECIFICATIONS
(*
WRITE THE COMPLETED SYMBOL TABLE TO

THE STANDARD FILE "OUTPUT".
*)

VAR
SYM : SYMBOL:
BEGIN
WRITELN(" DUMP OF SYMBOL TABLE")
FOR SYM:=1 TO NUMSYM DO
BEGIN
WRITE(" ":5,8YM:5," ":5);
WRITESYM(OUTPUT, SYM) ;
wRITELN
END
END

END PROCEDURE SPECIFICATIONS

[Bochm 76]

[Clemml 79]

[Clemm2 79]

[Fosd 767

{Jazay 75]

[Jensen 74]

[Kasten 78]

[Kenned 76]

[Knuth 68]

34

References

Bochmann, Gregor V. "Semantic Evaluation from
Left +to Right", CACM, Vol. 19, No. 2, (Feb.,
1976), pp. 55-62.

Clemm, G. M. "CLEMSW User's Manual", Tech.
Rep. CU~CS~-167-79, Dept. of Computer Science,
Univ. of Colorado at Boulder, Boulder, Colo.,

November, 1979.

Clemm, G. M. "FSCAN Report and User's Manual”,
Tech. Rep. CU-CS5-166-79, Dept. of Computer
Science, Univ. of Colorado at Boulder,
Boulder, Colo., November, 1979.

Fosdick, L. D., and Osterweil L. J. "Data Flow
Analysis In Software Reliability", Computing

Surveys, Vol. 8, No. 3, (Sept., 1976), pp.
305-330.
Jazayeri, M., and Walter, K. G. "Alternating
Semantic Evaluator", Procedings from ACM
Annual Conference 1975, (Oct., 1975), pp.
230-234.

Jensen, K., and Wirth N. PASCAL: User Manual
and Report, 2nd ed., Springer-Verlag, New York
(1974).

Kastens, U. "Ordered Attribute Grammars",
Technical Report, Institut fur Informatik II,
Universitat Karlsruhe, Bericht Nr. 7/78.

Kennedy, K., and Warren, $S. K. "Automatic Gen-
eration of Efficient Evaluators for Attribute
Grammars", Procedings on 3rd Symposium on
Principles 6),

pp' 32—4‘90
Knuth, D. E. "Semantics of Context-Free
Languages", Mathematical Systems Theory, Vol.

2, No. 2, (June, 1968), pp. 127-145.

References

APPENDIX A

Using SAM/SAL on the CU CDC Cyber

Each of the phases 1listed below uses special files
built for the SAM/SAL system. The names of these files, and
the CU projects and CCID's under which they are accessed may
change. The file names, projects, and CCID's given below
are valid as of January, 1981.

A.l1 Compiling a SAL Program, S

Nine output files are generated by the SAL compiler.
0f these, six have SAM/SAL system names which are not to be
altered by the user, and thus do not explicitly appear in
the compile command. To compile a SAL source program, S:

GET, SAL=SALTRAN/PAPM, J973.
SAL, S, SALIST, SCANNER, GRCLEM.

The single input file is:
5 User specified source file to be compiled.

The nine output files are:

SALIST Listing file. This includes a paginated copy of
the original source text with line numbers, error
diagnostics, cross-reference information, and
program statistics.

SCANNER Scanner file. This file contains the default or
user-defined scanner specifications to be used by
FSCAN.

GRCLEM Grammar file. This file contains all sytax rules
in the form expected by the tree-builder phase of
parse generation.

DECLF Declarations file. This file contains all
declarations as specified in 4.4.

EVALF Command Evaluation file. This file contains all
semantic rules translated into PASCAL statements.

DGRAPHF Dependency-~Graph file. This file contains the

sequence of PASCAL commands generated by SAL to
build the dependency graph for any program in the

Appendix A 35

36 Appendix A

specified language for analysis by the semantic
evaluator.

CNSTMOD Constants file. This file contains all constants
which govern the size of the Standard Environment

data structures.

PTCLF Productions Table file. This file contains PAS-
CAL code for creation of the productions table in
the semantic evaluator. ‘

SALBODY Body file. This file contains PASCAL code as
specified in Chapter 6.

A.2 Generating the Evaluators

A.2.1 Parser Generation

To automatically generate a parser for the language
specified by S, the two output files SCANNER and GRCLEM from

SAL are needed. Parse generation proceeds over several
phases.
Phase 1. Process Scanner Specifications.

GET, FSCAN/PAPM, J973.
FSCAN, SCANNER, SCNLST, TBL1, ERRSCN.

The single input file is:
SCANNER Output from SAL compiler.
The three output files are:
SCNLST Scanner listing file.
TBL1 Fortran tables produced by FSCAN.
ERRSCN Error file.
If ERRSCN is empty, then you can proceed to the second phase
of parse generation.
Phase 2. Process Scanner/Grammar Interface.

GET, SALTGB/PAPM, J973.
SALTGB, GRCLEM, TBL1, GRLIST, TBL2, TBL3, ERRTGB.

The two input files are:

>I

Appendix

GRCLEM Output from SAL compiler.
TBL1 OQutput from FSCAN.
The four output files are:
GRLIST Tree-grammar listing file.
TBL2 Fortran tables produced by SALTGB.
TBL3 Grammar table produced by SALTGB.

ERRTGB Error file.

If ERRTGB is empty, you can proceed to the third phase

parse generation.

Phase 3. Create Fortran Grammar Tables.

GET, CLEMSW=CIMSWB/PAPM, J973.
CLEMSW, TBL3, CLMLIST, TRL4.

The single input file is:
TRL3 Output from SALTGB.
The two output files are:
CIMLIST CLEMSW listing file.

TBL4 Fortran table produced by CLEMSW.

of

If no errors were detected by CLEMSW, you can proceed to the

final phase of parse generation.

Phase 4. Producing the Actual Parser.

To produce the actual parser for the language specified
by S, the Fortran tables produced in the previous phases
need to be compiled and edited into a parse-driver template.

The KCL for this phase is:

REWIND, TBL1, TBL2, TBL4.

FTN, I=TBL1, L=0, B=BIN.

FTN, I=TBL2,L=0, B=BIN.

FTN, I=TBL4, L=0, B=BIN.

REWIND, BIN.

GET, PRSDRVB/PAPM, J973.

LIBEDIT, P=PRSDRVB, L=0, B=BIN, I=0, N=PARSE.

The three input files are:

38 Appendix A

TBLL Output from FSCAN.
TBL2 Output from SALTGB.
TBL4 Output from CLEMSW.

The single output file is:
PARSE Object file for the parser for the language
specified by S.
A.2.2 Semantic Evaluator Generation
To build a semantic evaluator for S:

GET, GENEVAL/PAPM, J973.
PASCAL, GENEVAL, GENLIST, SMEVAL.

The six (implicit) input files are:

EVALF, DGRAPHF, PTCLF, SALBODY, DECLF, and CNSTMOD
Output files from the SAL compiler.

The two output files are:
GENLIST PASCAL listing of the semantic evaluator.
SMEVAL Object file for the semantic evaluator for the
language specified by 8.
A.3 Using the Evaluators

This section describes how to use the parser and seman-—
tic evaluator created in Section A.2.

A.3.1 Using the Parser
To parse a program U in the language specified by S:
PARSE, U, ULIST,UTBL, UERR.
The two input files are:
PARSE The parser generated in A.2.1.
U A sample program in the language specified by S.

The three ocutput files are:

Appendix A 39

ULIST A listing of file U with token numbers.

UTBL File containing symbol table and parse-tree for
U.

UERR Listing of syntax errors in U.

A.3.2 Using the Semantic Evaluator

To perform the semantic evaluation of program U as
specified by S:

GET, FTNSETB/PAPM, J973.

LOAD, FTNSETB .

SMEVAL, UTBL, SAMLIST, SAMTBL.
The two input files are:

SMEVAL The semantic evaluator generated in A.2.2.

UTBL The table-file generated by the parser for pro-
gram U.

The two output files are:

SAMLIST Listing file containing (a) any system errors
detected by the semantic evaluator, (b) any out-
put requests issued by the user in 8§, and (c)
program statistics for U.
SAMTBL This file contains the symbol table, call graph,
and flowgraphs for program U.
A.4 Fancy Display
The current SAM/SAL system has a post phase which
allows the user to get a readable listing of the tables file

from the semantic evaluator. To invoke this display tool:

GET, SALPOST/PAPM,J973.
SALPOST, SAMTBL, PLIST.

The single input file is:
SAMTBL, Output from semantic evaluator.
The single output file is:

PLIST User~readable listing of input.

APPENDIX B

The Standard Environment

This appendix lists the Standard Environment TYPEs,
PROCEDUREs and FUNCTIONs for the SAM/SAL system.

B.1 Standard Types
B.1.1 Set types
SETS SET descriptor type

UNPSET Unpacked representation of a set

B.1.2 Symbol Types

SYMBOL Symbol descriptor type

OBJECT Synonym for SYMBOL

SYMREP Type for the character string of
a symbol

SYMLNG Subrange type for the length value of
a symbol

UNPSTR Unpacked type for SYMREP

B.1.3 Symbol Attribute Types
ATTRIBUTE Attribute-name selector type

ATTBLOCK Attribute-block descriptor

B.1.4 Object Class Types

OBJCTCLASS Object-Class name type

40 Appendix B

Appendix B 41

B.1.5 Packet Types

PACKET Flowgraph node, expression-tree node,
use~-table node descriptor type

ACTION Scalar type of user-defined actions

FGNODE Synonym for PACKET

EXPNODE Synonym for PACKET

B.1.6 Parameter Building Types

FPRMPTR Formal parameter node descriptor

B.1.7 Callgraph Types

CALLPTR Callgraph node descriptor type

B.1.8 Parse-Tree Types

PARSENODE Parse~tree node descriptor type

B.1.9 Other Types

These include all other primitive types provided by the
PASCAL Report ([Jensen 741). Specifically

INTEGER
REAL
CHAR

BOOLEAN

B.2 Standard Procedures/Functions

B.2.1 Set Routines

FUNCTION NEWSET:SETS:
(*

RETURNS A NEW (EMPTY) SET FROM THE SET-POOL.
*)

42

Appendix

FUNCTION NULLSET:SETS;
(*k
SAME AS NEWSET

*)

PROCEDURE RETURNSET(VAR S:SETS);
(*
*)

RETURNS A SET TO THE SET-POOL.

FUNCTION ISEMPTY(S:SETS):BOOLEAN;
(*
RETURNS TRUE <=> SET § IS EMPTY.
*)

PROCEDURE UNIONP(S1,S2:SETS; VAR RESULT:SETS);
(*
RETURNS A NEW SET RESULT WHOSE VALUE IS THE
UNION OF SETS §S1 AND S2.
*)

FUNCTION UNION(S1,S2:SETS):SETS;
(*
SAME AS UNIONP EXCEPT THIS IS A FUNCTION, AND
HENCE HAS NO CONTROL OF GARBAGE COLLECTING ON
USED SETS.
*)

PROCEDURE INTERSECTP(S1,S52:SETS; VAR RESULT:SETS);
(*
RETURNS A NEW SET RESULT WHOSE VALUE IS THE
INTERSECTION OF SETS S1 AND S82.
*)

FUNCTION INTERSECT(S1,S2:SETS):SETS;
(*
SAME AS INTERSECTP EXCEPT THIS IS A FUNCTION,
AND HENCE HAS NO CONTROL OF GARBAGE COLLECTING
ON UNUSED SETS.
*)

Appendix B

PROCEDURE MINUSP(S1,S2:SETS; VAR RESULT:SETS);
(*
RETURNS A NEW SET RESULT WHOSE VALUE IS THE
SET~-DIFFERENCE OF SETS S1 AND 82.
*)

FUNCTION MINUS(S1,S2:SETS):SETS;
(*
AME AS MINUSP EXCEPT THIS IS A FUNCTION, AND

HENCE HAS NO CONTROL OF GARBAGE COLLECTING ON

UNUSED SETS.
*)

PROCEDURE ASSIGNSET(S:SETS; VAR RESULT:SETS);
(*
RETURNS A NEW SET RESULT WHOSE VALUE IS SET
S. (CREATES A COPY OF 8).
*)

PROCEDURE SETINSERT(ELEMENT:INTEGER: S:SETS):
(*
INSERTS ELEMENT INTO SET S.
*)

FUNCTION ISMEMBER(ELEMENT:INTEGER; S:SETS):BOOLEAN:
(*

*)

RETURNS TRUE <=> ELEMENT IS IN SET §.

FUNCTION ISSUBSET(S1, S2:SETS):BOOLEAN;
(*

*)

RETURNS TRUE <=> S1 IS A SUBSET OF 82.

FUNCTION ISEQUAL(S1,S2:SETS):BOOLEAN;
(*
RETURNS TRUE <=> SET S1 AND SET 82 CON-
TAIN THE SAME ELEMENTS.
*)

44 Appendix B

PROCEDURE UNPACKSET(S:SETS; VAR UNP:UNPSET) :;
(-k
UNPACK SET S INTO ARRAY UNP. THE ZEROETH
ELEMENT OF UNP IS THE NUMBER, N, OF ELEMENTS

IN 8. THE NEXT N ELEMENTS IN UNP ARE THE
ELEMENT VALUES OF S.

*)

PROCEDURE WRITESET(VAR F:TEXT;S:SETS;: IND:INTEGER:

VAR NUM:INTEGER) ;
(*

WRITE SET S TO FILE F, USING NO MORE THAN
130 CHARACTERS PER LINE. START EACH NEW LINE
WITH AN INDENTATION OF IND (IF IND>0) ELSE
WITH AN INDENTATION OF 5. ALSO, IF IND=0
THEN PRECEED FIRST LINE WITH NUMBER OF OBJECTS
IN THE SET. RETURN THE NUMBER OF OBJECTS IN

THE SET IN THE OUTPUT PARAMETER NUM.
*)

B.2.2 Symbol Routines

PROCEDURE SETSYMMAX(SYM:SYMBOL; MAXATTR:INTEGER):
(*
SET MAXIMUM ATTRIBUTES ALLOWED BY SYM TO
MAXATTR.
*)

FUNCTION GETSYMMAX(SYM:SYMBOL) : INTEGER;
(*
RETURNS MAXIMUM NUMBER OF ATTRIBUTES FOR SYMBOL
SYM.
*)

PROCEDURE SETSYMOBJ (SYM:SYMBOL; OBJC:OBJCTCLASS);
(*

SET OBJECT-CLASS FOR SYMBOL SYM TO BE OBJC.
*)

FUNCTION GETSYMOBJ(SYM:SYMBOL) : INTEGER:
(*
RETURN OBJECT-CLASS FOR SYMBOL SYM.
(NOTE - RESULT IS INTEGER SINCE OBJCTCLASS

CANNOT HAVE A VALUE OF ZERO.)
*)

Appendix B 45

PROCEDURE SETSYMAUX(SYM:SYMBOL;AUX: INTEGER; VAL: INTEGER) ;
(*
SET AUXILLARY ATTRIBUTE AUX OF SYMBOL SYM
TO VAL,
*)

FUNCTION GETSYMAUX(SYM:SYMBOL;AUX: INTEGER) : INTEGER:
(*

*)

GET AUXILLARY ATTRIBUTE AUX OF SYMBOL SYM.

FUNCTION HASH(VAR STR:SYMREP; LEN:SYMLNG:
VAR WASTHERE :BOOLEAN) : SYMBOL;
(*
HASH STRING STR OF LENGTH LEN. RETURN SYMBOL
POINTER FOR STRING. IF STRING ALREADY IN SYMBOL
TABLE RETURN ITS PREDEFINED HASHED VALUE AND
SET WASTHERE TO TRUE, OTHERWISE CREATE AND
RETURN A NEW SYMBOL POINTER AND SET WASTHERE

TO FALSE.
*)

PROCEDURE GETSTRING(SYM:SYMBOL; VAR STR:SYMREP:
VAR LEN:SYMLNG) ;
(*

GET STRING VALUE <STR,LEN> ASSOCIATED WITH

SYMBOL SYM.
*)

PROCEDURE WRITESYM (VAR F:TEXT; SYM:SYMBOL);
(*

*)

WRITE SYMBOL SYM TO FILE F.

PROCEDURE LISTSYMSET(VAR F:TEXT; S:SETS; INDENT:INTEGER):
(*
WRITE THE SET OF SYMBOLS IN SET S TO FILE F
USING NO MORE THAN 130 CHARACTERS PER LINE.
START EACH NEW LINE WITH AN INDENTATION OF

INDENT SPACES.
*)

46

Appendix B

B.2.3 Symbol Attribute Routines

PROCEDURE SETSYMATT(SYM:SYMBOL; ATT:ATTBLOCK):
(*

*)

SET ATTRIBUTE-FIELD OF SYMBOL SYM TO ATT.

FUNCTION GETSYMATT(SYM:SYMBOL) : ATTBLOCK ;
(*

*)

GET ATTRIBUTE~-FIELD OF SYMBOL SYM.

FUNCTION NEWATTBLCK: ATTBLOCK;
(*
RETURNS A NEW ATTRIBUTE-BLOCK POINTER AND UP-
DATES TOTAL NUMBER OF ALLOCATED POINTERS.
*)

PROCEDURE SETATT(ATT:ATTRIBUTE; SYM:SYMBOL; VAL:INTEGER):
(*
IF SYMBOL SYM HAS ACCES TO ATTRIBUTE ATT
THEN SET ATTRIBUTE ATT OF SYM TO VAL, ELSE

REPORT ERROR.
*)

FUNCTION GETATT(ATT:ATTRIBUTE; SYM:SYMBOL):INTEGER;
(*
GET ATTRIBUTE ATT OF SYMBOL SYM PROVIDED
SYM HAS ACCESS TO THIS ATTRIBUTE, ELSE REPORT

ERROR.
*)

B.2.4 Object-Class Routines

FUNCTION GETOBJSET(OBJCL:OBJCTCLASS) :SETS;
(*
GET THE SET OF OBJECTS ASSOCIATED WITH OBJECT
CLASS OBJCL.
*)

PROCEDURE OBJCLDEBUG(VAR F:TEXT);
(*
DUMP ALL VALID OBJECT-CLASSES (INCLUDING THEIR
OBJECTS) TO FILE F.
*)

Appendix B 47

PROCEDURE SETMAXATT(OBJCL:0OBJCTCLASS; VAL:INTEGER);
(*
SET MAXIMUM NUMBER OF ATTRIBUTES FOR ORBRJECT-

CLASS OBJCL TO VAL.
*)

FUNCTION GETMAXATT(OBJCL:OBJCTCLASS) : INTEGER:
(*
RETURN MAXIMUM NUMBER OF ATTRIBUTES FOR
OBJECT-CLASS OBJCL.
*)

PROCEDURE INCLUDE(OBJ:OBJECT; OBJCL:OBJCTCLASS);
(*

*)

INCLUDE OBJECT OBJ INTO OBJECT-CLASS OBJCL.

FUNCTION INCLASS(OBJ:OBJECT; OBJCL:OBJCTCLASS): BOOLEAN:
(*

RETURNS TRUE <=> OBJECT OBJ IS IN OBJECT-
CLASS OBJCL.

*)
B.2.5 Packet Routines
PROCEDURE SETACTION(ACTN:ACTION: P:PACKET: S:SETS):
(*

SET SPECIFIED ACTION OF PACKET P TO BE SET S.
*)

FUNCTION GETACTION(ACTN:ACTION; P:PACKET):SETS;
(*

*)

GET ACTION ACTN FROM PACKET P.

B.2.5.1 Use~Table Routines

PROCEDURE SETPCKPLST(P:PACKET; VAL:INTEGER):
(*
SET PARAM~LIST OF PACKET P TO VAL.
*)

FUNCTION GETPCKPLST(P:PACKET) : INTEGER;
(*

GET PARAM-~-LIST OF PACKET P.
*)

48 Appendix

PROCEDURE SETPCKNAME (P:PACKET; VAL:SYMBOL):
(*

SET REFERENCED SUBPROG OF PACKET P TO VAL.
*)

FUNCTION GETPCKNAME(P:PACKET) : SYMBOL;
(*

GET REFERENCED SUBPROG OF PACKET P.
*)

PROCEDURE SETPCKEDGE (P:PACKET; VAL:PACKET);
(*
SET USE-EDGE OF PACKET P TO VAL.
*)

FUNCTION GETPCKEDGE (P:PACKET) : PACKET;
(*
GET USE-EDGE OF PACKET P.
*)

PROCEDURE SETPCKNPRM(P:PACKET; VAL:INTEGER);
(*
SET NUMBER OF ACTUAL PARAMS OF PACKET P TO
VAL.
*)

FUNCTION GETPCKNPRM(P:PACKET) : INTEGER;
(*

*)

GET NUMBER OF ACTUAL PARAMS OF PACKET P.

PROCEDURE SETPCKREF(P:PACKET; VAL:INTEGER);
(*
SET CODE-REFERENCE OF PACKET P TO VAL.
*)

FUNCTION GETPCKREF(P:PACKET) : INTEGER;
(*

*)

GET CODE~REFERENCE OF PACKET P.

FUNCTION NEWPACKET:PACKET;
(*

*)

RETURN A NEW PACKET FROM THE PACKET-POOL.

Appendix B

B.2.5.2 Flowgraph Routines

FUNCTION NEWFGNNODE:FGNODE;
(*
RETURN A NEW FLOWGRAPH NODE FROM PACKET POOL.
*)

PROCEDURE SETFGNTYP(F:FGNODE; VAL:INTEGER):
(*

*)

SET TYPE OF FLOWGRAPH NODE F TO VAL.

FUNCTION GETFGNTYP(F:FGNODE) : INTEGER;:
(*
GET TYPE OF FLOWGRAPH NODE F.
*)

PROCEDURE SETFGNEXP(F:FGNODE; E:PACKET);:
(*
SET EXPRESSION TREE ATTRIBUTE OF FLOWGRAPH NODE
F TO E.
*)

FUNCTION GETFGNEXP(F:FGNODE) : PACKET:
(*

GET EXPRESSION TREE FOR FLOWGRAPH NODE F.
*)

PROCEDURE SETFGNNSON(F:FGNODE; VAL:INTEGER);
(*
SET NUMBER OF SON-EDGES OF FLOWGRAPH NODE F
TO VAL.
*)

FUNCTION GETFGNNSON(F:FGNODE) : INTEGER;
(*

*)

GET NUMBER OF SON-EDGES FOR FLOWGRAPH NODE F.

PROCEDURE SETFGNNPAR(F:FGNODE; VAL:INTEGER);
(*
SET NUMBER OF PARENT-EDGES OF FLOWGRAPH NODE F
TO VAL.
*)

49

50 Appendix B

FUNCTION GETFGNNPAR(F:FGNODE) : INTEGER;
(*

*)

GET NUMBER OF PARENT-EDGES FOR FLOWGRAPH NODE F.

PROCEDURE SETFGNSON (F:FGNODE; VAL:SETS):
(*

*)

SET SON-EDGES OF FLOWGRAPH NODE F TO VAL.

FUNCTION GETFGNSON(F:FGNODE) :SETS;
(*
GET SON-EDGES FOR FLOWGRAPH NODE F.
*)

PROCEDURE SETFGNPAR(F:FGNODE; VAL:SETS);
(*

*)

SET PARENT-EDGES OF FLOWGRAPH NODE F TO VAL.

FUNCTION GETFGNPAR(F:FGNODE) :SETS;
(*
GET PARENT-EDGES FOR FLOWGRAPH NODE F.
*)

PROCEDURE NNEDGE (FROMNODE, TONODE : FGNODE) ;
(*
CREATE A FLOWGRAPH EDGE FROM NODE FROMNODE
TO NODE TONODE.
*)

PROCEDURE NSEDGE (FROMNODE : FGNODE; TOSET:SETS):
(*
CREATE A FLOWGRAPH EDGE FROM NODE FROMNODE

TO EVERY NODE IN SET TOSET.
*)

PROCEDURE SNEDGE (FROMSET:SETS; TONODE :FGNODE) ;
(*
CREATE A FLOWGRAPH EDGE FROM EVERY NODE IN SET
FROMSET TO NODE TONODE.
*)

Appendix B

PROCEDURE SSEDGE (FROMSET, TOSET: SETS) ;
(*
CREATE A FLOWGRAPH EDGE FROM EVERY NODE IN SET

FROMSET TO EVERY NODE IN SET TOSET.
*)

B.2.5.3 Expression-Tree Routines

FUNCTION NEWEXPNODE :EXPNODE:
(*
RETURN A NEW EXPRESSION~-TREE NODE FROM THE

PACKET POOL.
*)

PROCEDURE SETEXPTYP(E:EXPNODE; TYP:INTEGER):
(*

*)

SET TYPE OF EXPRESSION-TREE NODE E TO TYP.

FUNCTION GETEXPTYP(E:EXPNODE):INTECER:
(*

GET TYPE OF EXPRESSION-TREE NODE E.
*)

PROCEDURE SETEXPSON(I:INTEGER; E:EXPNODE; VAL:INTEGER):
(*
SET THE ITH SON OF EXPRESSION-TREE NODE E TO
VAL.
*)

FUNCTION GETEXPSON(I:INTEGER; E:EXPNODE):INTEGER:
(*

*)

GET THE ITH SON OF EXPRESSION-TREE NODE E.

PROCEDURE SETEXPUSE(E:EXPNODE; VAL:INTEGER):
(*
SET USE-~LINK FIELD OF EXPRESSION-TREE NODE
TO VAL.

£

*)

FUNCTION GETEXPUSE(E:EXPNODE) : INTEGER;
(*
GET USE-LINK OF EXPRESSION-TREE NODE E.
*)

52 Appendix

PROCEDURE SETEXPOBJ (E:EXPNODE; VAL:INTEGER):
(*

SET OBJECT FIELD OF EXPRESSION-TREE NODE E TO
VAL.

*)

FUNCTION GETEXPOBJ(E:EXPNODE):INTEGER;
(*

GET OBJECT OF EXPRESSION-TREE NODE E.
*)
B.2.6 Parameter Building Routines

FUNCTION NEWFPNODE: FPRMPTR:
(-k

*)

RETURN NEW FORMAL~PARAMETER NODE.

PROCEDURE SETFPUSE(FP:FPRMPTR; L:INTEGER);
(*
SET USE-LINK OF PARAMETER NODE FP TO L.
*)

FUNCTION GETFPUSE(FP:FPRMPTR) : INTEGER;
(*

*)

GET USE-LINK OF PARAMETER MODE FP.

PROCEDURE SETFPLINK(FP:FPRMPTR; L:INTEGER):
(*

*)

SET FP-LINK OF PARAMETER NODE FP TO L.

FUNCTION GETFPLINK(FP:FPRMPTR) : INTEGER;
(*

GET FP-LINK OF PARAMETER NODE FP.
*)

PROCEDURE SETFPSET(FP:FPRMPTR; L:SETS):
(*

*)

SET GLOBAL SET OF PARAMETER NODE FP TO L.

Appendix B

FUNCTION GETFPSET(FP:FPRMPTR) :SETS;
('k

*)

GET GLOBAL SET OF PARAMETER NODE FP.

B.2.7 Callgraph Routines

FUNCTION NEWCGRNODE:CALLPTR:
(*

*)

RETURN A NEW CALLGRAPH POINTER

PROCEDURE SETCGRNAME(C:CALLPTR; VAL:SYMBOL):
(*

*)

SET NAME-FIELD OF CALLGRAPH NODE C TO VAL.

FUNCTION GETCGRNAME(C:CALLPTR) : SYMBOL;
(*

GET NAME-FIELD OF CALLGRAPH NODE C.
*)

PROCEDURE SETCGRNMFP(C:CALLPTR; VAL:INTEGER);
(*
SET NUM-PARAM-FIELD OF CALLGRAPH NODE C TO

VAL.
*)

FUNCTION GETCGRNMFP(C:CALLPTR) : INTEGER:
(*
GET NUM-PARAM~-FIELD OF CALLGRAPH NODE C.
*)

PROCEDURE SETCGRFPL(C:CALLPTR; VAL:INTEGER):
(*

*)

SET FP-FIELD OF CALLGRAPH NODE C TO VAL.

FUNCTION GETCGRFPL(C:CALLPTR) : INTEGER;
(*

GET FP-FIELD OF CALLGRAPH NODE C.
*)

54 Appendix B

PROCEDURE SETCGREDGE (C:CALLPTR; VAL:PACKET):;
(*

SET EDGE-FIELD OF CALLGRAPH NODE C TO VAL.
*)

FUNCTION GETCGREDGE (C:CALLPTR) : PACKET:
(*

GET EDGE-FIELD OF CALLGRAPH NODE C.
*)

PROCEDURE SETCGRNTRY(C:CALLPTR; VAL:PACKET):
(*

*)

SET ENTRY-FIELD OF CALLGRAPH NODE C TO VAL.

FUNCTION GETCGRNTRY (C:CALLPTR) : PACKET;
(*

*)

GET ENTRY-FIELD OF CALLGRAPH NODE C.

PROCEDURE SETCGREXIT(C:CALLPTR; VAL:PACKET);
(*

*)

SET EXIT-FIELD OF CALLGRAPH NODE C TO VAL.

FUNCTION GETCGREXIT(C:CALLPTR) :PACKET;
(*

GET EXIT-FIELD OF CALLGRAPH NODE C.
*)

PROCEDURE SETMAINCALL(VAL:CALLPTR):;
(*
SET MAIN PROGRAM INDICATOR TO BE CALLGRAPH

NODE C.
*)

FUNCTION CALLEDGE(C:CALLPTR; OBJ:SYMBOL;
NUMPARAM : INTEGER) : PACKET;

(*
SEARCH USE~-EDGES OF CALLGRAPH ENTRY C FOR A
PACKET WITH NAME-FIELD OBJ, AND RETURN PACKET.
IF PACKET DOESNT EXIST, THEN CREATE A PACKET
WITH NAME OBJ.

*)

Appendix B 55

B.2.8 Parse-~-Tree Routines

FUNCTION GETPRSATT(PND:PARSENODE ;SEL:PRSSELECT) : INTEGER:
(*

*)

GET SELECTED FIELD FROM PARSE-TREE NODE #PND#.

PROCEDURE SETPRSATT (PND:PARSENODE; SEL:PRSSELECT;
VAL: INTEGER) ;
(*

SETS THE SELECTED FIELD OF PARSE-TREE NODE

"PND" TO VAL.
*)

PROCEDURE TREEDUMP (VAR F:TEXT);
(*
DUMP OF PARSE TREE IN TREE REPRESENTATION.
*)

B.2.9 Other Routines

These include all the standard routines provided by the
PASCAL Report ([Jensen 74, Appendix AJ).

C.l,

56

APPENDIX C

Output Tables Format

Data Structure Representations

T e ol) S s S S G o ot) (3030 S o T S W o () G e s ks e S G e G i o o o i A VRN Y) G (0D 58 GG G e AR s e s ame et e i

{ CNAME { SYMBOL pointer to name of program-unit.
| CEDGE | PACKET pointer to first use-table node
e | in edge-list.

| CENTRY | PACKET pointer to ENTRY flowgraph node
| m e e l for this program=-unit.

| CNUMFP | Number of formal parameters for

| = I program-unit.

| CFIRSTFP | SET pointer to first formal parameter
————————————— node.

Figure C.1 Callgraph Node Structure

INOBJ | FOBJ | NOBJ 1is the number of objects in
| = e [= e | action-class , and FOBJ is a SET
{NOBJ | FoBJ | pointer for the first object.
------ | = emm |
INOBJ | FOBJ |

Figure C.2 Action Packet Structure
| MODE | Parameter-mode indicator (1 => "IN",
| m e I 2 => "our", 3 => "IN/OUT").
| LINK ! FP-pointer link to next parameter.

o Gn Gy G s et ot S ow R G S G

Figure C.3 Fp-Node Structure

Appendix C

57

PACKETS
| FNODETYPE | Flowgraph node-type indicator.
| —m e |
| FEXPTR | PACKET pointer to expression-tree

R | for this node.

| FNSON | Number of sons for this node.
et i

| FFSON | PACKET pointer to first son.

| = e |

{ FNPAR { Number of parents for this node.
| FFPAR | PACKET pointer to first parent.
| — e l

| !

| = e e e |

I | ACTIONS

-igure C.4 Flowgraph Node Structure

root

| ENODETYPE | Expression-tree node-type indicator.
I_EQBQI _____ { PACKET pointer to first son.

{“Egggg ————— : PACKET pointer to second son.

{“éﬂéé —————— } PACKET pointer to link use-table
e I information.

| EOBJ l Symbol pointer to object whose action
[= e e | is currently unknown.

| l ACTIONS

Figure C.5 Expression-Tree Node Structure

58

B PR e R ——

| UCODEREF |

Appendix C

o G S e G o S (o (S D I O) 1 G T G G e G (hwn e O S e e e S G WD D s s i o s

Number of parameters in an invocation
of this program-unit.

FP pointer to first actual-parameter
node.

SYMBOL pointer to name of program-unit.

PACKET pointer to first expression-tree
node for call to this program-unit.

PACKET pointer to next entry in use-
table.

ACTIONS

G G S D T UGS O SR S A S e Sl S AR W WA SN GG D G SR G Sl Kok ok Sk (ks vt e G S GG ke G s e (OSD

Appendix C 59
C.2 File Format

Pages 61 and 62 represent the format for the output Tables File.
This file is a text file composed of Tines (records). Each line holds
no more than 130 characters. Below is a line-by-Tline description of
the information on those pages.

Notice that lines 12, 17, 18, 19, 20, 22, 23, 24 and the ends of
Tines 13 and 14 describe sets or lists of objects. Such descriptions
are represented by (1) the number, n, of objects in the 1ist, and (2)
a list of the n objects. The 1ist may extend over a line boundary.
After the Tast object in a given 1ist is printed (within the file),
the Tine holding that object is terminated.

Tine 1 na is the number of user-defined actions.

Tines 2,3 Action names. Each string is exactly 10 characters long
and each begins in column 2 of a new line.

Tine 4 Ny is the number of expression-tree plus flowgraph node
types.

lines 5,6 Node-type names. Each string is exactly 10 characters
long and each begins in column 2 of a new Tline.

Tine 7 N is the number of Symbol Table entries (symbols).

lines 8,9 Symbols. 1engthi is the number of characters in stringi.
atti is the Attribute Table descriptor owned by symbo]i.
There is exactly one blank between atti and stringi.

Tine 10 Number of callgraph nodes, and callgraph node descriptor
(index) for the main program.

1ines 11-32 Describe all information for callgraph node 1.

Tine 11 Information for callgraph node 1. See Figure C.1.
Tine 12 Information for callgraph node 1. See Figures C.1 and C.3.

1ines 13-15 Describe all use-table information for callgraph node 1.

Tine 13 Information for use-table node indexed by UNODE1 1 of
callgraph node 1. See Figure C.6.

line 14 Information for use-table node indexed by UNODE1 n of
callgraph node 1. See Figure C.6.
NOTE: The value for ULINKi is UNODE1+1.

line 15 Zero. Indicates end-of-use-table information for callgraph

node 1.

Tines 16-25 Describe all flowgraph information for flowgraph owned
by callgraph node 1.

60
Tine 16

Tine 17
Tine 18

line 19

Tine 20

Tines 21-24

Tine 25
Tines 26-32

Tine 26
1ines 27,28

Tines 29-31

line 32
Tines 33-34

Tines 35-36

Appendix C

Information for flowgraph node indexed by FNODE1 1 of
callgraph node 1. See Figure C.4.
Set of sons for flowgraph node FNODE1 1 of callgraph node 1.

Set of parents for flowgraph node FNODEl,1 of callgraph
node 1.

Set of objects in Action—mass1 for flowgraph node FNODEl’1
of callgraph node 1.

Set of objects in Action-Class_ (na given in line 1) for
a
flowgraph node FNODE1 1 of callgraph node 1.

Same as lines 16-20 except for flowgraph node indexed by
FNODE1 " The total number of flowgraph nodes, m, is

]
indeterminate.

Zero. Indicates end-of-flowgraph information for callgraph
node 1.

Describe all expression-tree information for callgraph
node 1.

Information for expression-tree node indexed by ENODE1 1

of callgraph node 1. See Figure C.5.

Action sets (format as in lines 19, 20) for expression-tree
node ENODE1 1 of callgraph node 1.

Same as lines 26-28 except for expression-tree node ENODE, K

3

of callgraph node 1. The total number of expression—tree—
nodes, k, is indeterminate.

Zero. Indicates end-of-expression-tree information for
callgraph node 1.

Represent same information as lines 11-32 except for
callgraph node 2.

Represent same information as lines 11-32 except for
callgraph node numcall, where numcall js given in Tine 10.

Appendix C

10.
. CNAME

12.
13.

14.

15.
16.

17.
18.
19.

20.

21.
22.

23.

24.

25,

ny
stringl

string .

n

1ength1 att1 stringl

1en§th a%t str%ng
Mg Ns g

numcall maincall

1 CEDGE1 CENTRY

CNUMFP1 MODEl’1

UNODEl’1 UNAME

1 CEXIT1

MODEL2 cen MODEl,CNUMFPl

UCODEREF UNPARAM

1,1

1,1

UNODEl’n UNAME n UCODEREF n UNPARAM Ei,n,l

1,

1, 1,n

0
FNODE

FNSON

FNODETYPE
SON

FEXPTR

1,1
SON; 4 Enson

1,1,1 == PARy 1 Fnpar

1.1
08dy 1,1,1 -+ 9By 1.1,N0BJ

1,1
1,1
FNPARl’

1,1
1,1,1 °°°

1,1
PAR

1

NOBJ
— 1,11 1,1,1

0BJ

NOBJ 0BJ, 10 9B 1,n_,N0Bg

—~~~~~1,1,na 1,1.n

a’ 1,1,na

FNODE1 - FNODETYPEl’m FEXPTR

, 1.,m
FNSON; |\ SON SONy 1 EnsoN

1,m,1 *° L

NOBJy g OBdy 1,1 - Qﬁil,m,l,NOBdl -

NOBJ 0BJ ... OBJ
l,m,na -~1,m,na,1 —~-«—~-1,m,na,NOBJl’m,n

a
0

1,0 2,01 E&,l,UNPARAMl

61

1

- .
~-1,n,UI\lF‘ARAM1”n

62

26.
27.

28.

29.
30.

31.

32.
33.

34.

35.

36.

ENODEL1 ENODETYPEL1 ESONll,1 ESONlel EUSEL1 EQBJ

NOB‘J].,]',]_ ..O_..B.}llsl,l,l Tt “Q'B“i1915lyNOBJ1

«

1,1
1,1

-

NOBJ 08J .. OBJ
ml’l’na Ml,l,na,l Wl,l’nasNOBJl,lgna

EOBJ

ENODEI,k ENODETYPE1gk ESONll’k ESONZl,k EUSEl,

NOBJy o1 OBy 1,1 -+ 9893 v 1.noBy

k 1,k

1,k,1

... 0BJ

NOBJ 0BJ 1 ~”~1,k,na,NOBJ1

-~—1,k,na —w~ﬁ,k,na, k’na

0
CNAME, CEDGE, CENTRY, CEXIT,

e

L) 2

CNAVME) mea11 SEDGE nea1q CENTRY, ooy CEXIT, ooty

Appendix C

APPENDIX D

SAM/SAL System Sample Program

This appendix presents an example of the various inputs
to and outputs from the SAM/SAL system. The language speci-

fied by this example is TURINGOL, a simple language
described in [Knuth 687.

Section D.1 lists a SAL program specifying TURINGOL. This
listing corresponds to "SAL Program S" in Figure
1.1.

Section D.2 lists a sample TURINGOL program. This program
corresponds to the "User Program U" in Figure
1.1.

Section D.3 lists the "Output Report" in Figure 1.1 for the
sample program of Section D.2.

Section D.4 lists the "Annotated Flowgraphs" file in Figure
1.1 for the sample program of Section D.2. This
file is the Tables File whose general format is
given in Section C.2.

Section D.5 presents a user-readable listing of the Tables
File of Section D.4.

Section D.6 gives a graphic illustration of the output for
the sample program of Section D.2.

Note that TURINGOL allows no procedures or Ffunctions.
As a result, (1) the output Tables File will always consist
of a callgraph having only a single node: (2) the use-table
list (dependent sons of a callgraph node) will be empty; and
(3) no expression trees are necessary. These properties are
apparent from the listing in Section D.5.

Appendix D 63

64 Appendix D

D.1 TURINGOL: A SAL Program

SALTRAN (VERSIOGN: 02/17/81) DATE: 81/03/05. TIME: 11.07.31. PAGE 1
1 o] PROGRAM TURINGOL;
2 0 #
3 o # TURINGOL IS A SAMPLE LANGUAGE SPECIFIED IN:
4 o] #
S o] # KNUTH, D. E.,"SEMANTICS OF CONTEXT-FREE LANGUAGES", MATHEMATICAL
6 0 # SYSTEMS THEORY, VOL. 2, NO, 2, (JUNE 1968), PP. 127-145.
7 o] #
8 o} $# INSTEAD OF TURING-MACHINE DELTA FUNCTIGNS, THIS SPECIFICATION
g e} # PRODUCES AN ANNOTATED FLOWGRAPH,
10 (o} #
11 6] # SINCE THIS IMPLEMENTATION CANNOT HANDLE THE EMPTY PRODUCTION,
12 o # THE EMPTY STATEMENT WILL BE DENOTED BY "NULL".
13 o} #
14 o
15 o] PREAMBLE
16 o]
17 [¢] SCANNER SCANTOK:
18 o SCANTOK -> (SPACES / TOKEN)x SPACES;
19 o} SPACES =-> (* ' / 'EOL')x
20 o SCANNER TOKEN!:
21 0 TOKEN -> [IDNT /7 '#"' STRNG '#"' / LITERAL / MISC1 / MISC2 ;
22 o© END TOKEN; ,
23 (o} I DNT -> CHAR+ => "IDNTFR" ;
24 e} STRNG -> CHAR+ => "STRING", ;
25 e} LITERAL ~-> "," / “," / ", /7 " /(" / "1" => “SINGLE" ;
26 o} CHAR ~-> “A" / "B" / “C" / "D" / “E" / "F" /
27 0] RCAEVARL VA VAN LA (G A T4
28 ¢] “M" /Nt o/ ovar o/ ovPt oo "Qr /s "R/
29 (s} RS A P ' A VA T A A G4
30 o I S A
31 6] MISC1 -> tHT" => “CNSTNT";
32 0 MiIScC2 ~» "#%* => "FLOAT";
33 O END SCANTOK.
34 ¢}
35 0 END PREAMBLE

Appendix D 65

SALTRAN (VERSIGN: 02/17/81) DATE: 81/038/05. TIME: 11.07.31. PAGE 2
3 0

37 0 DECLARAT I ONS

38 O

38 0O OBJECT CLASSES :

40 o] ALPHABET : (),

41 o] LABELS P (FN ¢ FGNODE);

4z 0

43 0O ACTIGNS

44 0 DECLARE, REF : ON ALPHABET;

45 0 USE, DEF ! &N LABELS;

46 8}

47 0 FLOWGRAPH NODE TYPES :

48 0 ENTRYSTMT, EXITSTMT, IFSTMT, EMPTYSTMT,

48 0 GOTOSTMT, MOVESTMT, PRINTSTMT:

50 8]

51 0 $ PROCEDURES AND FUNCTIONS

66 Appendix D

GOQOOOOO—'NNNN’I\)I\)N—'—-’OOOOOOO—’NNNNN!\J-—*—-‘OOOOOOO—‘*‘OOQOOO“-—'—‘OOOOOO

(VERSIGN: 02/17/81) DATE: 81/03/05. TIME: 11.07.31,

FUNCTION SETLABEL(L:OBJECT; SIFGNOUDE) ! INTEGER;
(€
SET FLOWGRAPH NODE FOR LABEL L TO BE §.
X}
BEGIN (x SETLABEL x)
SETATT(FN, L, $8);
SETLABEL: =1
END (x SETLABEL x):

FUNCTION GETLABEL (L:OGBJECT; CONTROUL : INTEGER) : FGNODE ;
(x
GET FLOWGRAPH NODE ASSOCIATED WITH LABEL L.
%)
BEGIN (x GETLABEL x)
GETLABEL. ! =GETATT(FN, L)
END (x GETLABEL x);

PROCEDURE CHECKVAR(GBJ:GBJECT; TOKEN: INTEGER) ;

(%
REPORT SEMANTIC ERROR IF ©BJ HAS NOT BEEN DECLARED
TGO BE IN THE TAPE ALPHABET.

#)

BEGIN (% CHECKVAR x)
[F NOT INCLASS(OBJ, ALPHABET) THEN

BEGIN (x THEN x)

WRITELN;
WRITELNC" ":10,"SEMANTIC ERROR:");
WRITE(" ":120,"SYMBOL ";

WRITESYM(GQUTPUT,0BJ) ;
WRITELN(" AT TOKEN ", TOKEN:1," NOT DECLARED.")
END (x THEN x)
END (x CHECKVAR x);

PROCEDURE CHECKLABEL (OBJ:GBJECT; TOKEN:! INTEGER) ;
(%
REPORT SEMANTIC ERROR IF ©BJ HAS NOT BEEN DEFINED
AS A LABEL.
x)
BEGIN (x CHECKLABEL x)
IF NOT INCLASS(OBJ,LABELS) THEN
BEGIN (% THEN x)
INCLUDE(GBJ, LABELS) ;

WRITELN;
WRITELNC" ":10,"SEMANTIC ERROR:");
WRITE(" ":20,"LABEL ");

WRITESYM(GQUTPUT, 0BJ) ;
WRITELN(" AT TOKEN “,TEKEN:1," NOT DEFINED.")
END (x THEN x)
END (x CHECKLABEL x);

FUNCTION MAKEMAIN:SYMBOL ;
(%

CREATE THE SYMBGL “TURINGEL" AND RETURN [TS DESCRIPTOR.

%)

VAR
WASTHERE : BOGOLEAN;
REP ¢ SYMREP;

PAGE 3

Appendix D 67

SALTRAN (VERSIGON: 02/17/81) DATE: 81/03/05, TIME: 11.07.32. PAGE 4
110 0 STR ¢ UNPSTR;

1T 8] I ¢ INTEGER;

12 o] BEGIN (% MAKEMAIN x);

1138 1 STRLTI:="T";

114 1 STRLZI:="U";

115 1 STRI31:="R";

116 1 STRL41:="1";

117 1 STRISI:="N";

118 1 STRIG1:="G";

118 1 STRL71:="0";

120 1 STRI8I:="L";

121 1 FOR 1:=9 Td MAXCHAR DO

122 1 STRL{IT:=" *;

123 1 PACK(STR, 1,REP) ;

124 1 MAKEMAIN: =HASH(REP, 8, WASTHERE)
125 i END (x MAKEMAIN x);

126]

127 o] END DECLARATIGNS

68

Appendix D

SALTRAN

128
12¢
130
131

132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151

152
153
154
1585
166
157
158
159

161
162
163

0000000000000 OOOOCOOCOOOOOCOCOOOCOOOO0OO

(VERSIGN: 02/17/81) DATE: 81/03/05. TIME: 11.07.32.

LANGUAGE SPECIFICATICONS
GRAMMAR ATTRIBUTES

<PROGRAM> !
ENTRY, EXIT @ FGNODE;
CALLNGDE @ CALLPTR;

<STMT LIST>
START | FGNGDE;
FINISH @ SET OF FGNODE;
LABELLREF, LABELDEF : INTEGER;

<STATEMENT>
START : FGNUODE;
FINISH @ SET OF FGNODE;
LABELREF, LABELDEF @ INTEGER;
<DIRECTION> :
<IF PART> @ ;
<DECLARATION> ©

<IDENTIFIER>
VALUE : SYMBOL;

TEKEN : INTEGER;
<STRING> :
VALUE @ SYMBOL;
TGKEN : INTEGER;
<EMPTY> :

END GRAMMAR ATTRIBUTES

PAGE S

Appendix D

69

SALTRAN

164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
180
191

192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221

LN AN ARANARANARARANANARARANANANNE VI VI VIV VIV VI I I R i e T T R e o W e

(VERSION: 02/17/81) DATE: 81/03/05.
RULES
<PROGRAM> ::= <DECLARATIGN> " ;"

SEMANTICS

FLLOWGRAPH SPECIFICATIONS

TIME:

11.07.32.

<STMT LIST> .

<PROGRAM> . ENTRY ! = NEWFGNNODE;
<PROGRAM> . EXIT := NEWFGNNGDE;
<PROGRAM> . CALLNODE := NEWCGRNODE;

<8STMT LIST>.LABELREF

¢= <STMT LIST> . LABELDEF;
SETFGNTYP (<PROUGRAM> . ENTRY,
SETFGNTYP (<PROGRAM> . EXIT,
NNEDGE (<PROGRAM> . ENTRY,
SNEDGE(<STMT LIST>.FINISH,

ENTRYSTMT) ;
EXITSTMT) ;

<STMT LIST>.START);
<PROGRAM> . EXIT);

SETMAINCALL (<PROGRAM> . CALLNODE) ;
SETCGRNAME (<PROGRAM> . CALLNODE, MAKEMAINM);
SETCGREDGE (<PROGRAM> . CALLNGDE, 0);
SETCBRNTRY (<PROGRAM> . CALLNODE, <PRGGRAM>.ENTRY);
SETCGREXI T (<FPROGRAM> . CALLNGDE, <PROGRAM> .EXIT);
SETCGRNMFP (<PROGRAM> . CALLNSEDE, 0);

SETCGRFPL (<PROGRAM> . CALLNGDE, 0©)

ACTION SPECIFICATIONS

SETACTION(DECLARE,
END

<STMT LIST> ::=
SEMANTICS

<STATEMENT>

FLOWGRAPH SPECIFICATIONS

<STMT LI1ST>.LABELDEF

<STATEMENT> . LABELREF

<STMT LIST>.START :=

<STMT LIST>.FINISH =
END

<SSTMT LIST(1)> =
SEMANTICS

FLOWGRAFPH SPECIFICATIONS

<STMT LIST(1)>. LABELDEF :=

<STMT LIST(2)> LABELREF :=

<STATEMENT> . LABELREF

<STMT LIST(1)>.START

<STMT LIST(1)>.FINISH

SNEDGE (<STMT LIST(2)>.
END

<SSTATEMENT(11> =
SEMANTICS

OBJECT SPECIFICATIONS

<8TMT LIST(2)> ;"

<IDENTIFIER>

<PROGRAM> . ENTRY, GETOBJSET(ALPHABET))

<STATEMENT> ., LABELDEF;

v= <STMT LIST> . LABELREF;
<STATEMENT>.START;

<STATEMENT>.FINISH

<STATEMENT>

<STMT LIST(2)> . LABELDEF +
<STATEMENT> . LABELDEF;

<STMT LIST(1)>. LABELREF;

<STMT LIST(1)>.LABELREF;

<STMT LIST(2)>.START;

P= <STATEMENT>.FINISH;

FINISH, <STATEMENT>.START)

on

[

<STATEMENT(2)>

PAGE

70

Appendix D

SALTRAN

222
223
224
22%
226
227
228
229
230
231

232
233
234
235
236
237
238
239
240
241

242
243
244
245
246
247
248
249
250
251

252
253
254
255
256
257
258
259
260
261

262
263
264
265
266
267
268
269
270
271

272
273
274
275
276
277
278
279

NNANNANANNNNNOOOTOOONONOOOOOONOOURGUAOUGUOUOADIIADIMIILIEIDDILAD

(VERSION: 02/17/81) DATE: 81/03/05.

INCLUDE(<IDENTIFIER>.VALUE,

FLOWGRAPH SPECIFICATIONS
<BTATEMENT(1)>. LABELDEF

<STATEMENT(2)> . LABELREF
<STATEMENT(1)>.8TART :'=

<STATEMENT(1)>.FINISH =

ACTION SPECIFICATIGNS

SETACTIGN(DEF,
END

<STATEMENT> =
SEMANTICS

"[" O <8TMT LIST»

FLOWGRAPH SPECIFICATIONS

<STATEMENT>.
<STMT LIST>.
<STATEMENT>.
<STATEMENT> .,

LABELDEF
LABELREF
START =
FINISH =

won

END

<SSTATEMENT(1)> =
SEMANTICS

ATTRIBUTE SPECIFICATIONS
CHECKVAR(<STRING> . VALUE,

FLOWGRAPH SPECIFICATIONS
<STATEMENT(1)>.LABELDEF

<SSTATEMENT(2)> . LABELREF
<STATEMENT(1)>,.START =

CSTATEMENT(1)> FINISH :=

SETFGNTYP (<STATEMENT (1)>.START,
NNEDGE (<STATEMENT(1)>.START,

ACTICGN SPECIFICATIONS

SETACTIGN(REF,
END

<STATEMENT> ::=
SEMANTICS

<EMPTY>

FLOWGRAPH SPECIFICATIONS

<STATEMENT>.LABELDEF :=
<STATEMENT>.START =
<STATEMENT>.FINISH 1= [

SETFGNTYP (<STATEMENT> . START,

TIME:

<STATEMENT(1)>.S8START,

<IF PART> <STRING>

CSTATEMENT(1)>. START,

11.07.34,

LABELS)

i

SETLABEL(<IDENTIFIER> . VALUE,
<CSTATEMENT(2)>,START) ;

= <STATEMENT (1) >, LABELREF;

<STATEMENT(2)>,START;

<STATEMENT(2)> . FINISH

[<IDENTIFIER>.VALUE 1)

Wy

<STMT LIST> ., LABELDEF;
<STATEMENT> . LABELREF;

<STMT LIST>.START;
<STMT LIST>,FINISH

"THEN" <STATEMENT(2)>

<STRING> . TOKEN)

<STATEMENT(2) >, LABELDEF;
<STATEMENT (1) >, LABELREF;

[E)

NEWFGNNGODE;

[<STATEMENT(1)>.8TART 1 UNION
<STATEMENT(2)>.FINISH;

IFSTMT);

<STATEMENT(2)> . START}

[<STRING>.VALUE 1}

0;
NEWFGNNODE ;

<STATEMENT>.START 1;
EMPTYSTMT)

PAGE 7

Appendix D 71

SALTRAN (VERSIGN: 02/17/81) DATE: 81/03/05. TIME: 11.07.35. PAGE 8
280 7 END

281 38

282 8 <STATEMENT> 1= "GO" "TO" <IDENTIFIER>

283 8 SEMANTICS

284 8

285 8 ATTRIBUTE SPECIFICATIONS

286 8

287 8 CHECKLABEL(<IDENTIFIER> VALUE, <IDENTIFIER>.TOKEN)
288 8

289 8 FLLOWGRAPH SPECIFICATIONS

290 8

291 8 <STATEMENT> .LABELDEF := 0

292 8 <STATEMENT>.START = NEWFGNNGDE;

293 8 <STATEMENT> . FINISH = [1;

294 8 SETFGNTYP(<STATEMENT> . START, GOTUSTMT);

2985 8 NNEDGE (<STATEMENT> , START,

286 8 GETLABEL (<IDENTIFIER> . VALUE, <STATEMENT>.LABELREF)
297 8

298 8 ACTION SPECIFICATIONS

299 8

300 8 SETACTION(USE, <STATEMENT>.START, [<IDENTIFIER>.VALUE 1)
301 8 END

302]

303 S <STATEMENT> 1= "MOVE" <DIRECTION> "ONE" "SQUARE"

304 =] SEMANTICS

305]

306 e} FLOWGRAPH SPECIFICATICONS

307 g

308 g <STATEMENT>.LABELDEF = 0;

309 g <STATEMENT> . START := NEWFGNNGDE;

310 =} <STATEMENT>.FINISH = [<STATEMENT>.START 1;
311 9 SETFGNTYP(<STATEMENT>.START, MOVESTMT)

312 S END

313 10

314 10 <STATEMENT> ::= "PRINT" <STRING>

315 10 SEMANTICS

316 10

317 10 ATTRIBUTE SPECIFICATIONS

318 10

318 10 CHECKVAR(<STRING> . VALUE, <STRING> ., TOKEN)
320 10

321 10 FLOWGRAPH SPECIFICATICONS

322 10

323 10 <STATEMENT>.LABELDEF := 0;

324 10 <STATEMENT>.START = NEWFGNNODE;

325 10 SSTATEMENT> . FINISH = [<STATEMENT>.START 1;
326 10 SETFGNTYP(«<STATEMENT> . START, PRINTSTMT)

327 10

328 10 ACTION SPECIFICATIGNS

329 10

330 10 SETACTION(REF, <STATEMENT>.START, [<8STRING>.VALUE 1)
331 10 END

332 11

333 11 <DIRECTION> ::= "LEFT"

334 11 SEMANTICS

33% 11 END

336 12

337 12 <SDIRECTION> ::= “RIGHT"

72 Appendix D
SALTRAN (VERSIGN: 02/17/81) DATE: 81/03/05. TIME: 11.07.35. PAGE 9
338 12 SEMANTICS
339 12 END
340 13
341 13 <IF PART> ::= "IF" “THE" "TAPE" "SYMBOL" "IS"
342 13 SEMANTICS
343 13 END
344 14
345 14 <DECLARATION> ::= "TAPE" “ALPHABET" “IS" <IDENTIFIER>
346 14 SEMANTICS
347 14
348 14 OBJECT SPECIFICATIONS
349 14
350 14 INCLUDE (<IDENTIFIER>.VALUE, ALPHABET)
351 14 END
352 15
353 15 <DECLARATIGN(1)> ::= <DECLARATION(2)> “," <IDENTIFIER»>
354 15 SEMANTICS
355 15
356 15 OBJECT SPECIFICATIGNS
357 15
358 15 INCLUDE (<1DENTIFIER> . VALUE, ALPHABET)
359 15 END
360 16
361 16 CEMPTY> ::= “NULL"
362 16 SEMANTICS
363 16 END
364 17
365 17
366 17 END RULES
367 0 END LANGUAGE SPECIFICATIONS

Appendix D

73

SALTRAN

368
36¢
370
371
372
373
374

oco—-000Q0

(VERSIGN: 02/17/81) DATE: 81/03/05.

PROCEDURE SPECIFICATIGNS

BEGIN
END

END PROCEDURE SPECIFICATICONS,

TIME:

11.07.37.

PAGE 10

74

Appendix D

SALTRAN (VERSION:

o2/717/781)

DATE:

KKK K OOKOKK KKK KKK KB OK KOKOMOK X

GRAMMAR SYMBOLS

X

<PROGRAM>
<8STMT LIST>
<STATEMENT>

<DIRECTION>
<IF PART>
<DECLARATION>
<IDENTIFIER>
<STRING>
<EMPTY>

RHS

Dwh

-~ O 0Qhg-—

81/03/05. TIME:

11.07.37.

CROSS REFERENCE MAP

LINES
138 167
137 167
142 193
303 314
147 303
149 249
151 167
153 218
157 249
161 271

PAGE 11

O ROKOROKOK R KRR ROR HOK K KK KOR O R

193
204

3338
341
345
282
314
361

204
218

337

353
345

204
218

353
353

238
238 248 249 271

2

Appendix D 75

SALTRAN (VERSION: 02/17/81) DATE: 81/083/05. TIME: 11.07.37. PAGE 12
GRAMMAR ATTRIBUTES LINES
<PRUGRAM> . ENTRY SYNTHES 1 ZED 134 172 176 178 183 190
<PROGRAM> EXIT SYNTHESIZED 134 173 177 179 184
<PROGRAM> . CALLNGDE SYNTHESI ZED 135 174 180 181 182 183 184 185 188
<STMT LIST>.START SYNTHESI ZED 138 178 200 213 213 245
<STMT LIST>.FINISH SYNTHES1ZED 139 178 201 214 215 246
<STMT LIST> . LABELREF INHERITED 140 175 199 211 211 212 244
<STMT LIST>.LABELDEF SYNTHESI ZED 140 175 198 208 209 243
<STATEMENT> . START SYNTHESIZED 143 200 215 228 230 230 235 245 260

263 264 264 268 277 278 273 282 294
300 309 310 311 324 325 326 330

<STATEMENT> . FINISH SYNTHESI ZED 144 201 214 281 231 246 261 262 278
310 328

<STATEMENT> , LABELREF INHERI TED 145 199 212 229 229 244 259 259 296

<STATEMENT> ., LABELDEF SYNTHESI ZED 145 198 210 227 243 258 258 276 291
323

<IDENTIFIER>.VALUE SYNTHESI ZED 184 223 227 285 287 296 300 350 358

<IDENTIFIER>. TOKEN SYNTHES [ZED 155 287

<STRING> . VALUE SYNTHES 1 ZED 158 254 268 318 330

<STRING>, TOKEN SYNTHESI ZED 159 254 319

RESERVED TOKENS

; . : L] THEN
GO TG MOVE UNE SQUARE PRINT
LEFT RIGHT IF THE TAPE SYMBOL.

s ALPHABET) NULL

ESTEA]

"nY

76 Appendix D

SALTRAN (VERSICGN: 02/17/81) DATE: 81/03/085. TIME: 11.07.37. PAGE 13
HOKOK K KKK K SOKOKOK K KK KK K K K KK K K K PROGRAM STATISTICS MK KRR KK KKK KK K KK KK K K K K
SYMBOLS 108 (TUTAL SYMBOLS)

SPECIAL SALTRAN SYMBGLS 63
GRAMMAR/ATTRIBUTE SYMBGELS 24
GTHER SYMBOLS 22
HASHING
NUMBER OF CALLS 603
NUMBER OF PROBES 736
MAXIMUM PROBE 4
AVERAGE PROBE 1.22
PRODUCTION-TABLE / PRODUCTION-LIST 50 (TOTAL ENTRIES)
PRCDUCTION~-TABLE 16
PRODUCTION-LIST 34
SYNTAX RULES 16 (TYTAL)
SEMANTIC RULES S7 (TGTAL)
GBJECT-CLASS RULES 3
ATTRIBUTE RULES 3
FLOWGRAPH RULES 56
ACTIOGN RULES 5
OTHER RULES Q
TABLES (PERCENT FULI})
SYMBOL TABLE 13.6
CROSS-REFERENCE TABLE 3.3
TOTAL PRODUCTICN SYMBROLS = Q
TOTAL GRAMMAR ATTRIBUTES = 15
TOTAL RESERVED TOKENS = 22
TOTAL PROGRAM LINES = 374

MAXIMUM RIGHT-HAND-SIDE HAS 5 TERMINALS AND NOGNTERMINALS

TRANSLATIGN TIME = 4.06 SECONDS => 92.07 LINES/SECOND.

Appendix D 77

D.2 Sample TURINGOL Program

TREE BUILDING ANALYZER VERSION=05/13/80
TIME= 11.28.04. DATE= 81/03/05.

1 TAPE ALPHABET I8 BLANK, EIN, ZER®, POINT;
12 PRINT "POINT";
15 GO Td CARRY;
19 TEST: IF THE TAPE SYMBOL 1S "EIN" THEN

28 [PRINT "ZERUO"; CARRY: MOVE LEFT ONE SQUARE; GO Tdg TESTI;
44 PRINT "EIN";

47 REALIGN: MOVE RIGHT ONE SQUARE;

54 IF THE TAPE SYMBOL 18 "ZERC" THEN GO T8 REALIGN.
END OF ANALYSIS COMPILE TIME= .7 SECCONDS

78

D.3 Output Report for Sample Program

Appendix D

——————————————————————————————— STATISTICS ==--=m-mmommcccmccocaaooaoo
ALLGCATED MEMORY :
BASIC UNIT NO. UNITS WORDS/UNI T TOTAL WORDS
SYMBEL TABLE SYMBOL 32 2 (1) 64
ATTRIBUTE TABLE ENTRY < 1@ 3
PARSE TREE NODE 47 2 94
DEPENDENCY GRAPH NGDE 155 2 310
DEPENDENCY GRAPH EDGE 80 1 80
FLOW GRAPH NGDE 12 4 (3) 48
EXPRESSIGN TREE NODE 0 4 (3) 0
CALL GRAPH NODE 1 2 2
PRODUCTION TABLE NUMBER 20 1 20
SET POOL SET 47 10 470
TOTAL WORDS = 1091
(1) INCLUDES 1 WORD(S)/STRING
(2) INCLUDES 1 ATTRIBUTE(S)/ENTRY
(3) INCLUDES 4 ACTIGN(S)/NODE

PROGRAM S1ZE:

NUMBER OF PARSE
NUMBER OF PROGRAM LINES 9

TREE NODES

47
5.22 NODES/LINE

NUMBER OF PROGRAM TOKENS 65 =5 0.72 NODES/TOKEN
TIMING (SECONDS):
PARSING PHASE 0.64 =3 13.95 LINES/SEC
ATTRIBUTE ANALYSIS PHASE 1.12 => 8.04 LINES/SEC
(0.18 FOR READING TABLES AND INITIALIZING MODULES)
(0.09 FOR DEP. GRAPH BUILDING)
(0.31 FOR DEP, GRAPH EVALUATIGN)
(0.54 FOR DUMPING TABLES AND STATS)
TOGTAL SAM ANALYSIS TIME 1.76 => $.10 LINES/SEC

=> 36,85 TOKENS/SEC

Appendix D

D.4 Tables File for Sample Program

4 WRITE OUT ACTION NAMES

DECLARE
REF
USE
DEF
10 WRITE OUT FLOWGRAPH NODE-TYPES
BASE
CONCAT
STRUCT
ENTRYSTMT
EXITSTMT
IFSTMT
EMPTYSTMT
GOTOSTMT
MOVESTMT
PRINTSTMT
32 BEGINNING OF SYMBGL TABLE
4 O |ECF
1 0
1 Q
1 {8
1 [0
1 0O 1
4 O THEN
2 0 GO
2 O TG
4 0 MOVE
3 0 ONE
5] 0 SQUARE
S C PRINT
4 0O LEFT
5 O RIGHT
2 0 IF
3 0 THE
4 0 TAPE
51 O SYMBOL
2 [C I 83
8 0 ALPHABET
1 o,
4 0 NULL
5 0 BLANK
3 O EIN
4 0 ZERO
S O POINT
5 3 CARRY
4 2 TEST
7 1 REALIGN
0 o}
8 0O TURINGOL
1 1
32 6] 2 1 CALLGRAPH OGVERHEAD FOR CALL-NGDE 1
s}
0] END COF USE TABLE FOR CALL-NGDE 1
2 4 0]
1 12
o}
4 24 25 26 27
o}
0
o}
12 10 0
1

Appendix D

80

(o] o - o (o o] (o] O o © o< (o}
— -
[SUBNES 0ON o0 [oR s N e) o lier B e) (2] © 0w 0 OGN 0 (o3 ‘o8 LR o] oo SV~ © ©
N = N - N sy N N~ o Al Y 1) o

.00.lOO111:001»09120001:81!1.001072101.0101;1.01005110100512000132101004

Appendix D

81

0000 CO—~0—=0—~00——
[

END OF FLOWGRAPH FOR CALL-NODE 1
END OF EXPRESSION-TREE FOR CALL-NCDE 1

82

D.5 User-Readable Report of Tables File

Appendix D

LISTING OF CALLGRAPH INFORMATIGON: MAINCALL= TURINGOL

NODE EDGES
TURINGUOL
NODE NUM PARAM PARAM MODES

TURINGOL H 0

Appendix D

83

DUMP OF PARTIAL FLOWGRAPH FGR SUBPROGRAM

11

ENTRY NODE = 2, EXIT NODE

USE-TABLE

FLOW-GRAPH

DESCRPT=ENTRYSTMT EXP-TREE= O
SGNS = 12
PARENTS=

DECLARE = BLANK

ZERO

REF = <EMPTY>

USE = <EMPTY>

DEF = <EMPTY>
DESCRPT=PRINTSTMT EXP-TREE= O
SGNS = 11
PARENTS= 2

DECLARE = <EMPTY>

REF = POINT

USE = <EMPTY>

DEF = <EMPTY>
DESCRPT=GOTOSTMT EXP-TREE= O
SGNS = g
PARENTS= 12

DECLARE = <EMPTY>

REF = <EMPTY>

USE = CARRY

DEF = <EMPTY>
DESCRPT=MOVESTMT EXP-TREE= 0
SBNS = 8
PARENTSz 10 11

DECLARE = <EMPTY>

REF = <EMPTY>

USE = <EMPTY>

DEF = CARRY
DESCRPT=GOTESTMT EXP-TREE= O
SENS = 7
PARENTS= s

DECLARE = <EMPTY>

REF = <EMPTY>

USE = TEST

DEF = <EMPTY>
DESCRPT=1FSTMT EXP-TREE= 0
SONS = 6 10
PARENTS= 8

DECLARE = <EMPTY>

REF = EIN

USE = <EMPTY>

DEF = TEST
DESCRPT=PRINTSTMT EXP-TREE= O
SONS = 9
PARENTS= 7

DECLARE = <EMPTY>

REF = ZERG

USE = <EMPTY>

DEF = <EMPTY>

DESCRPT=PRINTSTMT EXP-TREE=

SONS =]
PARENTS= 7

o]

EIN
POINT

84

Appendix D

DECLARE = <EMPTY>

REF = EIN

USE = <EMPTY>

DEF = <EMPTY>
DESCRPT=MEVESTMT EXP-TREE= ©
SONS = 3
PARENTS= 4 6

DECLARE = <EMPTY>

REF = <EMPTY>

USE = <EMPTY>

DEF = REALIGN
DESCRPT=IFSTMT EXP-TREE= O
SONS = 1 4
PARENTS= 5

DECLARE = <EMPTY>

REF = ZERU

USE = <EMPTY>

DEF = <EMPTY>
DESCRPT=GOTOSTMT EXP-TREE= O
SANS = 5
PARENTS= 3

DECLARE = <EMPTY>

REF = <EMPTY>

USE = REALIGN

DEF = <EMPTY>
DESCRPT=EXITSTMT EXP-TREE= O
SUNS =
PARENTS= 3

DECLARE = <EMPTY>

REF = <EMPTY>

USE = <EMPTY>

DEF = <EMPTY>

————————————————————— EXPRESSION-TREE |NFORMATION

SET-POOL I8 2 PERCENT FULL
0.28 SECONDS

Appendix D

D.6 Graphic Display of Tables File

2 |ENTRY| declare
BLANK,EIN,ZERO,POINT
12 |[PRINT| ref
POINT
11 {GoTO | use
CARRY
L N
ref
71 IF “EIN
TEST | def
4J 4 L__ TEST
(1
10 |PRINT| ref
ZERQ
9 | MOVE | def
CARRY
. 3
6 [PRINT| ref 8 | GOTO | use
EIN TEST
. \ y,
5 |MOVE | def
REALIGN
3| IF ref
tesT | ZERO
(.
Y
4 1GOTO | use
REALIGN
, L

EXIT

