NUMERICAL OPTIMIZERS FOR USE IN
FLOATING-POINT DATA GENERATION

by
Barbara P. Havens
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

CU-CS-197-80 October, 1980

This material is based upon work supported by the
National Science Foundation under Grant Nos. MCS78-
12288 and MCS8000017 also Department of Energy Grant
No. DE-AC02-80ER10718.

Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those
of the author and do not necessarily reflect the
views of the National Science Foundation.

Abstract

Automatic floating-point data generation is the problem of find-
ing a set of floating-point input data to a subprogram which forces
control down a specified path through that subprogram. Although
this problem is not, in general, solvable, several methods do exist
which are successful in some instances of the problem. One such
method involves the use of multivariate numerical optimizers, and the
choice of optimizer often has dramatic effect on the success of the
method.

An experiment, which investigates the comparative suitability of
several numerical optimizers to this purpose, is described, and
recommendations concerning an appropriate optimizer are made.

I. Introduction

The term "floating point data generation," as used in this paper,
refers to the following problem: given a subprogram with floating-
point input vector x (and all integer inputs fixed), and a path through
that subprogram (i.e., given the sequence of truth values for logical
expressions that correspond to a path), perform the following:

a) decide whether floating point data ig exists that will drive con-
trol down the specified path, and b) if it does exist, exhibit such
an Xg.

There are several reasons to be interested in floating-point data
generation. One is that such a generator could be used as an aid to
the powerful validation and verification tool DAVE ([7]). DAVE scans
FORTRAN programs for data-flow anomalies such as references to
uninitialized variables. If DAVE finds a program path on which such
a reference occurs, it reports that path to the user; however, DAVE
does not attempt to determine whether actual data exists that would
cause that path to be executed. A floating-point data generator could
do that, if the integer inputs are fixed (perhaps by a query of the
user for typical values).

Another use for such a generator would be to help answer questions
about an algorithm. The questions might be of the form, "Could the
following sequence of instructions ever be executed?" The sequence
would then provide the path information required by the generator.

Finally, someone testing code might wish to exercise a particular
subset of the instructions. If he or she supplies a path description
that sends control through that subset, the generator could attempt
to find proper test data.

It should be noted that this problem, as stated, is unsolvable,
since a sub-case can be formulated as the halting problem (see [1]).
However, methods do exist that are successful on some instances of
the problem. One such method uses numerical optimizers in its approach.
There are many different types of numerical optimizers in existence;
the purpose of this paper is to compare the effectiveness of several of
them in this application.

IT. Overview of Numerical Optimization Method of Generating Data

Our method for approaching data generation, first suggested in
[11], involves transforming the user's subprogram so that it returns
a vector each time it is called with a trial input vector. The numerical
components of this vector are derived from the conditional parts of
statements whose desired truth values have been specified, and they
are used to help determine how close the trial input vector is to a
satisfactory data set. A component will be positive if and only if the
trial input vector causes the truth value of the expression to be as
specified.

For example, suppose that the ith input-dependent conditional
statement in a given subprogram is

IF(X.GT.Y) Y = Z.

If the chosen path requires that the Togical expression be .TRUE.,
this Tine would be replaced with

qu:X“Y

Y = Z.
If it is to be .FALSE., the replacement would simply be

C_i=Y"X,

since the assignment only takes place if the expression is .TRUE.

Other relational operators are handled similarly (with the exception of
.EQ. and .NE., which can be implemented with the absolute value function).
A subprogram with constraints inserted as described will be referred
to herein as a "subprogram path."

The vector c¢ of constraint values is then summarized in a single
floating-point number, computed by one of the following three objective
functions.

B iaci<0 C_i,'if313c,i<0
File) =
min {Ci}’ otherwise
'I,.
BRI ERLERER Y
Fo(c) =(12¢i <0
m%n {Ci}’ otherwise
Fo(c) = min {c.}

3

Note that all three of these above objective functions yield positive
values if and only if all constraints are positive, i.e., satisfied.
(Any function with this property could be used as an objective function;
these are only examples.)

Finally, a multivariate numerical optimizer is used to try to find
a positive value for the objective function. After each evaluation of
the constraint vector, the optimizer decides eitherwhat input vector
to try next, or it decides to quit (either because it was successful or
because it isn't making adequate progress).

ITI. The Optimizers Studied Here

There are many types of numerical optimizers, most of which involve
the evaluation or approximation of at least one partial derivative of
the objective function. These optimizers are typically far more
efficient, on smooth functions, than optimizers which use no deriva-
tives. We tried one method, developed by Schnabel ([13]), which used
numerical approximations to partial derivatives, but it performed
rather poorly on our examples. Our work was not conclusive, but we
did not see a way to make our objective functions smooth enough for
such techniques. Therefore, we Timited our study to direct-search
methods, i.e., those that make no use of differentiation.

The four optimization methods we tried were that of Hooke and
Jeeves ([9]), that of Rosenbrock ([8]), that of Davies, Swann and
Campey ([2]) and the Simplex method ([10]). (Actually, the experiment

started with nine optimizers, all variants of those four, and the

best of each type was used.) Each of these optimizers works in Rn,
where n is the number of inputs (the number of elements in the input
vector x). A1l of the optimizers stop if they find a positive value
for the objective function, since this indicates success (proper data
were found), or if they converge (a maximum of the function was found),
or if they simply spend too much time without finding proper data.

It should be noted that each optimizer has several user-set parameters,
and changes in their values often has large effect on the performance
of the optimizer on a particular problem. For this reason, the param—
eters of all the optimizers were all 'tuned' on the same problem (a
simple geometrical problem, not one of those used in the testing) and
then their parameter values remained fixed throughout the experiment.

In the following paragraphs, the term "better point" means "input
vector which yields a higher objective function value," and will be
used in describing how the individual optimizers work. The descrip-
tions here are intended to give the reader only an intuitive idea of
how the optimizers are similar and how they differ (enough to under-
stand what is being compared, but not enough to code such optimizers).
The interested reader can obtain a tape of the actual FORTRAN source
code for the optimizers, drivers and subprogram paths from Professor
Webb Miller, Mathematics Department, University of California,

Santa Barbara, California 93107.

The Hooke and Jeeves method is, perhaps, the simplest of the four.
After choosing n orthogonal search directions (usually the coordinate
axes) and an initial step size, steps are tried along the chosen
directions ("Exploratory" moves). keenina the best point found while
searching for a better one. When all of the directions have been
tried, an additional step is taken in the direction from the first
point tried to the best point found (a "Pattern" move), in effect
doubling the combined step taken during the Exploratory moves. The
Exploratory stage is then repeated, starting at the new point that
the pattern move yielded. If no progress is made in the Exploratory
stage, the step size is decreased; convergence occurs when the step
size falls below a predetermined bound (here, 10'4, with an initial
step size of about 30).

The first step in the method of Rosenbrock is similar to that of the
method of Hooke and Jeeves, except that there is a step size correspond-
ing to each direction, and the exploratory phase takes longer, with
several iterations through the directions and each step size being
altered at each iteration. (If a step in a particular direction is
successful, the next step in that direction will be a longer one, but
if it's unsuccessful, the next step will be shorter and in the opposite
direction.) The second phase of Rosenbrock's method is to rotate all
of the search directions so that the first direction is that of the
total step taken in the first phase (and is hence the most profitable
direction, in a sense), and the i-th new direction is the most profit-
able direction orthogonal to the 1st, ..., i-1st, i = 2, ..., n. The
process is repeated through 10 rotations of the search directions.

The Davies, Swann and Campey algorithm also uses a sort of exploratory
phase and rotation of search directions, so it is similar to the
Rosenbrock method. The line searches used in the exploratory phase are
carried out by quadratic interpolation, one interpolation done in each
of the n current search directions. Then, one more, similar line search
is done (1ike a Pattern move) in the direction taken in the exploratory
phase. Finally, if the total step taken (in the first two stages) is
large enough, then the directions which were found profitable are ro-
tated (the others are Teft alone); otherwise, more searching is done
in the same directions as last time. Convergence occurs when a step-
size parameter, used for sampling in quadratic interpolations and de-
creased each time no rotation is done, falls below a certain bound (the
parameter starts off at 1000, with a bound of .01).

Finally, the Simplex method is different from the others in that no
search directions are required. Instead, a simplex (n+l points in Rn)
is formed and operations are performed on it, the object being to
eventually trap the function's maximum somewhere inside the simplex
and then to shrink the simplex toward that maximum; convergence occurs
when the simplex is sufficiently small (all points are within 10'4 of
the center; all points started out with random coordinates between
-5000 and 5000). The objective function is first evaluated at each
of the simplex's vertices; throughout the algorithm these vertices can

be considered to be the best n+l points (input vectors) found so far.
Then, reflections (taking the worst vertex and reflecting it through

the hyperplane determined by the other n points), expansion (moving a
point farther from the hyperplane determined by the others) and contrac-
tion (shrinking the simplex toward its best vertex) are used to replace
some or all of the simplex's vertices with better points.

IV. Subprogram Paths Used in Testing the Optimizers

Nine subprogram paths were used for tests for this study; they were
given the names "bad," "decomp," "fmin," "good," "house," "linerbad,"
"Tinpack," "seval" and "zero." They will be described below.

"Bad" is a subprogram path on which a variable is referenced before
it is set, but there is no data which would drive control down this
path, as the requirement on the 2-element input vector is that
Xo < Xp < Xy = 1.

"Decomp" is Moler's matrix decomposition subroutine ([12]), with a
path that requires, for input, a non-singular matrix in which, for each
column, the pivot element is the last element in the column. Clearly,
such matrices exist.

"Fmin" is Forsythe, Malcolm and Moler's one-dimensional function
optimizer ([4]), and the chosen path through it is a sequence of four
golden-section search steps followed by convergence. The function
being optimized is f(x) = x2, and since golden-section search is only
performed on poorly-behaved functions (it is the slower of the methods
used in fmin), no data exists that will drive control down this path.

"Good" s similar to "bad," except that in this case, satisfactory
input data does exist; the only requirement on the 2-element input
vector x is that Xp < Xp < Xp ¥ 1.

"House" 1is Householder's method on a 4 x 3 input matrix. The
chosen path requires that the matrix be constructed in such a way
that several intermediate values computed during the reflection process
have positive signs; this property has algorithmic significance in
that it reduces the error introduced by the computations. Many suit-
able input sets exist.

“Linerbad" is similar to "good" and "bad," but in this case, though
no satisfactory data exists, it is possible to get arbitrarily close
to satisfactory data, as the requirement on the 2-element input vec-

tor is that Xo < X, < Xge

1 2
"Linpack" is part of routine SGEDI from LINPACK ([3]). The chosen
path requires the input vector to have a small element (%10'2), followed
by a large element (%102), followed by another small one and another Targe one.

"Seval" is from Forsythe, Malcolm and Moler ([5]). The chosen path
requires a certain sequence of comparison outcomes in a binary search.
Data sets do exist that will drive control down this path

Finally, "zero" is ZEROIN from Forsythe, Malcolm and Moler ([6]) and
it is analogous to the "fmin" data set, but this time, bisection is
the slow step and the function is f(x) = x. No satisfactory data
exists for this path.

These subprogram paths were chosen because they were thought to be
good approximations to ones which might actually be used in the
appiications Tisted in the introduction.

V. Testing Procedure and Evaluation Criteria

There are four numerical optimizers, three sample objective functions
and nine subprogram paths described in this paper; every combination
of numerical optimizer, objective function and subprogram path was
tested. Each test consisted of starting the optimizer 100 times (at
random starting points) and recording, each time, whether the search
was successful and how many evaluations of the objective function
were required. Success rate and speed (average number of function
evaluations) will be the criteria for evaluation.

VI. Results

TabTe 1 shows the success rates and Table 2 shows the average speeds
for each of the optimizer-objective function-subprogram path combina-
tions. The numbers in Table 1 show how many times a satisfactory data
set was found, out of 100 tries (100 random starting points). Note
that, overall, objective function F2 gave the best results. Note also

that no one optimizer stands out as the best in all cases; for example,
using objective function FZ’ the Hooke and Jeeves optimizer was by far
the most successful in finding suitable input data for the "linpack"
subprogram path (the Simplex method was the only other one that had
any success), but the other three optimizers worked better on the
"seval" subprogram path. This suggests that, perhaps, some sort of
hybrid optimizer might prove most successful.

Table 2 shows average speed, in terms of the number of objective
function evaluations, for each optimizer-objective function-subprogram
path combination; averages were tabulated over 100 restarts of the
optimizer. Objective functions F1 and F2 were usually slightly faster
than F_, with F1 slightly faster than FZ' Again, no one optimizer
stands out as the best in all cases, but the Hooke and Jeeves optimizer
does appear to be the slowest. Although the Simplex method is faster
on several subprogram paths for which the data searches are strictly
successful ("decomp," "house" and "seval," with F1 or F2), the
Rosenbrock optimizer is the fastest when both successful and un-
successful searches are considered. Again, a hybrid optimizer is
suggested.

Perhaps a reasonable compromise would be the following technique:
use the Simplex method for a certain number of objective function
evaluations (perhaps computed from the size of the input vector), and
then let the best point found be the starting point for the Rosenbrock
method. (Of course, either method would halt if the objective function
yields a positive value for some trial input vector.) This would ex-
ploit the speeds of both optimizers while assuring a good starting
point for the Rosenbrock method.

-9-
SUCCESS CHART

Objective function F1

BAD* DECOMP FMIN* GOOD HOUSE LINERBAD* LINPACK SEVAL ZERO*
Hooke &

Jeeves 0 99 0 98 97 0 66 3 0
Rosenbrock| 0 99 0 62 100 0 0 100 0
Davies, . »

Swann 0 88 0 100 76 0 0 84 0

& Campey
Simplex |0 100 0 100 | 100 0 2 100 0

Objective function F2
BAD* DECOMP FMIN* GOOD HOUSE LINERBAD* LINPACK SEVAL ZERO*
Hooke &

Jeeves 0 99 0 98 99 | 0 89 3 0
Rosenbrock] 0 100 0 62 .{ 100 | 0 0 100 0
Davies, ‘

Swann 0 93 0 100 84 0 0 100 0

& Campey
Simplex 0 100 0 100 100 : 0 11 100 0

Objective function F
BAD* DECOMP FMIN* GOOD HOUSE LIMNERBAD* LINPACK SEVAL ZERO*

Hooke &

Jeeves 0 78 0 98 94 0 38 0 0
Rosenbrock| O 96 0 62 99 0 0 0 0
Davies, |

Swann 0 78 0 100 75 0 0 0 0

& Campey
Simplex |0 100 0 100 100 0 6 0 0

TABLE 1:

Number of successes out of 100 tries (100 random starting points).

*No satisfactory input data exists for this subprogram path.

-10-

SPEED CHART

Objective fuhétion F1

BAD* DECOMP FMIN* GOOD HOUSE LINERBAD* LINPACK SEVAL ZERO*

Hooke &

Jeeves 745 372 1176 434 527 957 1565 1692 2398
Rosenbrock 49 56 98 39 70 51 104 177 118
Davies,

Swann 841 123 154 39 264 71 200 314 197

& Campey
Simplex 2000 18 662 45 18 2000 1052 43 447

Objective function F,
BAD* DECOMP FMIN* GOOD HOUSE LINERBAD* LINPACK SEVAL ZERO*
Hooke &

Jeeves 1158 | 284 1868 434 556 957 1228 1692 1242
Rosenbrock 50 50 102 39 67 51 104 183 141
Davies,

Swann 68 | 135 256 39 186 71 350 85 233

& Campey
SimpTlex 2000 18 513 45 18 2000 1341 47 368

Objective function F
BAD* DECOMP FMIN* GOOD HOUSE LINERBAD* LINPACK SEVAL ZERO*
Hooke &)

Jeeves 1162 | 1210 1585 434 823 957 1561 1394 2552
Rosenbrock 50 78 102 39 108 51 106 620 139
Davies,

Swann 71 210 377 39 295 71 518 999 223

& Campey
Simplex 2000 19 927 45 18 2000 1432 2000 424

TABLE 2:

Average number of function evaluations required, tabulated over 100 tries, regard-
less of success or failure.

*No satisfactory input data exists for this subprogram path.

-11-

References

[1] Clarke, L. A., "A System to Generate Test Data and Symbolically
Execute Programs," IEEE Transactions on Software Engineering,
Sept., 1976.

[2] Dixon, Nonlinear Optimization, The English Universities Press, Ltd.,
1972.

[3] Dongarra, J. J., et. al., Linpack Users' Guide, Society for In-
dustrial and Applied Mathematics, 1979, pp. C.9-C.10.

[4] Forsythe, et. al., Computer Methods for Mathematical Computations,
Prentice-Hall, 1977, pp. 182-187.

[5] Forsythe, et. al., Computer Methods for Mathematical Computations,
Prentice-Hall, 1977, pp. 76-79.

[6] Forsythe, et. al., Computer Methods for Mathematical Computations,
Prentice-Hall, 1977, pp. 161-166.

[7] Fosdick, L. D., and Drey, C. M., "The Dave System User Manual,"
University of Colorado, Department of Computer Science Technical
Report #CU-CS-106-77, March, 1977.

[8] Gil11, P. E., and Murray, W., Numerical Methods for Constrained
Optimization, Academic Press, 1974, pp. 21-22.

[9] Kowalik, J., and Osborne, M. R., Methods for Unconstrained Optimiza-
tion Problems, Elsevier, 1968, pp. 21-22.

[10] Kowalik, J., and Osborne, M. R., Methods for Unconstrained Optimiza-
tion Problems, Elsevier, 1968, pp. 24-26.

[11] Miller, W., and Spooner, D., "Automatic Generation of Floating-
Point Test Data," IEEE Transaction on Software Engineering,
Sept., 1976.

[12] Moler, C., "Algorithm 423, Linear Equation Solver," Comm. Ass.
Comput. Mach., vol. 15, p. 274, Apr. 1972.

[13] Schnabel, Robert B., "Determining Feasibility of a Set of Nonlinear
Inequality Constraints," University of Colorado Department of Computer
Science Technical Report #CU-CS-172-80, February, 1980.

