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Abstract
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algorithms for this well-known problem begin by finding the trans-
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1. Introduction

In a well-known model for multiprocessor scheduling, n unit-length
jobs are to be executed by m identical processors, a dag specifies
precedence relations among the jobs, and a schedule with minimum finish
time is sought [C]. For arbitrary m this problem is NP-complete [U].
For fixed m = 3 no polynomial-time algorithm is currently known. Here
we investigate the tractable case, m = 2.

For this case several polynomial-time algorithms have been
given. They all begin by finding the transitive closure of the dag.

This uses time O(min(en,nz‘Gl))

, where e is the number of edges
of the dag. (The first bound follows from doing n depth-first
searches; the second follows from reducing transitive closure to
matrix multiplication [AHU,P].)

The algorithm of Fujii, Kasami and Ninomiya [FKN] is based on
matching techniques. Excluding transitive closure time, it requires
the time to find a maximum matching, 0(n2'5) [K]. Coffman and Graham
[CG] give an algorithm based on a lexicographic numbering scheme. Sethi
[S] shows the numbering can be done in time O(e+ncx(n)),* (This
algorithm can begin by finding the transitive closure or transitive
reduction. However, both operations require the same time [AGU]).
Garey and Johnsoh [GJ] give an algorithm for scheduling with precedence
constraints and deadlines, which also solves our problem. It uses
time O(nz) to compute "modified deadlines®

Time bounds for these algorithms often assume the transitive

closure (or reduction) of the dag is given. In practice this is unlikely.

On general dags the transitive closure step dominates, and the algorithms

* . . .
a(n) is an inverse of Ackermann's function and is very slow-growing. (7]
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use time O(min(en,n
Here we present an algorithm that does not use the transitive

closure. The time on an arbitrary dag is almost Tinear, O(etna (n)).

The algorithm is a refinement of the highest-level-first scheduling

rule; the schedule always executes nodes on the longest paths of the dag.
Section 2 gives definitions and motivation. Section 3 gives the

algorithm., Section 4 briefly discusses extensions of the algorithm to

more general scheduling models.



2. Preliminaries

This section gives the terminology for the problem. Also, it
defines and motivates the basic idea of HLF schedules.

A scheduling problem is defined by a dag (directed acyclic graph).
n and e denote the number of nodes and edges, respectively. If there

is an edge from node x to node y, then x is an immediate predecessor

of y, and we write x -~ y; if there is a directed path (of O or more edges)
and we write gwé;l, A dag can be partitioned into levels i, u =i =1:
Jevel i consists of all nodes x that start a path with i nodes, but

not a path with i + 1 nodes. In this case level(x) = i. Figure 1

shows an example dag.

A (2-processor) schedule executes (schedules) nodes during time

units i, 1 < i < w, so that each node is executed in exactly 1 time
unit, < 2 nodes are executed in the same time unit, and any predeces-
sor of a node is executed in a lower time unit. w is the schedule's

finish time. We seek an optimum schedule, i.e., one with minimum

finish time. Figure 2 shows a schedule for the example dag, as a

Gantt chart, i.e., the jth

column gives the nodes executed in time unit i

(The block structure, indicated by heavy Tines, is explained in Section 3).
A Tevel schedule "executes levels" in the order u,...,l (where

u is the highest level). More precisely, suppose Tevels U,...,i+1

have been executed. and level i contains s unexecuted nodes. Then

level 1 is executed in the next [%1 time units: The first L%] units

each execute 2 nodes of i. If s is odd, the Eﬂ nd unit executes

the last node x of i, and possibly a node y of a lower Tevel. The



schedule of Figure 2 is level.

If s is odd, then i is a 1-level, and (x,y) is a jump from x to y

(or from level(x) to level(y)). For uniformity, if node y does not

exist (i.e., the [%1 nd unit executes only x), y is taken to be a
dummy node 0. 0 is on a fictitious level 0; as many jumps to 0 may
be made as necessary. Finally, note because of jumps, s may be less
than the number of nodes originally on level 1.

An optimum schedule that is level always exists. This follows
from the Coffman-Graham algorithm [CG]. Alternatively, one can trans-
form any optimum schedule to be level. For example, suppose the highest
level of a dag has nodes X i=1, 2; further, X5 is scheduled with Yy
a node not on the highest level, i=1, 2. Then Xy and X, can be
scheduled together. Nodes ERPY and others, can each be scheduled
with a successor of X1 (or xz) on their level. The basic principle
is that if level(x) > level(y) and x 2 y then x has a successor z on
level(y), z = y. In this way we get an optimum schedule that begins
by executing X1 and Xo- Repeating this transformation gives an
optimum, level schedule. Details of this proof are in [G1].

In an arbitrary level schedule, let the 1l-levels be
f > IPYRE >fy . and Tet level f. jump to Tevel t, <ti = 0 if no real
node is jumped from level fi‘) Then (tl,tz,...,tk) is the schedule's

jump sequence. Note the levels fi can be deduced from the jump

sequence and the original dag (f is a 1-Tevel if the number of nodes
on f, minus the number of occurrences of f in the jump sequence,

is odd.) Note also the jump sequence determines w. (The number of
0's in the jump sequence is the number of time units that have an

idle processor, i.e., execute only 1 node.)



A highest-level-first (HLF) schedule is a level schedule whose

jump sequence is as large as possible; here we use lexicographic order
to compare jump sequences. An HLF schedule always Jjumps to the
highest level possible; when there is a choice of nodes to jump on
that level, the node that allows subsequent jumps to be highest is
Jumped. Figure 2 gives an HLF schedule.

Any HLF schedule is optimum. This is proved in Section 3, in the
analysis of the algorithm. However, to motivate the algorithm, we
indicate here why HLF schedules are optimum.

First, we can prove this fact directly, by transforming an
optimum level schedule to be HLF. This elaborates on the transformation
to level schedules discussed above. Details are in [Gl].

Second, we can make a simple plausibility argument. Suppose
f is a 1-level, and node y can be jumped from f. Then y can be jumped
from any level that is < f and > Tevel(y). So if there is a choice of
nodes y to jump from f, the one on the highest level should be jumped;
this allows the greatest number of levels < f to jump other nodes y.
For example, if there are two nodes Yi> Yoo where ]eve1(y1) > 1eve1(y2),
then Y1 should be Jjumped from f. This way some 1l-level g, g:>leveT(y2),
can jump y,. If y, were jumped from f, then when ]evel(yl) > g,

g cannot Jjump Yq» SO the resulting schedule may not be optimum.

This reasoning also shows that when there is a choice of nodes

to jump on the highest level, the choice should be made so subsequent

jumps can be highest. In other words, the schedule should be HLF.



3. The Algorithm

This section presents an algorithm that finds an optimum, HLF
schedule, in time O(etna (n)).

The main problem in constructing an HLF schedule arises when
there is a choice of nodes to jump. For instance in Figure 1, level
3 can jump to nodes 4, 5, 7 or perhaps even 8. In general terms,
suppose the highest level some l-level can jump to is t. If a number
of nodes on t can be jumped, which one should be chosen? From the
HLF definition, the choice should be made to allow subsequent Jjumps
to be highest.

So consider a subsequent jump, from a level f. We begin by
assuming f > t. If f can jump to t, another node on level t must be
chosen. If f can jump to a level > t, clearly it does not matter
which nodes on t have been jumped. Finally, suppose f can only Jjump
to a level < t. Since the schedule is HLF, any node on t that f
might have jumped must have been jumped from a higher level. Clearly
the choice of node to jump from such higher Tlevels does not matter,
since all choices must be jumped before f.

In summary, the choice of node to jump on t does not effect the
jump from any level f > t. Further, tho nodes on t divide into two
types, called "non-free" and "free." The non-free nodes must be
jumped. For instance in the above discussion, a node on t, jumped
before a jump that goes below t, is non-free. The free nodes may
be jumped, but they need not be; an alternate choice exists. In
Figure 1 on level 2, node 8 is non-free and the others are free.

Now consider the jump from level t itself. The jump can be

made from any free node x of level t. Thus the free node x that



allows the highest jump to be made should not be jumped. In Figure 1,
node 4 should not be jumped, since it can jump to (node 2 of) Tevel 1,
while the other free nodes of level 2 cannot. (Note node 3 must be
jumped before level 2). This single rule is the only one that governs
the choice of nodes to jump!

Now we can describe a simple two-pass procedure to compute an
HLF schedule. Pass I computes the jump from level f (if it exists),
for f = u, ..., 1: It finds the highest level t that f can jump to.
If level t has several nodes that can be jumped, it guesses one
arbitrarily. Of course, the guess may be incorrect. However, Pass I
keeps track of the non-free and free nodes. It always computes the
best jump from a free node x of f. Pass Il makes substitutions for
the free nodes x that were incorrectly jumped.

This approach has a slight drawback in terms of efficiency.
The difficulty is in finding the highest level t to jump to; t
changes arbitrarily with successive jumps. If the priority queues
of [E] are used to find t, an 0(e+nlog logn) algorithm results.

For greater efficiency we restructure the computation. Pass I
computes the jumps to level t, for t = u, ..., 1: For each node y
on level t, it finds the highest level f that can jump to y. It
guesses that f jumps to y. As above, Pass I keeps track of the non-free
and free nodes, and always computes jumps from free nodes. Pass II
fixes bad guesses.

This second approach has the advantage of a simpler "highest
level" computation. The first approach computes the highest level t
to jump to; a given t may be highest at various, arbitrary times.

The second approach computes the highest level f to jump from;



a given f is highest only once. (After its jump has been found, level f
is no longer a candidate.) This allows the use of set merging tech-
niques, giving an O(etna (n)) algorithm.

Now we give a detailed description of the algorithm, beginning
with the data structures. The schedule is specified in arrays FROM
and TO. For u = f = 1, (FROM(f), TO(f)) is the jump from level f.
There are two special cases: if TO(f) = -1, there is no jump from f
i.e., f is not a 1-level; if TO(f) = 0, node FROM(f) is scheduled
with an idle processor. Clearly these arrays give enough information
to deduce the entire schedule (in linear time), if desired.

Pass I guesses TO values; these guesses are modified in
Pass II. For conceptual clarity, Pass I stores guesses in the array T;
Pass II copies T to TO, and then modifies TO. The T array is of course
unnecessary in an actual implementation.

Pass I uses two main data structure. First, it partitions levels
into sets. When level t is being processed, a level f > t is called
open if the jumps to f make it a 1-Tevel, but T(f) = 0 (i.e., no non-
trivial jump has been found); also, level t itself is open. Each onen
level f has a set,

OSET(f) = {glu=g>f and f is the highest open level < g}.

OSETs are manipulated by operations FIND(g) (which returns f where

g € OSET(f)) and UNION(f,g) (which does a destructive merge of OSET(f)
into 0SET(g)) [AHU].

The second data structure helps assign jumps. When Pass I
processes level t, it finds when each node y on level t is ready to
be jumped, i.e., it computes

R(y) = the highest open level that can jump to y.
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It also finds which nodes can be jumped from a given level, i.e., it
computes, for each open level f, a list

RLIST(f) = {y|R(y) = fI}.
(These interpretations of R and RLIST are valid immediately before Tine 6.)

Pass T also computes a "substitute jump" node on level t, SUB(t).

This node is not jumped in Pass I; however, it is ready as early as
possible (i.e., R(SUB(t)) is as large as possible). Any level f < R(SUB(t))
can jump SUB(t) instead of T(f). So Pass II can use SUB(t) to insure

that FROM(t) is not jumped, thus fixing bad guesses. This motivates

the following definition.

Definition 1 A node y on level t is free if y = T(f) implies

f < R(SUB(t)); i.e., either y is not jumped in Pass I, or y is jumped

from R(SUB(t)) or below.

This definition is consistent with the earlier intuitive description

of "free," i.e., a free node need not be jumped. Note, at least intui-
tively, any level has free nodes, since not every node of a level can be
Jumped. Also note the special case where SUB(t) = 0. Since the algorithm
sets R(0) = 0, the only free nodes on such a level t are those that are
not jumped.

The algorithm works as follows. Pass I processes levels t in decreas-
ing order, t=u,...,1. For each t, R and RLIST values are computed (lines
2-5). Then RLISTs are used to assign jumps, i.e., T-values (lines 6-9).
The node with highest R-value that need not be jumped does not get jumped;
instead it is made SUB(t) (1ine 10). The method for finding SUB(t) relies
on merging RLISTs so nodes with higher R-values are at the end (line 9).
After all levels t are processed, Pass II processes levels f in increasing
order, f=1,...,u. For each f, a proper node FROM(f) is found. If FROM(f)

happens to be jumped by Pass I, the jump is switched to go to SUB(f) instead
of FROM(f).

Now we aive +he alanvtithm T rn neaitd~n AT el
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procedure {{; comment Given a dag, H returns the jumps of an HLF
ANAANAAAAAARAN AAAAAAAAAANS

schedule;
begin
W

Initialijzation:

do a breadth-first search of the daz to define levels u,...,1;
set SUB(t) = 0, T(t) 0, OSET(t) = {t}, RLIST(t) = ¢, for u > t = 1;
set 0SET(0) = {93, R(0) = o;

Pass 1I:

for t <+ u to 1 do bhegin
AANV AR AN A AN
for each node y on level t do begin
AAAA AAA A AR AAAA
r < min {u+l, £|an imnediate predecessor x of y is "executed
at level £, i.e., x = T(L£), or x is on level £ and is not
a T-valuel;

if r=u, T(r) = 0, apd_some free node on level r does not
immediately prcc ede y comment the test Tor "free" 1ds in Definition 1;

else R(y) <« FIND(r-1);
add y to RLIST (R(y));
ends
while RLIST(f) # ¢ for some f > t dg begin
remove the first node y from RLIST(f); T(f) <« y;
g < FIND(f-1); UNION(f,g);
add RLIST(f) to the end of RLIST(g);
end;
A
1f RLIST(t) = ¢ then begin,
y < the last node in RLIST(t); RLIST(t) < ¢3

if R(y) > t then SUB(t) < y;

end;
A

if Tevel t is not a 1-level (i.e., the number of nodes that are
not T values is even)then begin T(t) < -1; UNION(t,t-1) end;

end Pass I;
”\M-
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13.

14.

15.
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Tet TO(g) = T(g) for 1 < g < u comment 7O and T can be the same array;
AAAAAANAA~

for f « 1 to u do begin
Pt AN AR ALCAAA
if TO(f) = O then begin

let FROM(f) be a free node on level f, that does not
precede TO(f) if TO(f) > 0;

if FROM(f) = TO(g) for some g then TO(g) <« SUB(f);
peUN A

end end end H.

immediately
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Table I gives the values calculated by the algorithm for the dag
of Figure 1. In Table I (a), a node y has an asterisk, y*, if it is a
SUB node, i.e., y = SUB(level(y)); y is in parentheses, (y), if it is
non-free. Figure 2 shows the complete schedule computed by the
algorithm.

The H schedule is the one computed by the algorithm, i.e., the
level schedule with jumps (FROM(f), TO(f)), u > f = 1. We analyze the
H schedule as follows: Lemmas 1-4 give the basic properties of
Pass I; Lemma 5 shows how Pass II modifies the schedule, and
Corollaries 1-4 give analogous properties of the H schedule. These
properties include the fact that H is a valid schedule (Corollary 3),
and H has an HLF-1ike property (Corollary 4). The latter is used to
prove H is optimum (Lemmas 6-8). Finally, Lemma 10 shows that H is
actually an HLF schedule.

The analysis treats 0 as a dummy node on a fictitious level 0.
So for instance the assertion "level(T(£)) > f" means T(£) is a real
node, above f.

To start, note the OSETs are maintained by Tines 8 and 11, in
accordance with their definition above.

The intuitive discussion at the start of Section 3 notes that
a node z on t, jumped before a jump that goes below t, is non-free.

So if z is free, no subsequent jump goes below t. We prove this
property (for z = T(f)) as follows.

Lemma 1: Let f be a 1-level where T(f) is free; let £ be a 1-level
where f = £ > level(T(f)). Then level (T(L)) = level(T(f)); if equality
holds, T(£) is free.
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Proof: Let t = Tevel(T(f)). Suppose in line 10, RLIST(t) contains a
node y. Lines 5-9 show than no level £, t < £ < R(y), is open.

In the hypotheses of the Lemma, t < £ < f < R(SUB(t)). So the above
remark shows £ is not open, i.e., level(T(£)) > level(T(f)). Definition

1 shows if equality holds, T(£) is free. 0

The next Lemma is used to show FROM nodes exist.
Lemma 2: Letfbeal-level, f < R(y). Then f contains a free node
Xy X7 V.
Proof: Let r be the value computed in line 3 for y. So f<R(y) <r.
If f=r, then R(y)=r, and the Lemma holds by line 4. Otherwise f<r.
Since f is a 1-level, it contains a node x that is not a T-value. x

is clearly free; x- y since f < r. a

The next Lemma is used to show H respects precedence.
Lemma 3: If x - y then either level(x) > R(y) or x = T(f) for some
f > R(y) (i.e., Pass I executes x at or before R(y)).

Proof: Line 3 sets r so any immediate predecessor x of y is executed

i

at or before r, i.e., level (x) = r or x = T(f) for some f > r. If
R(y) < r, this gives the Lemma. If R(y) = r, line 4 shows f > r;

again the Lemma holds. 0

The next Lemma essentially shows the HLF property for Pass I. To
motivate its statement, let £ be a 1-Tevel, and z = T(£). The HLF
property implies that no node y above level(z) can be jumped from £.
Thus if level(y) > level(z), either y must be scheduled before £,

or all free nodes of £ precede y. This is essentially Lemma 4 (a).
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Lemma 4 (b) shows a supporting fact: all non-free nodes must indeed
be jumped, i.e., no free node can be substituted for a non-free node.
Lemma 4: Let £ be a 1-level. Let y be a node executed after £ by
Pass I, i.e., level(y) < £, and y = T(f) for any f > £. Let z = T(L),
and suppose either
(a) Tevel(z) < Tevel(y)

or (b) level (z) = level(y), y is free but z is not.
Then all free nodes of £ precede y.
Proof: Without loss of generality, we can assume y has ho predecessors
executed after £. So in line 3 for y, r = £. Both (a) and (b) imply
level £ is open when R(y) is computed. So Tine 4 shows R(y) = £, unless
r = £ and all free nodes of £ precede y. We show R(y) = £ gives a
contradiction, thus proving the Lemma.

Since y = T(f) for f > £, lines 5-0 with R(y) = £ show £ is
assigned a jump. Thus level(z) = Tevel(y), so (b) holds. Further, if
y is free, lines 5-10 show R(SUB(t)) = R(y); thus R(SUB(t)) = £, and

z is free. This contradicts (b). 0

Now we examine how Pass Il changes TO.
Lemma 5: For any level g, TO(g) is either T(g) or SUB(level(T(g)));
in the latter case, T(g) is free. 1In both cases g < R(T0(g)).
Proof: At the start of Pass II, any value TO(g) is T(g). Line 15 may
change TO(g) to SUB(f) where f = level(T(g)). This is done only if
T(g) is free (by line 14). Further TO(g) is not changed again, since
the new value is still on level(T(g)).
Finally, note g < R(T(qg)) (by lines 5-9), and if T(g) is free,
g < R(SUB{level(T(g))) (by Definition 1). 0
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Corollary 1: For any level g, Tevel(T(g)) = Tevel(T0(g)); T(g) is

=

free iff T0O(g) is free; if T(g) is non-free, T(g) = T0(g). 0

The properties of H follow:
Corollary 2: The H schedule is well-defined. More precisely, any
node FROM(f) exists and is not jumped (i.e., FROM(f) = TO(g) for any g).
Proof: When lines 13-15 are executed for a level f, TO(f) has its final
value. By Lemma 5, f < R(TO(f)). So in line 14, node FROM(f) exists,

by Lemma 2. Line 15 insures FROM(f) is not jumped. 0

Corollary 3: The H schedule is valid
Proof: We show H respects precedence constraints. This means if
x ~ y, then x is executed before y. Since H is a level schedule, this
is clear if y is not jumped. So suppose y = TO(f).

From Lemma 5, f < R(TO(f)) = R(y). So Lemma 3 shows either
Tevel(x) = f or x = T(g) for some g > f.

Suppose level(x) = f. Then x is executed before y, unless
x = FROM(f). The latter is impossible by line 14.

So suppose level(x) < f and x = T(g) for g > f. It suffices
to show x = TO(g). Assume the contrary, i.e., T(g) = T0(g). So T(g)
is free (Corollary 1). Now Lemma 1, applied to g, shows

Tevel (T(f)) = level(T(g)), i.e., level(y) = level(x), a contradiction.

Finally, we show a version of the HLF property for H. (Lemma 10
below shows this version actually implies the HLF property).
Corollary 4: Consider the H schedule. Let y be a node scheduled

after a 1-level £. Let z be the node jumped by £, where either
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(a) level(z) < Tevel(y)

i

or (b) level(z) = level(y), y is free but z is not.
Then all free nodes of £ precede y.
Proof: We need only verify the hypotheses of Lemma 4.
Since y is scheduled after £, level(y) < £ and y = TO(f) for f > £.
This implies y = T(f) for f > £. For assume y = T(f). So Pass II
changes TO{f), whence y is free. Lemma 1 (and Corollary 1) show
level(z) = level(y). Thus (b) holds. Now Lemma 1 (and Corollary 1)
show z is free. This contradicts (b).
Finally, note (a) and (b) imply their counterparts in Lemma 4,
by Corollary 1. 0
Now the derivation parallels [CG]: We divide the schedule into

blocks on which H is obviously optimum. Blocks Xi are defined by

boundary levels Ei:

Definition 2: The levels 21, 1 <1 <v+ 1, are defined as follows:

Kl =1. Fori>1, Ki is the Towest 1-level such that Ki > Ki_

1
and either

(a) Ki jumps below 21_1, i.e., level (TO(Zi)) < Ki—l’

or (b) Ei jumps to a non-free node on Ki i.e.,

-1

level(T0(L.)) = ¢

]. ;_q and R(SUB(£, 1)) < £..

'
Let Kv be the last value defined using the above criteria, and set

£ =y + 1.

v+l
For 1 < i < v, block X_i consists of all nodes scheduled after level

£i+1’ up to and including Ei, except for the node jumped from Ki'

Equivalently, Xi = {Xfﬂi < level(x) < £1+1, and x is not jumped from

£1+1 or above.} 0
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Figure 2 indicates the blocks for the example schedule. Now we
show any schedule processes blocks in order.
Lemma 6: For 1 < i <v and any x ¢ Xi on level Ki’ x 3 Xi-l'
Proof: First note that for any i, 1 <i<v, any node x ¢ Xi on level
£1 is free. For suppose x is non-free. Then x is jumped from some

I-Tevel £. If x is on level Ki, Definition 2 implies £ = ¢ Thus

i+1”
X ¢ Xi‘

Now to show the Lemma, take any x e Xi on level Ki, and any
ye Xi-l' x is free by the above remark; similarly if y is on Ki—l’
it too is free. Now Corollary 4 shows x 3 Y. (1
Lemma 7: For 1 < i < v, X 3 X1
Proof: Consider any x e Ly- By Lemma 6, it suffices to show x >z, for

some node z ¢ Xi on Tevel Ei'

By Definition 2, level(x) = Ki' Clearly we can assume level(x) > Ki.
So take z on level ﬂi with x z. Zz must be executed after x, whence
after level £i+1' S0 z ¢ Xi’ as desired. O

Finally the desired conclusion follows.
Lemma 8: The H schedule is optimum.
Proof: Let “(Xi) (w*(Xi)) denote the number of time units in the
H schedule (optimum schedule) in which some node of block X.i is

executed. First note
v n
(1) T wx(x) = ] a(x).
i=1 i=1
For any 1-Tlevel £ of a block Xi’ 2 > Ei’ jumps a node of Xi’ So every
time unit of w(Xi), except the Tast, executes 2 nodes of Xi' The last

unit executes =1 node of Xi' (It may execute 2 nodes, if i = 1),

Thus Xi has = Zm(Xi) - 1 nodes. This implies w*(Xi) > w(X.

s)s and (1)

follows.
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The Tength of the H schedule is the right-hand side of (1), by
Definition 2. The Tength of the optimum schedule is at least the left-
hand side (since Lemma 7 shows a time unit is counted in at most

1 term w*(Xi)). So (1) implies H is optimum.
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Now we consider the timing of H. First we give some details needed
for efficiency. For line 3, each node y has a Tist of immediate
predecessors. Further, each node x indicates the level £ (if any)
with x = T(£). These data structures make the total time in line 3
O(e+n).

For the test of Tine 4, each level r has a count of its free
nodes. The count is set after level r is processed (line 11). It
is easy to see this requires linear time. Line 4 compares this count
with the number of free predecessors of y on Tevel r. So the total time
in the test of line 4 is 0(e+n).

For Tine 6, there is a list of levels f with RLIST(f) = ¢. For
Tine 9, the RLISTs have end-pointers. It is easy to see the Toop of
lines 6-9, excluding set merging, uses a total of 0(n) time.

Lemma 9: H uses time O(etna (n)) and space 0(e+n).

Proof: There are at most n FINDs in line 4, and also in line 8.
Lines 8 and 11 do at most n UNIONs. So the time for set merging is
O(na (n)). The remaining processing is C{e+n), from the above

discussion. 0

Lemmas 8-9 give the final result.
Theorem 1: Procedure H finds an optimum schedule, in time O(e+na (n)),

and space O(e+n). 0

As promised above, we conclude the discussion by showing the HLF
property.
Lemma 10: H is an HLF schedule.

Proof: Let H have jump sequence (tl,...,tk). Let S be an arbitrary
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schedule, with jump sequence <Sl”"’sr)' The Lemma requires

1,...,tk) > <Sl""’s ). We show, by induction on i, 1 < i < k, that

(i1) if equality holds in (i), then for each of the first i
Jumps of S and H, S jumps a free node iff H does.
It is easy to see (i), with i = k, implies k = r. This gives the desired
conclusion.

Supposing (i)-(ii) are true for i, we prove them for i+1, as
follows. We may assume equality in (i). (Otherwise (i) holds with
inequality for all indices > i). So the next 1-level is the same in
both schedules, say £. Let the jump from £ be from node x in S, and to
node z in H (so z = TO(£)). We show (i) and (ii) follow from Corollary 4.

First note that in S,

(1) all non-free nodes of £ are jumped from above £;
(2) all non-free nodes of level(z) are jumped from above £,
if z is free.
For in H, (1) is obvious; (2) follows from Lemma 1 and Corollary 1. Now
inductive assertion (ii) implies (1) and (2) for S.

Next note x is free. For x is not Jumped in S, so (1) shows
it is free.

Now we prove (i). Let y be any node with level(y) > level(z),
and suppose H schedules y after £. x, a free node of £, precedes y,
by Corollary 4. Thus y is scheduled after £ in S. The remaining nodes
in level(y) are jumped from above £ in H. (i) (with equality) shows

S Jjumps all of these nodes from above £. So in S, the jump from £ goes
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goes to level(z) or lower. (i) follows.

For (i), first suppose z is free. (2) implies S can only jump
a free node of level(z), as desired.

Next suppose z is non-free. In H, all free nodes of level(z)
are scheduled after £ (by Lemma 1 and Corollary 1). Thus x, a free
node of £, precedes all free nodes of level(z), by Corollary 4. So

S can only jump a non-free node of level(z). (ii) follows. 0

This completes the formal justification for the HLF idea:
Theorem 2: Any HLF schedule is optimum.
Proof: A1l HLF schedules have the same jump sequence, hence the same

length. So Lemma 10 gives the Theorem. 0

4. Conclusions

We have shown that for two-processor systems, HLF schedules are
optimum and easy to construct. It is natural to ask how these schedules
fare on various extensions of the model.

For example, consider the case of m > 2 processors. If the dag
is a forest, Hu's algorithm [H] finds an optimum schedule for arbitrary m;
further, the schedule is HLF. Unfortunately, some dags admit no optimum,
level schedule when m > 2. In fact, there are dags where any level
schedule is a factor 2 - %— greater than optimum [LS]. Among level
schedules, however, the HLF strategy is best: 2 - %—is an upper bound
on the accuracy, and the time to find an HLF schedule is almost linear.

Other extensions of the basic model include tasks with arbitrary
integer lengths, uniform processors (i.e., processors whose speeds

differ by a constant factor) and scheduling with resources other than
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processors. In each case the results are similar: the HLF strateqgy
achieves the best possible accuracy bound for a level schedule, and the
time is O(etna (n)) or O(etnloglogn). These results are presented
in detail in [G2]. These problems and others illustrate the usefulness

of the highest-level scheduling method.
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level

Figure 1

Example dag; all edges are directed downward.
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y Qrfiofol@I 7165141 3)](2)]1

R(y) 6] 4 41312 6 2 11
f |5 3
T(f) 3 210
(a)
f 51 4 1
FROM(f) {11110
TO(f)! 31 8 0
(b)
Table I

(a) Pass I values. () = non-free node; * = SUB.

(b) Pass II values.
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Figure 2

Complete schedule, with blocks.



