SOFTWARE ENVIRONMENT RESEARCH:
DIRECTIONS FOR THE NEXT FIVE YEARS*

by

Leon Osterweil
Department of Computer Science
University of Colorado, Boulder
Boulder, Colorado 0309

CU-CS-195-80 October, 1980

* This work supported by National Bureau of Standards
Contract #NBBONAAD8714

Abstract

This paper addresses the question of how best to expedite
progress over the next few years towards the goal of making general
purpose software environments widely available. The paper begins with
a discussion of the meaning of the term environment and some conjecture
on the expected benefits of environments. Next, five characteristics
which distinguish a true software environment are enumerated and
discussed. It is suggested that progress towards generally available
general purpose environments can most effectively be made by studying
these five characteristics, their interrelations, and the issues
involved in realizing systems displaying them. It is then proposed that
the indicated studies are primarily experimental and observational.
Hence a program of experimentation is strongly endorsed as the most
effective way to facilitate widespread creation of environments.
Some specific proposals for this experimental research are then

advanced.

I. Introduction and Background

During the past decade there has been a growing realization that
the multitude of tools fashioned to facilitate software development and
maintenance has by and large failed to produce the desired effects of
reduced cost and improved quality. Considerable investigation into
the cause of this failure has been carried out, and there now seems to
be good agreement that it is in large part attributable to the inability
of most tools to provide substantial close support to software
practitioners in their actual work. Most current tools and tool systems
focus their support on narrow aspects of software processes such as
editing and testing, leaving other areas unaddressed and unsupported.
Further, most tools oblige the user to accomodate himself or herself
to the idiosyncrasies and underlying philosophies of the tools and
their creators, rather than vice versa. As a conseqguence many
potentially useful tools have languished unused.

Clearly, this situation could be improved if tools were lashed
into configurations, continuously supportive of the user in his or
her actual day-to-day work. Such a configuration of tools has come
to be referred to as a Software Environment. Although the desirability
of such environments and their benefits have been widely discussed,
there has to date been relatively little organized research or actual
impTementation in this area.

Largely in the interest of encouraging the growth of research
and development activities in the area of Software Environments, the
National Bureau of Standards Institute for Computer Science and
Technology held a workshop on the subject late last spring. Workshop

participants were divided into four discussion groups to consider

different aspects of the problem of facilitating the growth of this
work. The author was priviledged to serve as a discussion leader for
one of these groups. The topic considered by our group was the
direction which Software Environment research ought to pursue over
the next five years. What follows here is a personal summary of the
conclusions reached and recommendations made by the group. The
purpose of this paper is to acquaint wider audiences with what should
be considered an area of great and growing significance for the

software community.

II. Software Environments — Their Nature and Expected Benefits

Before embarking on deliberations about research on software
environments, it seems é]ear that it is necessary to first address
the central question of what a software environment really is. This
seems to be a particularly difficult and risky endeavor because this
research area is still too young and speculative to lend itself to any
extensive formalism. Indeed too much formalism and rigor at this stage
might serve to discourage and thwart useful seminal work. On the other
hand, because there does seem to be considerable intuitive agreement
about some specific instances of software environments, their general nature
might perhaps best be conveyed through several examples. The following
is a Tist, intended to be representative rather than exhaustive, of
software scenarios for which total software support systems should
be considered environments.
e A large group (> 500) of programmers is charged with the
maintenance of long 1ifecycle (> 10 years) software which they,
in general, have not written themselves. This group needs (at

least) tools to help study, and analyze the code; maintain

version control over the code; and test and verify changed
code.

o A team of real-time programmers is in the early stages of
analysis and design for a distributed real-time processing
system. The team needs tools to facilitate the process of
understanding and agreeing upon the system requirements,
creating, adjusting and verifying the system design, coordi-
nating and controlling the system coding and testing, and
assisting in the process of altering system code, design
and/or requirements whenever this is indicated.

e A management team is responsible for the software production
efforts of up to several dozen people, possibly working on
several different projects. The team needs to make crucial
resource allocation decisions in order to assure timely and
acceptable completion of the projects. The team needs tools
and mechanisms for obtaining visibility into the activities
and progress of the software production personnel and projects.

e An independent team of quality control analysts is charged with
the responsibility of determining the presence or absence of
errors from finished software products in a timely and cost-
effective fashion. They need a collection of analysis and
testing capabilities for proceeding in a straightforward way
to an identification of specific errors, or for raising, in
an orderly, systematic way, their confidence in the absence
of errors.

In each of these scenarios it is clear that individual tools and

aids do exist to facilitate the work, but that these tend to be isolated,

stand-alone tools capable of supporting only isolated parts of the work
to be done. What is needed, however, are tool configurations to provide
integrated, continuous support.

Hence it seems the essence of an environment is that it is a
software system which attempts to redress the failings of individual
software tools through synergistic integration.

It is necessary to elaborate on this statement by being more
specific about the nature of the "failings" of individual tools and
what is meant by "synergistic integration." Each of the four scenarios
just presented can be relatively easily described by a word or phrase
characterizing the nature of the underlying software job to be done.
Thus the first is a maintenance scenario, the second a large-scale
production scenario, the third a management scenario, and the fourth a
Quality Assurance (QA) or Verification and Validation (V&V) scenario.

An environment is characterized and distinguished by the fact that its
specific mission is to help human individuals and teams to perform their
software jobs more effectively. Insofar as a support system's tools,
interfaces and internal structures are integrated to provide strong
continuous support for a specific job at hand, the system can be consid-
ered to by "synergistically" integrated to meet the needs of that job,
and hence to be an environment. Individual tools "fail" because their
support, although often strong, is usually only narrowly focussed on
isolated aspects of a software job.

It now becomes clear that the task of creating effective environ-
ments, which has proven to be an elusive and difficult one, is so elusive
and difficult because it is tantamount to understanding the nature of

the fundamental software processes themselves. A specific environment

does not merit the name unless it provides strong uniform support for
the entire process it is intended to facilitate. That is not possible
unless that process is fully appreciated and understood. Hence in a
fundamental sense, environment development seems destined to progress
more or less in parallel with a growing understanding of underlying
software processes themselves.

Presently the software research community seems tc be in a good
position to make substantial progress along these parallel lines. We
have grasped the critical importance of software development, maintence,
management and quality assurance. We have begun to differentiate between
them and yet also to see their close interrelation. We have constructed
significant individual tool capabilities in these areas and gained
valuable experience (both good and bad) with them. Partially through
these experiences we have come to better understand the underlying
processes which are in neced of support. We have defined procedures and
methpdo]ogies to guide humans in these various software endeavors,
and have begun to gain experience with them. In summary, we seem poised
to attempt to meld together the most promising of our tools into systems
of support for our most promising methodologies in the key areas of
software production, management, maintenance and V&V.

Although optimistic about current prospects for making significant
progress in this work, it also seems most appropriate to fully appreciate
the immensity of it. This work seems at least as ambitious and difficult
as the work entailed in creating superior high level programming
1anguages.* In terms of progress, we seem to be at a very preliminary

stage corresponding to the period immediately prior to the appearance

*This analogy was first presented by Donald Good .

of Fortran in the mid-1950's. What Ties ahead for us is a long period
of development and experimentation during which we must match automated
tools and problem expression media with developing understanding of
underlying problem areas and emerging solution methodologies. It seems
clear that this matching process will proceed through a sequence of
successive improvements in the form of a succession of environments,
much as high level language technology has improved through the creation
and evaluation of a succession of high level languages. It seems,
moreover, that the analog of Fortran (i.e., a widely applicable and
acceptable general purpose environment) has yet to appear.

Before embarking on a costly broad scale program of software
environment research and development, it also seems essential to reflect
on its probable benefits. There seems to be a unanimous feeling that
good software environments will raise the quality of software while
Towering its overall lifecycle cost. There is less agreement, however,
about the specific ways in which these goals will be attained. Increased
manageability and maintainability through improved visibility are widely
expected. More effective testing and analysis throughout the software
1ifecycle are also projected, as is greater care and thoroughness during
the critical early stages of software development. A1l of these will
certainly effect greater quality and reduced overall cost, when the
total Tifecycle (including maintenance) is considered. VYet there seems
to be disagreement about which are the most overriding and crucial of
these.

Here too, the high level language analogy seems useful. It is
difficult to determine even now, no less in 1950, the greatest benefit

of a high level language. Is it readability, manageability, increased

productivity or improved quality? It seems clear that high quality,
general purpose environments will offer ample quantities of all of these
benefits. It is suggested* that these benefits will probabiy accrue
indirectly, because environments will relieve software people of much
drudgery, freeing them for proportionately more creative and intellectual
activity. Thus software solutions will be more carefully thought out

and arrived at after more numerous and thorough iterations.

III. Overall Strategy for a Research and Development Plan

Having established at least a general notion of what software
environments are, and why they are important, it is reasonable to next
consider what needs to be done in order to facilitate their creation.

The preceding discussion has established that the essence of a
software environment is synergistic integration of tools in order to
provide strong, close support for a software job. Hence it seems
reasonable to proceed by examining in detail what that essence
specifically implies and entails. Our discussions led to the conclusion
that there are at least five (not necessarily orthogonal) characteristics
which a support system must possess in large measure if it is to merit
the appellation "environment." It seems therefore as a consequence
that any organized program of software environment research and develop-
ment should be focussed on studying these five characteristics: their
nature, their achievability, the ways in which they might possibly con-
flict with each other, and, eventually, whether they are actually the

critical characteristics. The five are:

*by Donald Good

1. Breadth of Scope and Applicability. An environment must
extend strong support to a software person or team across the full
range of the software job being done.

2. User Friendliness. An environment must provide strong,
direct comfortable support. Thus it must not oblige the user to
accommodate himself/herself to it, but rather it must accommodate
itself to the user. This accommodation must extend beyond the
usual items: clear diagnostics, fail-soft error recovery, easy-
to-use input languages, and HELP subsystems. The environment
must in addition provide direct, painless support for the user
in the actual procedures of his/her day-to-day work. It must
not oblige the user to adapt to or relearn a new way of doing
business.

3. Reusability of Internal Components. An environment must be
flexible in adjusting to different and changing user needs.

This flexibility can probably only be achieved by constructing

the environment out of tool fragments, rather than whole tools.

A collection of monolithic tools, standing side-by-side under the
umbrella of a common user interface, is unlikely to be both
flexible and efficient in meeting the possibly unforeseen diversity
of needs which users may have. A comprehensive collection of
easily reconfigurable tool fragments would offer this flexibility
with the potential for efficiency as well.

4. Tight Integration of Capabilities. An environment's capa-
bilities must work closely with each other to provide the user with
a sense of continuously strong support. An environment must support

a user community in doing its work according to its own procedures.

Yet the environment jtself is to be implemented by a possibly small
set of tool fragments to be configured and reconfigured in response
to the (possibly changing) requirements of the end-user community.
This poses the danger that the user might be made uncomfortably
aware of the fact that his/her needs are being met by an amalgam of
different tools and tool fragments. This must be strenuously
avoided, as it violates the principle of User Friendliness. It
can be naturally avoided by assuring that the individual tools and
fragments maintain an awareness of the existence and capabilities
of each other. Through this awareness the tools, tool fragments,
and integrating software should avoid duplication of services and
reports. The tools and fragments must also be preconditioned to
uncomplainingly tolerate each other's quirks.

5. Use of a Central Information Repository. It is quite
reasonéb]e to think of an environment as an information utility.
In an important sense, the purpose of an environment is to assure
that software workers can get the information they need to do
their jobs at the time the information is needed. From this
perspective, the purpose of an environment's tools is to capture
such information, analyze and process the information, and
disseminate the information. Given this view, it is reasonable
that an environment should actually be implemented along the
lines of this model. At the center of the environment must reside
a data base of total information about the software project.
Surrounding this data base should be an information management
system whose job it is to access the data base in response to
requests made by the environment's tools, tool fragments, and

user interface components.

-10-

It is important to reemphasize that these five characteristics
are not represented to be orthogonal, nor is it suggested that they ought
necessarily to be orthogonal. We do represent that they capture the
essence of what an environment ought to be. Hence in that they overlap
or conflict, that overlapping or conflict presents a possible obstacle
to the eventual effective construction of general purpose environments,
and thereby suggests an important area of inquiry and research. Some of
these areas of apparent conflict will be identified and discussed in

some detail in subsequent sections.

IV. What Must be Tearned from a Research and Development Program

This section considers each of the five distinguishing character-
istics of an environment. For each the nature and importance of the
characteristic is elaborated, with respect to the subject of software
environments. The central questions which must be explored in order
for true general purpose software environments to become realities

are then explored.

1. Breadth of scope and applicability.
The central issue here is the need to determine how broad
and encompassing an environment can reasonably be expected to be. It
has been observed, only half in jest, that "there must be something

Tike 21,0005000

different environments," that might be built. These
differ from each other along a multitude of coordinates which one might
use for categorization, and, indeed, in the coordinates which are
appropriate.

The representative list of examples of support systems, given in

the first section of this report, begins to indicate this diversity.

That 1ist indicated that it is reasonable to consider building .

-11-

environments to support software development, maintenance, verffication,
testing and management. Other software activities worth considering
are documentation and distribution.

Within each of these activities there is considerable diversity
in what might be supported. For example, a software production environ-
ment might have to support any particular software lifecycle model or
concept. Thus it might encompass some or all of: requirements analysis,
preliminary (architectural) design, detailed (algorithmic) design, and
coding. It would presumably also support some Tevel of testing, analysis
and verification. This support might be applicable only to the output
of the coding phase or to any or all other phases. The environment
would have to generate reports, summaries and analyses upon which to
base the various reviews called for by the 1ifecycle model as well.
Similar broad variation should be expected among all support systems
which might be considered environments for facilitating the various
other software jobs.

More variation must be expected as a result of differences in
source languages. A verification or maintenance environment for COBOL
programs must of necessity be different from one for HAL/S programs.
There is a certain amount of obvious truth to that statement. The
jssues can become much deeper, however, when one considers the remark-
able range of programming languages and the attendant effects they have
on support environments. A language such as LISP is different from
COBOL or FORTRAN in some very fundamental ways. Some of these differ-
ences make it possible, indeed natural, to edit, test and analyze LISP
programs in elegant and powerful ways which would be impossible for a

language like COBOL. The INTERLISP system, for example, [Teit 78]

-12-

exploits this, giving a tangible example of the profound impact that
a language can have on its support environment.

In a similar way, an environment to support EL1 [ECL 74]
program production would have certain fundamental differences from
environments for most other contemporary languages. EL1 supports the
design phase, as well as the coding phase, of software development.
Hence testing and certain verification procedures can and should be
applied uniformly to designs and code in an EL1 development environment
(as is currently acutally being done [Ploe 79]). The close confedera-
tion of these phases, on the other hand, makes it more difficult to
separate and identify progress on these phases. This could complicate
matters in the creation of an environment for the management of EL1
software development.

Different application areas must inevitably also lead to differ-
ences in the environments needed to support them. For example, Fortran
might be used to create a numerical software Tibrary or a spacecraft
control system. In the former case there would typically be little or
no formal requirements analysis and preliminary design. This appears
to be due to the maturity of the problem area and the suitability of
mathematics as a requirements and design notation. In the latter case
there would be extensive amounts of requirements and design creation,
analysis, review and reporting. Clearly the environment's support
mechanisms would have to vary similarly. The latter problem area is
also generally considered to be of more critical importance than the
former, as errors have the clear potential for causing Toss of life
and property. Thus a testing and verification environment for space-

craft control would of necessity include costly verifiers and simulators

-13-

which would probably be inappropriate in a numerical software testing
and verification environment. Indeed, because spacecraft control soft-
ware is concurrent, tools for testing, analyzing and verifying the
concurrent behavior of this software would be essential here, but of

no value for the numerical library. Different problem areas also
mandate the need for differences in security mechanisms, version
controls, and customer reporting in environments supporting these
problem areas.

A project's size can also have an important impact on the support
environment for that project. Here the primary effect seems to be the
need for better and more effective communication and control as project
size grows. The communication needs of a 2-3 person project are obviously
far more modest than the needs for a 100-person project, involving 2-3
levels of management. In the larger project there are also needs for
privacy and configuration management and control which are either absent
or sharply reduced in a small project environment

Having thus established that there is a need for an enormous
number of different environments we are now left with the question of
how to supply them all.

Some questions which seem worth exploring as vehicles for eluci-
dating this overriding question include the following:

e Under what circumstances, if any, is it reasonable to synthe-
size larger, more encompassing environments out of smaller
ones?

¢ Along what degrees of freedom, if any, can we expect to trans-
form one environment for use in meeting a related set of

needs. (e.g., it seems reasonable to build tool modules which

-14-

could be altered to change a PL/I production environment to a
FORTRAN production environment. What other sorts of altera-
tions can be made?)

¢ What sorts and amounts of methodological change in a using

project can be comfortably supported?

Although a certain amount of this inquiry seems self-contained,
the answers to these questions must certainly come, at least in part,
out of the research into the other four characteristics of an environment,
to be described next.

2. User Friendliness.

As noted earlier in this report, an environment must present
its repertoire of support capabilities to its users in as supportive,
unobtrusive and non-interferring a way as possible. There are a few
ramifications of this basic requirement that bear elaboration. Most
fundamentally, the underlying tool capabilities must be robust enough
to survive user abuse (intentional or inadvertent), communicative enough
to both explain errors in use and instruct in proper use, and Tiberal
enough to both accept user input and produce user output in a form and
language close to that of the software activity being supported. Indi-
vidual software tools invariably suffer disuse and distrust for lack of
one or more of these essential characteristics. Hence it is all the
more important that constituent tool capabilities all be robust,
communicative and colloquial.

User friendliness in an environment, however, entails more than
just assuring the friendliness of individual tools. In addition the
accessibility and usability of the entire package of tools must also be

assured. Thus, for example, there must be adequate mechanisms for

-15-

acquainting the user with the range of capabilities available and
guiding in the selection of appropriate capabilities. This need to

keep an accurate catalog of available capabilities seems clear. What is
less clear is whether the catalog should be used as a basis for attempt-
ing to reduce duplication of capabilities. Experience suggests that a
sort of Software Darwinism can often cause better capabilities to
automatically supplant weaker capabilities without the need for external
enforcement. On the other hand overly large, confusing ensembles of
tools can be sufficiently intimidating to the user as to discourage

the use of an environment.

Regardless of the size or sophistication of any tool cataloging
or indexing scheme, it is essential that the scheme, and the underlying
capabilities themselves, be able to communicate with the user in a way
with which the user is familiar and comfortable. The central issue
here is that the purpose of an environment is to support the user in
performing his/her job. This communication between the user and the
environment must be in the terminology of the user's job setting.
Support capabilities extended must directly support the methodologies
and institutions of the user's job setting, rather than forcing the user
to alter working or thinking habits in order to use the environment
capabilities.

In some sense what is being described here is not simply friend-
Tiness to the user, but rather friendliness to the user's way of doing
work. This appears to be more easily demanded than furnished. As
already observed, if we are to be saved from having to recreate every
support system and environment from scratch, it will be necessary to

configure environments as much as possible from standard modular

-16-

capabilities. We now recognize that this configuration must be done in
such a way as to directly support the user's way of getting his/her

job done, no matter what that may be. The user's procedures should,

in addition, be expected to change with time. The support environment
must likewise change accordingly while remaining supportive and friendly
to the new procedures. This appears to require the use of extremely
flexible, robust, and compatible modular capabilities. It will be
necessary to determine whether it is reasonable to expect to be able to
build such modules which, nevertheless, display acceptable efficiency
characteristics.

Also important to this Tine of inquiry is the question of how
artificial intelligence and human factors research is applicable to
investigations of user friendliness in environments. This is apparently
a fertile area of exploration, whose most obvious aspect seems to be
the way in which computer graphics might prove useful in helping to
achieve friendly user interfaces. Graphics should be expected to be
particularly useful when the problem area and/or its procedures can
be naturally captured pictorially. Thus, for example, a software
management environment would presumably profit from being able to
communicate with its users by way of management procedure diagrams,
time and effort graphs, PERT charts, and specimen report forms. Similarly
a requirements or design creation aid within a software development
environment would presumably profit from being able to directly display
the pictorial specifications which are the natural form of SAMM [Step 78],
SADT [Ross 77], or RSL [Bell 77] specifications.

It is less clear, however, that the use of graphics will be of

much help in environments supporting communities where pictorial forms of

-17-

communication are not already in use. In addition, there is considerable
doubt that the expense of elaborate graphics systems such as those
featuring color and motion will prove to be justified.

3. Reusability of Internal Implementation Modules

Farlier sections of this report have already discussed the
apparent need for an environment to be constructed out of small flexibly
rearrangeable modules, or tool fragments. This appears to be perhaps
the only way in which we can expect to construct a number of different
environments without having to build each from scratch. It appears to
be as basic an idea as the manufacturing notion of building and maintain-
ing a product line (e.g., automobiles, TV sets, appliances) out of a
modest set of standard parts and subassemblies. We have also already
observed that this notion appears to complicate efforts at making
environments user friendly. That goal seems to require the total con-
cealment of the identities and characteristics of the implementation
modules, and their smooth welding into a support system patterned closely
after the user's own procedures. This appeared to place very heavy
demands on the flexibility and interchangeability of these modules,
suggesting perhaps that they must each be very narrow in scope if this
goal is to be attainable.

The foregoing discussions lead one to believe that the "Internal
Reusability" characteristic might not be so much an independent charac-
teristic of environments as, perhaps, a derivative of other characteris-
tics.

Be this considered a derived or independent environment charac-
teristic, there appears to be no doubt that investigation of the

feasibility of building environments out of small tool fragments is

-18-

one of the most important research areas for the near term. Certainly
if experience does not show that significant families of tool fragments
can be assembled and found to be flexible, broadly applicable, yet
efficient, then it will be necessary to drastically revise our thinking
about the practicality of creating a diversity of user-friendly software
environments at bearable cost.

There is Tittle difficulty in identifyina useful tool fragments for
use in certain places of some environments. For example, a parser seems
to be a good example of a useful tool fragment, as a number of tool
capabilities rely upon a facility for creating a token string or parse
tree. Thus a single parser would be used by a variety of subsequent
tool fragments for doing such things as prettyprinting, error checking,
static analysis, or compiling.

The parser would perhaps be coupled with various of these subse-
quent tool fragments in different environments and at different times.

A parser is a particularly good example of a tool fragment, because
parsers can be automatically created by parser generators, and hence
very readily altered as well, for example to meet changing needs for
different languages and dialects. Hence here is an example of a tool
fragment creation mechanism which is very flexible in creating a power-
ful, reasonably efficient, widely applicable tool component.

This example 1is encouraging, and it serves to stimulate looking
further for other such tool fragments. It also appears that a set
of general purpose static analysis modules would constitute a good
tool fragment. These modules would implement a small number of widely
applicable data flow analysis algorithms, operating only on annotated

representations of program data flow. These representations would be

-19-

created by other tool fragments as abstractions of the original program.
Hence the data flow analysis fragment would have Tittle knowledge of
extraneous source language detail. Research is showing that a small,
well chosen set of data flow algorithms can be useful in error detec-
tion, verification, and optimization across a broad family of source
Tanguages. Research also appears to indicate that a concise pseudo-
language notation can be used to effectively direct the automatic
configuration of the algorithms into the various specific error scanners
and verifiers that might be needed in different environments or as the
needs of a given environment evolve.

Promising as these examples seem, there is nevertheless a feeling
that they are rather isolated. There is, for example, pessimism about
the existence of similar tool fragments to be used in building such
important environment components as user interfaces, management reports,
generalized editors and graphics packages. Such fragments can probably
be built, but they will have to be the products of research and
experimentation still to come.

The need for tool fragments to maintain a central data base is
perhaps the most pressing need of all, yet it is also perhaps the most
controversial. Although there is some sentiment that acceptable
fragments of this sort already exist, another point of view holds that
existing information management system capabilities might prove to be
too inefficient to be an acceptable part of a full environment.
Unfortunately, the full range of requirements placed on an information
management system by an environment are not yet known. They must be

determined in order to enable definitive study of this crucial area.

-20-

4, Tight Integration of Tool Capabilities.

A true environment is characterized by the close interaction
and cooperation of its constituent capabilities. This issue has already
been touched upon in discussing the ramifications of the term -

"user friendly." In that discussion we stressed that user friendliness
specifically implies friendliness to the way in which the user does
his/her job. Thus tool capabilities must be merged into a system

offering smooth continuous support for the user in the performance

of actual work procedures. Clearly this requires at Teast the

appearance that the constituent tool capabilities are working closely
together. In a true environment this close cooperation among capabilities
must be actual, not simply apparent.

In a smoothly functioning environment it will be important for the
tool capabilities to be aware of each other. Thus tools should facilitate
each other's work by pre- and post-processing data structures for each
other. Tools should alsc be careful not to duplicate services and messages
to the user. In these wavs the efficiency and overall appeal of the
environment to the user are enhanced. INTERLISP is a prominent example
of a support system whose constituent capabilities are very tightly
integrated both in fact and appearance, to yield a very appealing
system.

We have already discussed the fact that the need for tight
integration appears to pose a direct conflict with the need to construct
environments out of flexible, general, reconfigurable modules (tool
fragments). It seems clear that if the tcol fragments are too general
and reconfigurable, then they cannot exploit any significant knowledge

of each other's workings — only each other's interfaces. Thus it seems

-21-

close integration can only be projected as an illusion by such components
as the information management system or user interface.

Before resigning ourselves to the apparent irreconcilability of
these two characteristics, however, it seems useful to study the INTERLISP
example. One important motivation cited for needing to build environ-
ments out of tool fragments was the need to alter environments to fit a
range of (probably evolving) user procedures. We find, however, that
INTERLISP seems to be able to accommodate itself to a range of (changing)
user modes. Thus apparently this can be accomplished with tightly coor-
dinated tool capabilities.

It can be argued that INTERLISP is still rather narrow in its range
of support and user community, thus probably not qualifying as a true
environment, and that it is only this restriction in scope that enables
it to be both flexible and tightly integrated. It seems, however, that
this argument simply supports the proposal that much can be learned by
studying INTERLISP and attempting to extrapolate from this example.

5. Use of a Central Data Base

The final, and perhaps most important, characteristic of an
environment is that it be coordinated and focussed by access to a
central repository of information. It is widely proposed that a
software project is profitably thought of as being a coordinated effort
to gain and disseminate a highly structured body of knowledge about a
problem and its solution. That being the case, the progress of the
project will be best assured and facilitated by capturing, structuring
and disseminating that body of knowledge as faithfully and effectively
as possible. These considerations seem to clearly imply the use of a

data base and encompassing information management system as the

22—

centerpiece of any environment.

Clearly, by taking this approach the effective diffusion of
knowledge to all project personnel is facilitated. This certainly does
not imply the giving of all pieces of knowledge to all people at all
times. Quite to the contrary, effective diffusion of knowledge means
purveying to each person precisely that information which is needed to
accomplish his/her job at any given time. This would be accomplished
by using the environment's tools to access the data base for specific
data in response to needs as expressed to the tools by users. Tool
capabilities might simply search the data base for needed information,
might report back combinations of data or data aggregates, might update
the data base in response to user input, or might augment the data
base with the outcomes of analyses of data base contents as requested
implicitly or explicitly by environment users. In all cases the out-
come would be an up-to-date, centrally accessible body of complete
project information, whose access would be facilitated by the tools of
the environment.

This hightly attractive picture seems to be marred by serious
questions of procedure and practicality. The most immediate questions
seem to be questions of what should go into the data base and how it
should be organized. The immediate and obvious answer, that
",..everything should go into the data base...," 1is obviously simplistic
and unuseful. There are widely different opinions of what is meant by
"everything." For example some people believe that a software produc-
tion environment should preserve in anarchive all obsolete versions of
code, all discarded designs, even all of the sketches and jottings

produced during early problem formulation. Others object to this,

-23-

stressing the lack of utility and inevitable large-scale waste of
resources inherent in this approach.

A resolution of this issue seems to come out of consideration of
the optimal structure and organization of the data base. It is proposed*
that the data base be organized as a model of the software activity being
supported. In this approach the users, processes, data items, data flows
and procedures of the software activity and setting are modeled and rep-
resented as entities, attributes and relations in a data base, managed by an
information management system. Thus the data needed by an individual
is readily available because it is grouped within the data base as the
attributes and relations of a small set of entities. The need for analyses
and reports can be semi-automatically identified and satisfied as the
result of recognizing when entities, attributes, and relations within
the data base have no current values. Tools could be invoked (manually
or automatically) to supply these values. Experience shows that this
approach has been widely used with good success.

Another important concern is to determine what procedures are
necessary to insure the correctness and consistency of the data base,
especially in the face of the continual changes to which it will be
subjected. The magnitude of this problem is perhaps most graphically
illustrated by considering the impact on a highly structured software
development data base of such an apparently small change as altering a
single Tine of program text. In particular, if this source Tine is a
declaration statement, then its alteration might render invalid parts
or all of such related data base elements as the token strings, parse

tree, flow graph, and diagnostic reports. For each change, all possibly

* by Daniel Teichroew

-24-

impacted data base objects must be known, then analyzed, then perhaps
purged or altered. The potential cost of such activities is intimidating,
yet the necessity of these activities is undeniable. It may very well

be that consideration of the need and cost to do this sort of updating
will be a key factor in determining the size of data bases for support

environments.

V. A Five-Year Research Plan

The purpose of this section is to suggest the outlines of a
possible coordinated strategy for conducting a research program aimed
at providing substantive answers to the questions posed in the previous
section. This strategy was arrived at after careful consideration of
both the knowledge needs, as just described, and the current state of
the experience and expertise of the research community. It was noted
that most of the learning needed is empirical and pragmatic in nature.

A great deal of qualitative experience and quantitative statistics

must be accumulated. Further it was noted that a number of researchers
are currently poised to begin experimentation aimed at accumulating

some of the needed knowledge. Thus, our group concluded that it would
be most effective for these and other researchers to embark upon a
program of experimental work which is guided, at least in a general way,
towards the objectives which we have agreed upon as being desirable.

Accordingly, our plan essentially maps out a program of experi-
mentation, having two separate thrusts. The first experimental thrust,
intended to commence immediately, calls for the study and development
of prototype support systems, each of which is intended to provide some
specific insights into environment characteristics, as well as experience

with moderate scale tool integration.

~25..

The second experimental thrust, not intended to begin for perhaps
three years, will use the experience gained to attempt the synthesis
of some full scale general purpose environments.

The studies of prototype systems during the first thrust should
each be aimed at learning about one or more of the five stated character-
jstics of an environment and their interplays and relationships. It
seems that the research community is currently in a position to learn
a great deal by studying existing support systems and frameworks and
also by building a variety of new, small to moderate scale support
systems. The study of existing systems is a particularly logical step
in that it should provide insights into effective integration strategies
as well as answers to questions in some of the five previously described
areas. Such studies should also make clear the areas in which more
Jearning is most needed and in which this can be accomplished through
new system construction. Thus, clearly, this system construction should
Jbe done in such a way as to elucidate as many of the outstanding criti-
cal questions as possible. Clearly it is possible now to gain a con-
siderable number of insights into such questions as:

e How should environment data bases be structured and maintained?

e Upon what sorts of tool fragments might environments be built?

e What are some specific tradeoffs between flexibility and tight

integration of tools?

® What are reasonable uses of graphics in user interfaces?

Following shortly are some suggestions for research projects
aimed at providing insights into some of these and related questions.
These suggestions are intended to be taken as examples rather than

mandates.

-26-

It is expected that as this line of experimental research proceeds,
the level of tool integration will increase, forming the basis for the
second research thrust -- namely large scale integration of tools into
general purpose environments. This thrust, though properly based upon
the first thrust, is expected to have a different character, focussing
mainly on the issue of breadth of scope. It is expected that this line
of experimentation will draw upon all previous experience and learning,
in attempting to determine the reasonable Timits of tool integration.
The construction of an environment so powerful and encompassing as to
meet the changing needs of all people at all times will certainly be
found to be an unreasonable goal. It is reasonable, however, to expect
the 1imits which ought to be placed on the generality and scope of
general purpose environments, as well as the techniques which are
helpful in achieving large scale tool integration.

Our group agreed that it is important to delay this second
thrust for 3-5 years, rather than initiate it immediately. There
currently seem to be so many important gaps in our knowledge in criti-
cal areas, that this sort of enterprise seems currently to be inordinately
risky. It was felt that any research activity, initiated now, and aimed
at such large scale tool integration would rapidly bog down amidst the
crossfire of the critical unresolved questions which we previously

described.

V.A. Thrust I. Some Experiments in Building Prototype Software Support
Systems

1. Studies of Existing Successful Support Systems
We believe that a wide variety of useful insights can be

gained by close examination of the slowly growing number of successful

-27-

support systems currently in use. INTERLISP [Teit 78] and EL1 [ECL 747,
already mentioned, are two examples of extant successful development
support systems. The UNIX Qibtaperating system [Ritc 74], along with its
elaborate set of existing coordinated tools, seems to be a good basis for
the construction of a variety of other support systems.

It would be quite profitable to study these examples in an attempt
to determine what makes them successful. It would be most useful, for
example, to study their user interfaces to see which characteristics
seem to make interfaces popular and useful. It would be helpful to
determine, for example, what Tevels of HELP (tutorial) systems, graphics
support, and directory assistance seemminimally necessary to insure
~utility and popularity in these systems. By studying a variety of
support systems, we shouid furthermore be able to gain insight into
which features are generally useful, and which are perhaps desirable
only for Timited classes of users.

Another important type of understanding, obtainable by such
studies of examples, is an understanding of the importance of tight
coupling of tools. It is maintained that the popularity of INTERLISP
and EL1 derive directly and inherently from the specialization of their
support tools to a single subject language. UNIX-based support systems,
on the other hand, are constructed from capabilities which, in general,
themselves have no special language knowledge. Study of these examples
can and must help us to come to an understanding of the extent to which
language knowledge in tools is important. Study of examples and basic
tool building research must then enable us to formulate notions of how

language-intelligent tools and tool fragments can be efficiently created

-28-

from a base of more general tools and techniques.

Study of these existing systems should also help us to better
understand the data base/information management system requirements for
environments. Each of these existing support systems seems to maintain,
to some degree of rigor and formality, a central information base.

The success of the various strategies in meeting user needs can surely

be studied. In particular, it would be important to study the type and
amount of information retained, and the acceptability of these retainment
policies to users.

Each support system has also adopted, apparently only implicitly,
some model of its users and their activities. It would be interesting
to formalize those models. From such formalizations could, for example,
be determined the breadth of support extended by each system. User
surveys could help determine the uniformity and strength of such support.
This would help determine the ranges of applicability which are feasible
for current support systems.

The models would also enable a determination of the flexibility
currently offered by such systems. It has been hypothesized that
environments must accommodate themselves to their users' way of getting
their jobs done, not vice versa. It is important to determine whether
current support systems do this. If not, it is important to determine
whether this lack of flexibility is a significant source of dissatis-
faction. It would also be important to decide if any such lack of
flexibility is an essential consequence of tight integration, or
whether perhaps better tool fragments could be used to achieve both
tight integration and flexibility.

The 1ist of things which should be studied in existing support

-29-

systems could go on indefinitely. Perhaps it is best to close simply
by observing that much experimental work can be carried out on
currently existing support systems. This work should be used to guide
the creation of new experimental systems in the direction of systems
which can provide elaborative, rather than duplicative, insights and
understanding.

2. Tool Fragment Studies

This would be an experimental program aimed at identifying
useful sets of tool fragments, and the extent towhich they can support
tight integration in the desired tool capabilities.

The experimentation would begin with the designation and assembly
of a reasonable set of fragments to meet the needs of a specific,
sharply circumscribed software activity. For example lexical analysis,
parsing, flowgraph generation, verification condition generation,
theorem proving, data flow analysis, and test probe insertion fragments
might be designated as the fragments necessary to provide total
comfortable support for the verification and testing activity. An
actual verification and testing procedure would then be hypothesized
in formal detail. The selected tool fragments would be configured and
integrated to support this activity. The experimental program would be
continued by attempting to reconfigure the tool fragments in response
to a variety of changes, such as changes in the testing and verifica-
tion procedures to be supported, change in the source language, and
change in the user community (e.g., the addition of managers as
observers of the activity).

In the process of adapting to these changes, the tool fragments

will be altered to provide needed flexibility, or perhaps the need for

-30-

new or different sets of tool fragments will be recognized. In an
important sense, this line of study is aimed at starting to understand
what, if any, analogy exists between software production and the manu-
facturing concepts of interchangeable parts and assembly Tine produc-
tion. As in manufacturing, it is expected we will discover that the
utility of these notions is not uniform. That is to say, we expect to
find that useful sets of tool fragments can be successfully produced
to form the basis for construction of some types of software environ-
ments, but perhaps not all. Thus experimentation with a wide variety of
tool fragment sets seems indicated.

3. Data Base Studies

This would be an experimental program aimed at determining

ways in which informational bases for environments can be adequately
stored, accessed and maintained. Following our conjecture that data
bases for environments should be structured in accordance with models
of the software jobs supported, this research project would begin by
creating precise detailed models of various software jobs. This acti-
vity would be useful in itself as such models are extremely rare or
nonexistent. From these models, data base schema would be designed
and information management systems either built, adapted or simulated.
The important experimentation wou1d then entail the actual or simulated
use of these data base/information management systems to determine the
performance requirements on them.

What must be determined are the sorts of demands which typical
usage places on support system data bases and information management
systems. Hence, for example, at first simulated streams of user

requests should be directed towards the support system data base/

-31-

information management systems. (With the passage of time other
research activities, such as the ones described previously, should
result in the creation and instrumentation of actual support system
prototypes. These might be used to capture actual streams of user
requests.) Measurement probes, inserted in the information management
systems could then determine the searching, updating and deleting
operations implied by these requests, and the required rates at which
these operations must be performed. These measurements are needed in
order to enable data base implementors to design schema which will
facilitate efficient data base operations in support of expected user
request sequences.

This sort of experimentation should help provide answers to the
questions of how much information the data base should store. Clearly
information storage becomes excessive when it significantly hinders
frequently occurring searching and/or updating operations. Actual
measurements taken on a variety of simulated support systems should
elucidate these issues. Presumably different types of support systems
will be found to be amenable to the maintenance of different amounts of
archival storage. This experimentation might also suggest useful
hierarchical storage schemes.

From our discoveries about what constitutes excessively large
data bases should flow a variéty of useful derivative information. We
should find out, for example, whether very broad scope environments
do or do not place excessive demands on the data bases and information
management systems that must support them. We should find some environ-
ments in which the rate of updating is sufficiently low to make the

storage of redundant and derived information acceptable or even

-32-

profitable. We should also be able to identify and perhaps characterize
environments in which the storing of redundant information is impracti-
cal because of frequently occurring changes.

It is expected that this line of research might well serve as
a stimulus for data base and information management systems research,
as we suspect that currently available technology will be found to be
unsatisfactory in meeting the needs of environment data bases and

information management systems.

V.B Thrust II: Towards Creation of General-Purpose Software
Environments

1. Construction of a General Purpose Environment to a Given
Set of Specifications

The purpose of this activity would be to actually construct

a general-purpose software environment. It is assumed that this activity
will not commence until after at least three years' experimental imple-
mentation, aimed at Teast partially, towards this goal. Hence this
effort will build upon a base of successes in significant tool integra-
tion, in understanding the ingredients of a viable user interface, and
in identifying software activities well enough understood and supported
to be subjects for broad, strong, uniform support by tools. The totality
of such experience should place active workers in the field in a position
to clearly specify a general area of software activity and how it is to
be supported by a software environment. An example of what seems achiev-
able in this period might be an environment to support the needs of a
medium sized team in at least coding and design of batch processing
software written in a small set of closely related language dialects.

It should be stressed that this goal is not Tikely to be satis-

factorily achieved without an experimental Tearning process such as

-33-

was previously described. Starting from such a knowledge base, how-
ever, the goal of successfully producing environments of this scope
seems reasonable. A program of continued experimentation and develop-
ment should continue to broaden the scope of the environments produced,
within bounds which should become more clearly understood as our ambi-
tions grow.

2. An Experimental Test Bed for Configuring Environments

A far more ambitious and wide-ranging activity would be the
assembling of a very wide assortment of tools and tool fragments with
the goal of trying to configure them into a variety of environments.
This activity would differ essentially from the previously described
activity. It would not be directed towards the creation of single
environments based upon the best products of earlier experimentation.
Instead it would be directed at determining the range of environments
producible from a fixed set of capabilities, and at evaluating the
strengths and weaknesses of competing tools and tool fragments in the
overall context of usage in a general environment. In a sense this is
tantamount to a laboratory for environmental experimentation, and the
activity supported a forerunner of environmental engineering.

This sort of endeavor seems to entail greater risk, as we
currently have Tittle experience in integrating software tools on so
large a scale. Thus we currently have no basis for believing that such
large sets of tools can be readily reconfigured to allow for the rapid
construction of alternative environments which would be necessary for
comparative evaluation. Perhaps the most realistic appraisal of this
activity is that it is destined, at least within the next five years

to be done by a free marketplace, rather than a central facility.

-34-

IV. Acknowledgments

This paper summarizes the discussions and conclusions of one of
the four groups at the Workshop on Programming Environments held
April 30 - May 2, 1980 at Rancho Santa Fe, California. The Workshop
was sponsored by the National Bureau of Standards' Institute for Computer
Science and Technology and was organized by Dr. Martha Branstad of NBS and
Dr. W. Richards Adrion, now of the National Science Foundation.
My special thanks go to them for making this stimulating workshop
possible. I also wish to thank the other members of discussion
group 2:

Lori Clarke, University of Massachusetts

Donald Good, University of Texas

Raymond Houghton, National Bureau of Standards

Thomas Love, International Telephone and Telegraph

Patricia Santoni, U.S. Naval Ocean Systems Center

Daniel Teichroew, University of Michigan

Anthony Wasserman, University of California at San Francisco

for their willingness to share their thoughts and experiences.

References

[Bell 77]

LECL 74]

[Ploe 79]

[Ritc 74]

[Step 78]

[Ross 77]

[Teit 78]

38

T. E. Bell, D. C. Bixler and M. E. Dyer, "An Extendable
Approach to Computer-Aided Software Requirements Engineering,"

IEEE Transactions on Software Engineering, SE-3, pp. 49-60,

(January 1977).

"ECL Programmers Manual," Center for Research in Computing
Technology, Harvard Univ., TR 23-74, 1974.

E. Ploedereder, "Symbolic Evaluation of User-Defined Proce-
dures in EL1," Center for Research in Computing Technology,
Harvard Univ., TR 01-79, 1979.

D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System,"
CACM, 17, pp. 365-375, (July 1974).

S. A. Stephens and L. L. Tripp, "Requirements Expression and
Verification Aid," Proceedings Third International Conference
on Software Engineering, IEEE Cat. #78CH1317-7C.

D. T. Ross and K. E. Schoman, Jr., "Structured Analysis for

Requirement Definition," IEEE Transactions on Software

Engineering, SE-3, pp. 6-15, (January 1977).

W. Teitelman, et al. Interlisp Reference Manual, Xerox Palo

Alto Research Center, September 1978.

