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Abstract

After extending two word morphisms f and g to languages, an equation
f(X) = g(X) can be written and its language solutions investigated. An
elementary characterization pf the family of all solutions of the equation
is given and it is used to investigate the maximal solution which is the main
subject of this paper. 1t turns out that going through all propagating
morphisms f and g the family of maximal solutions obtained equals the
family of complements of recursively enumerable languages after intersecting
with regular languages and mapping with propagating morphisms. In the general
case (of arbitrary morphisms f and g ) the corresponding family is larger
and includes the full-AFL closure of the family of complements of recursively

enumerable languages.
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0. Introduction

Any word morphism A* - B* determines in the natural way & morphism

* * ' ’
2A* - 28* (not all morphisms 2A - 2B are obtained in this way, of
course). Therefore, given two word morphisms f,g : A*¥ - B* , we may write

the equation

(1) f(X) = g(X)

the solutions of which are languages over A .

We give first some elementary algebraic properties of the family of
solutions of equations like (1) and then use them to investigate the main
subject of this paper, viz. maximal elements in these families. Our
principal result is the following fact: Starting with maximal elements of

families of solutions of equations like (1) with f and g propagating

and applying first intersections with regular langquages and thén propagating
morphisms one gets exactly the family of complements of recursively
enumerable languages. This is mainly due to (I) the fact that the maximal
sé?ution of (1) can be obtained by iteration if f and g are propagating,
i.e. it equals ﬁizww (g—]f)n(A*) , and (II) the remarkable ability of
morphisms to simulate intermediate steps in all kinds of effective
processes.

Classically (1I) is justified by various proofs of the undecidability
of Post's Correspondence Problem, cf. e.qg. [S1], and more recently by
results concerning equality sets of morphisms, i.e. languages of the form
{P|f(P) = g(P)} 5 see [S2), [CS), [ERI) and [ER2]). In fact, we have here a
"complementary” situation: recursively enumerable languages can be

characterized using equality sets and complements of recursively enumerable

languesges can be characterized using maximal solutions of equations like (1).




Thus both recursively enumerable languages and their complements can be
given a morphic characterization.

The above mentioned principai‘resu1t does not hold true for general
(nonpropagating) morphisms f and g . In fact, the fami{y of Tlanguages
obtained in this general case includes the full-AFL closure of the family
of complements of recursively enumerable langquages. The strictness of this
inclusion, though, remains an open problem.

It may be mentioned that a well-known connection exists between

maximal fixed points and infinite computations, see e.g. [B], [dB}, [dR],

[M] and [T], which bears resemblance to our constructions. However, it is

perhaps surprising to have such a simple and concrete connection as is

obtained here.

—nrmreg S i e g



1. Notation

— the empty word is denoted by A
— the complement of a language L is denoted by [

— the maximal solution of the equation f(X) = g(X) 1is denoted by

maxeq(f,q)

— the family of solutions of the equation f(X) = g(X) 1is denoted

by EQ(f,g) ; following standard category theoretic terminology it might be
called the equalizer of f and g

—  MAX(HOM) = {maxeq(f,g)|f and g are morphisms)

|
i

MAX(PHOM) = {maxeq(f,g)|f and g are propagating morphisms)
-— the closure of a family F of languages under

(a) intersections with regular languages is denoted by F a R
(b) morphisms is denoted by Q(F)
(c) propagating morphisms is denoted by H(F)

— the set of integers is denotéd by Z and the set of natural numbers

is denoted by NN

— the families of recursively enumerable languages and their complements

are denoted by RE and RE , respectively

— the necessary requisite in formal language theory and theory of

recursive functions can be found e.g. in [S1] or [HU] and [R].



2. Preliminaries

Let f and g be morphisms. A doubly infinite sequence of words

<o

(mn) is called an (f,g);sequence if

n:—oc

f(mn) = g(mn+]) for neZ

(see Fig. 1). A language L 1is called an (f,g)-language if L equals

{w In €Z) for an (f,g)-sequence (on)cc

n=-co

-1 0 q
T ey 9 @) 0t

Fig. 1. It is frequently illustrative to depict an (f,g)-sequence

in the above manner. Here T, = f(wn) .

We give some algebraic properties of EQ(f,g) .

THEOREM 2.7. Let f and g be morphisms. Then EQ(f,g) 1is a complete
semilattice with respect to union generated by the (f,g)-languages and with
maximal element maxeq(f,g) . Especially, if f and g are monomorphisms,
then EQ(f,g) 1is a complete Boolean algebra with respect to set-theoretic
operations. |

Proof. Clearly EQ(f,g) is closed with respect to all kinds of unions.
To prove the first claim of the theorem we note first that each (f,g)-
language belongs to EQ(f,g) . Let then L # @ belong to EQ(f,g) and
wg € L . We show that a certain (f,g)-language {uﬁ§n €71} is included in

- L . Since wo»é L , there are words ©_1s0, € L such that



f(w_z) = g(U__‘]) ’ f(w}) = Q(UZ) .

Continuing in this fashion we see that an (f,g)-language L] = {wn]n €}
is included in L . If Ly = L , then there is nothing more to prove. If

L I S

0 2
some (f,g)-language L2 c L . In this fashion we get a sequence of (f,g)-

1 € L and wé €L - L] , then, as above, it is seen that w for

languages L],L 3 Usoo

The second claim of the theorem follows because the (f,g)-languages are

2,L3,... such that L = L] U L2 utL
pairwise disjoint if f and g are injective. o

THEOREM 2.2. Let f and g be morphisms, Then EQ(f,g) is closed
under catenation of languages.

Proof. If f(X) = g(X) and f(Y) = g(Y) , then f(XY) = f(X)f(Y) =
g(X)g(¥) = g(x¥) . o

COROLLARY 2.1. Let f and g be morphisms, Then maxeq(f,g) is a star

language, i.e. a monoid. o

In the sequel we consider the families MAX(HOM) and MAX(PHOM) . The
Tanguages of these families are star languages by Corollary 2.1. There are,
however, very simple star languages which are not in MAX(HOM) , e.g. the

language (az)* is one. On the other hand, MAX(PHOM) contains languages

which are not even recursively enumerable, as we shall see. Thus the position

of MAX(HOM) and MAX(PHOM) 1is curiously transverse with respect to the

Chomsky hierarchy of language families.



We conclude this section by some remarks concerning sequences closely

connected with (f,g)-seguences. Let f and g be morphisms. We call a

sequence of words (Tny;:ﬁn an (f ',g )-sequence if

-1
Tn€gf (Tnﬂ) for neZ .

Thus, for every (f ',g ")-sequence (Tn):=~w , there exists an (f,qg)-
sequence (mn):zﬂx such that Ty = f(wn) for neZ , and conVerse]y,

every sequence (f(mn>)i;-m , where (o )

W pe-e 15 a0 (f,g)-sequence, is an

-1

(f'],g”])-sequence; see Fig. 1. The concept of an (f ,g-]zn]anguage is

defined in an obvious way.

The union of all (fQ},g-})—Tanguages is denoted by maxeq(f ',g ) .

(Note that if f,g : A* -» B* are monomorphisms, then maxeq(f"],g"]

RIS RCOIRT

) is

the maximal solution of the equation f 2f(A*)ﬂg(A*) .)

THEOREM 2.3. Let f and g be morphisms A* - B¥ .

(i) If L 1is an (f,g)-language, then f(L) 1is an (f'],g—])—]anguage,

-1

and conversely, for any (f ,g'])~]anguage L there exists an (f,g)-

language L1 such that L = f(L]) . Consequently f(maxeq(f,g)) =

maxeq(f'],g_]) .

(ii) There exist alphabets A] ~and B] > A and morphisms f],g] :
A? - B¥ (which are propagating if f and g are so) such that each

1

(f,g)-lanquage equals L N A* for an (fi ,931)—1anguage L . Furthermore,

maxeq(f,g) = maxeq(f;T,g;]) n Ax .

(111) There exist alphabets AZ > B and B

A> < B> (which are propagating if f and g are so) such that each
) ? prop .
(g7

Furthermore, maxeq(f ",g ') = maxeq(fz,gz)vﬂ B

5 and morphisms f2,92 :

)-language equals L n B* for some (fz,g2)~1anguage L.




- -1 - - S

(iv) maxea(f,g) = £ '(maxeq(f ™)) n o™ (maxeq(f,g7"))
Proof. (i) Obvious.

(i1) Define A, = AU {ala € A} , By = AU {blb e B} and

fia) =a , f,(a) = f(a) ,

gi(a) = g(a) , gy(a) =a for 2 €A

(where P stands for the word obtained from P by “barring” its symbols).

Then ()

W ne-w 15 an (f.g)-sequence if and only if

S Wy s f(w_z) s W s f(w_l) E f(wo) s oy > o) »...

-1

is an (f] S

.i ’91 )"
. sequences of this "alternating" type only and that erasing by f] and/or 9,

,g;])—sequence. N.B. the fact that it suffices to consider (f

does not cause any troubles although it does have the effect of mixing

"barred" and "unbarred" symbols. .
(ii1) Analogous to (ii).

(iv) The left hand side of the equation is clearly included in the right

hand side. To prove the reverse inclusion let (On)?:-m and (Tn)::_oo
be (f,g)-sequences and © € g_]f(wn ) N f-ig(rn ) , say. Then the
1 2
recombination" of (wn)n=~w and (Tn)nz_m

W W
* Pho-2

. n]”]’w s Wy T ’T+],-

n] ﬂ2 nz

is an (f,g)-sequence, too. See Fig. 2. Thus w € maxeq(f,g) . o



Y flog ) (1, ) s
\/\/\/\/
LY (_,.)'_)1_..I wn] W Tnz e |

Fig. 2. "Recombination" of two (f,g)-sequences.

There is thus a close connection between maxeq(f,g) and maxeq(f°],g_])
(and the associated notioﬁs) via simple language operations. For this reason
fhey are widely interchangable in the sequel. We shall, however, confine
ourselves to maxeq(f,g) .

COROLLARY 2.2. Let f and g be morphisms A* - B* . Then maxeq(f ',q )
is a star language. If one of the alphabets A and B is unary, then
maxeq(f,g) and maxeq(f”],g']) are both regular.

Proof. Corollary 2.1 and Theorem 2.3. (Unary star languages are well-known

to be regular.) o

It is interesting to compare the latter results with the corresponding
results for equality sets: A unary equality set is regular (being a star
1anguage);‘equa]1ty sets of morphisms with unary range alphabets are

context-free but not all of them are reqular; see [S2].



3. Complements of recursively enumerable languages

Although there probably is no simple characterization of MAX(PHOM)
or MAX(HOM) wusing "traditional characterization mechanis&s“ in formal
language theory, it turns out that H(MAX(PHOM)AR) has a surprisingly
simple characterization: it equals RE . This fact is proved in this

section. We begin with

LEMMA 3.71. Let f and g be morphisms on A* . Then the language

L=0n"_ (fg)"(A*) is in RE .

n=-o

Proof. The lemma follows because L = U~ (f”]

n=-co

)" (A*) s an effectively

denumerable union of effectively obtainable regular languages and hence is

recursively enumerable. o

THEOREM 3.1. H(MAX(PHOM)AR) = RE
Proof. (I) Let us prove first that, for any propagating morphisms f

and g , maxeq(f,g) € RE . It suffices to prove (by Lemma 3.1) that

maxeq(f,g) = N (f’]

n=-co

n —
)" (4) =yor L

where A is the domain alphabet of f and ¢ , i.e. the maximal solution
of f(X) = g(X) «can be obtained by iteration. Since each word of maxeq(f,g)
is a term of an (f,g)-sequence, it follows that maxeq(f,g) < L .

To prove the reverse inclusion let P € L be arbitrary. Now each of the
languages (f*1g)n(P) , n€Z , is finite because f and g are propagating.
An application of Konig's Lemma (on infinite graphs) then shows that P 1is
a term of an (f,g)*sequence and is thQs in maxeq(f,g) .

Since RE is an AFL (see [U), Theorem 2.2 and its proof), it follows
that H{MAX(PHOM)AR) < RE . |
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(I1) To show that RE < H(MAX(PHOM)AR) we simulate computations of
deterministic Turing machines using (f,g)-sequences. Consider the
following variant of 1-tape deterministic Tﬁring machine. Let A be a

finite é]phabet and denote

Meft = ergla €A Aoy = faggpela €AY

The machine is an ordered quintuple M = <B,S,X,A,SO> where

(i) B=AwvU Aeft Y Aright is the input alphabet

(i1) S s the state alphabet and Sy € S is the initial state

(iii) X =VYuU Yleft U Yright

and Yiert (leftmost symbols) and Y

where Y is the auxiliary tape alphabet

right (rightmost symbols) are defined

as Aleft and Aright above; it is assumed that X N B =

(iv) »: (BUuX)xS->(BuXu(AuU Y)(Aright U Yright>) x S x
x {left,right,stay} is the partial transition function satisfying the

following conditions:

(8) Al(Ajart Y Yiape) % S) = (Ayapr U Vi) * S x {right,stay)
(b) A((Aright U Yright) x S) c ((Aright U Yright) x S x {left,stay}) U

U (AUY) (A o\ U Y ¢S x Istay))

right right)

(¢) AM(AUY)xS)c (AUY)xS x {left,right,stay)

The input aa]---anb ( a,a],...,an,b €A and n>0) is given to the
machine in the form a]efta]-g-anbright and the scanning of this input
starts from aart in state Sg - When reading a symbol x 1in state’ s the

next configuration is determined as follows:

(i) If xeAu Aept U Y U Yy and A(x,s) = (y,s",z) then the

machine writes y on the scanned tape cell, changes its state from s to
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s” and moves its head one cell to the left or to the right or does not
move its head, according to whether z 1is "left" , "right“' or "stay" ,

respectively.

(1) IF X € AL U Y oy and A(Gs) = (y,57,2) 5 where y € A o

U Yright , then the machine writes y on the scanned tape cell, changes its

state from s to s~ and moves its head to the left or does not move its

head, according to whether z is "left" or ‘“stay" , respectively.

(iii) If x € A Y and A(x,s) = (yu,s”,stay) , where

right Y

y€€AUY and u € Akight

right

U Yright , then the machine writes y on the
scanned tape cell, adds one cell to the right where it writes u , changes

its state from s to s~ and keeps its head on the originally scanned

tape cell.
(iv) If A(x,s) 1is undefined, then the machine halts.

An input is accepted if and only if the macﬁine halts in somé finite
number of steps after receiving it.

It should be clear that although our machines have some unconventional
features they are equivalent to more standard Turing machines (e.g. in [HU])
and recognize exactly all recursively enumerable languages which do not contain
the empty word or words of length 1. (We have not incorporated in our
machines any additional mechanisms for accepting words of length less than
2 since such words can be dea}£ with separately, if necessary.)

We now define the new alphabets

(e}
L

] BuXu{ala€e A u {F)u

| U {(x,s,y)]|x € A Uy

left teft Y €EBUX,s €S and A(x,s) is defined}

[

{(x,y,s)lx €EBUX,ycE€E Aright U Yright , s €S and )(y,s) is defined)

<

{(x,y,s,u)|x,y,u € BUX ,s €S and xr{y,s) is defined} ,




o
i

BUXU((BuUX)xS)u({F}

o
*
1
L d

and morphisms f,g : CJ CE as follows:

£(x) if xeBUXU{F),

1
W
——

>
~

i

>

f(a) = and g(a) = F if a€A,

(aleft’so)
g((x,s,¥)) = (x58)y » 9((x,y,s)) = x{y,s)

a((x,y,s,u)) = x(y,s)u ,

(x7,87)y if XA(x,s) = (x7,s7,stay)
f((X,S’.Y)) = . : _ . .

x(y,s7) if A(x,s) = (x7,s7,right) ,

x(y“,s7) if X(y,s) = (y ,s ,stay)
f((xsyss)) = (x5s7)y” if A(y,s) = (y ,s7,left)

x(y“,s")u if A(y,s) = (y'u,s7,stay) ,

it

(x,s7)y"u if X(y,s) = (y ,s",left)
fl(x,y,5,u)) =4 x(y",s7)u if A(y,s) = (y",s",stay)

xy \u,sT) if A(y,s) = (y ,s7,right) .

By inspection one sees easiiy that the language not accepted by M s

h(maxeq(f,g) n {ala € AJA*A where h(a) = h(a

right) right)

Fig. 3.

Let then L € RE bé a language over A . By the above L - {A} - A

h(K n R) for a propagating morphism h , K € MAX(PHOM) and a regular
language R . We may assume that the intersection of A and the alphabet

Al of K and R is empty. Let K =-maxeq(f,g)'. We may assume further

that the intersection of A and the range alphabet of f and g 1is empty.

Extend then f , g and h onto (AU A])* by

= h(a) = a . See

12
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fi(a) = f(a) , g;(2) = g(a) , hy(a) = h{a) if a €A .

Then L = h}(K

1 1

“8Pright l Neft:® e rwght
T n rwght ey rlght (3)gr¢25g22)3p7 003, r1ght
Xjert(37087)3p 02, r1ght X1eftlYs5) B right *
(Xyert2277571282)237 "3 Prigny

Fig. 3. Simulation of a computation of M wusing (f,g)-sequences.
The Tower sequence is an (f,g)-sequence whereas the upper
(f°],g'})—sequence (to the right of the vertical bar) can
be considered as a sequence of consecutive configurations
of M . A symbol x -under scanning in state s 15 given
as (x,s) . (It is assumed in the picture that k(a]eft,so)

= (xleft,s],right) and A(a],s]) = (y,sz,stay) )

n R]) where K] = maxeq(f},g]) and R, =R U ((AU {A}) nL
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- 4. The role of erasing

Since H(MAX(PHOM)AR) = RE , then, of course, f(MAX(PHOM)AR) equals
H(RE) , i.e. the full-AFL closure of RE (see e.g. Theorem 3.4.3(b) in (G)),
and hence strictly includes RE U RE .

We will show next that
H(RE) = H(MAX(PHOM)AR) < H(MAX(HOM)AR) .

Thus Theorem 3.1 does not hold true for nonpropagating morphisms any more.

Consequently, for nonpropagating f and/or g , the maximal solution of

f(X) = g(X) cannot be obtained by iteration in the general case, see the

proof of Theorem 3.1. We do not know whether the inclusion Q(ﬁf) <

H(MAX(HOM)AR) 1is strict or not.

LEMMA 4.1. Let L € RE be a language over A] U A2 , where A, NA, =0

1 2 ’
and let e be defined by e(a) =a , for a¢€ A] , and e(a) = A, for

a € A2 . Let ¢ be a symbol of A2 and $ a symbol not in A] U A, and

2
extend e onto (Al U A2 U {$})* by e($) = A . Then there exists a language

K< Alc’s such that K € RE and e(L) = e(K) .

Proof. An easy modification of a deterministic Turing machine M

recognizing L produces a deterministic Turing machine M~ recognizing

K, where K 1is obtained from' L by moving all symbols of AZ to the

final block and at the same time changing them to ¢ and finally adding

*

c$ to the right. M™ first tests whether the input word F s in A]c+$
and halts in the negative case. In the positive case M~ 1lists all

"candidates" for a word of L which could be transformed to P by moving
‘ the symbols of A, to the final block and changing them to ¢ and adding

c$ , there will, of course, be a finite number of these candidates. After




15

that M~ simulates deterministically computations of M on each of these
candidates and halts if and only if all these simulations end in acceptance.
Further details are straightforward to insert and are left to the reader.
(Note that an idea of recognizing 4E(~7 in a similar fashién fails — as it

must, since RE is not closed under erasing — because the number of

candidates is then infinite.) o

THEOREM 4.1. H(MAX{PHOM)AR) < H(MAX(HOM)AR)
Froof. Let A] s A2 s, $,e and K be as in the proof of Lemma 4.1.
Since K € RE , the construction in the proof of Theorem 3.1 is applicable

n+1

to K . Thus, for each word aa]---ambc $ € K, where a,a],...,am,b € A

1

n+l

and m > 2, the word Ea]---ambc

$ belongs to an (f,g)-sequence

right
where f and g are the propagating morphisms given by the proof of

Theorem 3.1; see Fig. 3. (We employ here the notation of the proof, now

A=Ay UA, U {$} .) Define new alphabets
Ay = {3dla € A]} U {c],cz,p,q} and A4 = {x,y,p,q} R

which are disjoint from C] U C2 , and extend f and g onto (C] U A3)*

(with range (C, U A4)* ) by

2
(&) = apas ;e » T(P) =y » fa) = x
f(c]) =Xy , f(cz; = C

and

9(3) = 2 4gp » 9(P) = P> g(a) = q,

g{cy) =4, g(cy) = yx .



~

Then an (f,g)-sequence "emanating" from éa]---amb is always as in Fig. 4

(see also Fig. 3).

It is straightforward to verify that

16

_ = +ox _ _ _ Y 3
Ky =4of D(maxeq(f,g) n {ala € A IAA {3ala € Ay1) = e(K) - (A} - Ay AL - A
h(a) = h(a) = h(3) = a for ac€ Ay - The "missing” vords in
e(K) n ({A} v A} U A% U A?) , if any, can be added to Ky as in the proof.
of Theorem 3.1. o
" rwght (3y¢5¢r5glay-e-a bpqsrlght .
n
an r1ght e o (Bygpge5geay)apeea bpCyas oy
n+1
CJa,---a by(xyN\i\:;iht Ca,---a be Sright *
n+1
C:ja seeap bc rwght

Fig. 4. Here the rectangular boxes denote those initial blocks of words which

are (or may be) affected by the computation of the Turing machine
simulated. To the right the seduence continues as in Fig. 3. Without
restricting the case, it may be assumed that during the computation
simulated here the rightmost symbol is always Sright' cf. the proof
of Lemma 4.1. Thus a symbol with a tilde can occur only once in the
(f,g)-sequence. N.B. the fact that g can erase only in one step
(which is circled out) and only in between p and q . In this

way it becomes possible to simulate in one step the erasing of

all c¢'s .

s it
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REMARK. One can even extend the ideas of the above proof and show that

Q(MAX(HOM)AR) = H(MAX(HOM)AR) . This goes, however, beyond the scope of the

present paper.
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