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ABSTRACT

This paper (the second of two parts) settles the decidability status of
several properties of derivations in EOL Systems (formsj. In particular we
show that the so called "one-to-many simulation" among EOL forms is decidable,
'solving in this way an open problem from [6]. We use a more general mathemati-
cal framework,’pased‘oq the theory of well-quasi-orders, deve]oped in Part 1

of this paper ([21).







INTRODUCTION

Ana}ysis'bf derivations in various kinds of grammars constitutes a very
important part of’research in formal language theory (séé, e.g., [3] and L8]).
Such an analysis is very crqcial within the theory of grammatical similarity .
(see, e.g., .[6), [7] and [9]). In the first part of the paper we have . . ...
developed a general mathematical framework, based on the theory of well-quasi-
ordering, to deal with some (decision problems concerning) properties of
derivations in EOL systems (forms). In this paper we apply results from [2]
to settle the decidability status of several problems concerning the
poséibilities of simulation of one EOL form by another. In particular we
show that the “"one-to-many simulation"” among EOL forms ([6]) is decidable.
This result together with [1] demonstrates that both fundamental simulation

Temmas from [6] ("one-to-many" and "many-to-one") are effective.




I. ONE-TO-MANY SIMULATION IN EOL FORMS

The general technique used in the proofs is the following. If we have
to decide about a property P concerning two EOL systemS'E and G', i.e.
decide whether or not P(E,G'), first a third EOL system is constructed
whiqh qatries "enough information" aQout~§ and G'. Then basic languages
(overrezq Q)‘Elkand'ﬁz are defjned in a way that they “contrél the p(operﬁq_
n 6" &% yield (using finite substitutions

* %k v

¢ and ¥ originated from G) the sequences T(Kl,KZ) and p(Kl,KZ) = Ll,LZ,...

PU".Then K, = K

(see [2], Section IIT). Then it will be proved that;P(EfG') if and only if
thefebexistgiavpositivelinteger 8;sqqﬁ that the axiom of G belongs to L&'
Since the latter,qgestion is a decidable one (see [2], Theorem III.1), the
effectiveness of all above constructions yields the decidability of the
property P for any two EOL systems‘E and G'.
Before presenting our first decidability result concerﬁing EOL systems
we state the following definitions concerning derivations in an EOL system.
Definition. Let G = (2,0,0,4) be an EOL system. Let ¥X,Y c 2* and let
¢ be a positive integer.
(1) Then we define the following sets.
D

X,Y,2) = {D : there exists a pair (x,y) € XxY such that D is a derivation

]

G(
of length ¢ in G starting from x and leading to yli.

Datg (X,Y,2) = {D ¢ DG(X,Y,B) : each x € itrace D contains at least one
nonterminal}.

*

(2) If m=1and for 1 =1 =m, Di € DG(xi’Z ,2) where X5 € 2¥, then

. . * . .
<DIDZ""Dm> denotes the derivation D € UG(XIXZ"‘xm’Z ,¢) the derivation tree

(forest) of which results from the derivation trees (forests) representing
Dy:Dps...,D, by putting them next to each other (in this order). o
The following definition formally describes the property we are dealing

with.
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Definition. Let G = (E}$}$;§) and G' = (2',90',0",4") be two EOL systems

such that = - 5.8 c ' andw = @',
Then we define the property P1 as fol]ows{
Y In ot

if and only if

there exists a positive integer ¢ such that for all a » x there exists a

D E:Ont G.(a,x,ti). o

Then wé have the following theorem.

@

~Theorem I.1. For any two EOL systems.E = (2,p,0,4) and G' = (Z;,@;,w',ﬁ')

such thatjg‘c‘z‘,'zwc A' and 5 = o' it is decidable whether or not P (E,G').
that 2.¢ 27, 8.C ) . aectd , ARRL AT Rt b

Proof. ... e S

Let;Etanq,fobe_ag in the statement of the theorem. le will construct an

EOL system G = (e,w,wl,Al) such that PI(E,G') if and only if ) satisfies

a statement which will be proved to berdecidable using our results concerning

basic languages.

Construction of G = (e,w,wl,Al).

Let o be given by the following productions: m,m,,..

8 = ([c,ﬁi ,x] 1o €2', 1 =19 =sandx ¢ Egg'f.f v

8, {[c,ni,x} €6 : 0 €A}, and

i

“1
[1hs ﬁs,ns,l 2 ... |rhs ﬂsf].

¢ is defined as follows.

L where s

| rhs ﬁil},

[1hs ﬂl’ﬂl;I 2 ... |rhs nlll{lbi HZ’HZ;I.E ... |rhs nzl]...

(i) If [O'"i’X] € g and A € 9'(c), then A € Q([G,ﬂi,X])‘

-

1. Then

(ii)j If Lc,ni,x]'é'e and SPLTTRRLN € p'(o), k= 1and for 1 =14 =k, as € ',

then [al,ni,xl][az,ni,xz] e [ak,ni,xk} € @({o,ni,x]) whenever

X = XIXZ...Xk.

(i11) ¢(8) contains no other elements. o




HenCE“intuitiVely speaking the EOL system G codes the following information,
Let,e.q., MLT @A, L. a4y be a production of‘g, k=1and for1l=1 =k,

a; € z'. Furthermore, let [o,m;,3)...3,] € 6 where 1 = J; = j,. Then

[G’”i’ji“jé] indicates that we try to simulate in G' the production ni of G
and moreéver Qe have derived the symbol o € ' which "promises" to derive
the subword a31'§j; aj2 of_ﬁﬁi s Hence inspecting o) and ¢, it must be
rather clear that we try to simulate (in a parallel way) all productions of

G using (coded versions of the) productions of G'.

Construction of two basic languages Kl and,KZ.*

With each noneras1ng product1on m of G we associate a basic formula.

If n equa]s a - alaz‘ | where for 1 = i = |rhs nf, a; € 7 then

“lrhs
rﬁ(gf?@([al,n,l‘},l,a) rme(lag, w20, 1,8) A e A me(lay g s [FRS WL 1LE).
Let IT _(Hﬁrespectively) denote the set of all (noneras1ng) productions ofvg

and 9 = e§(¢2% alph Fﬂ(g)). Then define

€l o€d
@Z(g) = gzhA <O;SZ)€X ‘@g({c,n,xj,l S ) A Loy me (¢,0,£), where for each n €1
3

Y —

5 (2) = A T (E) A /N ez(o.E), and

A

{(E&xyTo e N, x €3ub ] . [rhs W[} . Finally let

hi

K

]

1 L(él(g)) and K, = L(2,()). o

Heﬁce intuitively speaxing a word w € 8*'belongs to Kl if and only if
it contains all letters of -
{[U,ﬂ;?};: m €0, 1=1=|rhs n| and o is the i'th letter of rhs n}
andino other letters. A word w € 6" belongs to K2 if and only if it contains for

each n ¢ HA at least one letter [o,m,x] € & with o a nontefmina] letter of G'.

Construction of two sequences of languages.

We now appTyrthe basic construction of Part I of our paper (see [2], Section III)
with ¢,8, Kl,K2 as above and @ = {A} to get two sequences of languages T(KI,KZ)

and p( . 0

2) 1’ 2’




Now we "claim the following.
Claim I.1.
P,(6,6")
if and only if
there exists a positive integer ¢ such that w € Le.
Proof of Claim I.1.

The only if-part is trivial.
To prove the if-part, assume wp € Lg for some positive integer ¢. Then

Lemma III.2 from [2] implies that wy € 6* and there exists a derivation

D :'”l:$'ul,$zu2'$ e u, such that u, € K1 and uj € K2 for 1 <1< 2.

Inspecting .the form of @2(g) and ¢, it suffices to prove that u,

H
«

with y = y;¥,...y  where forl=1i=s, r —

yj=4 if rhsw, =4, and

yi = [ai’l,ni,;}pfjlz,ni,Z} i [ai’fiﬁgggj’“i’tﬁbi w1 3f

| # 4 and for 1 = < |rhs w,f,a, j €2

The fact that u, =y immediately follows from the following three observations:

Ths My 2 94,0 %,2 0t %, rhs
(i) the definition of @l(g) guarantees alph uE"m“aﬂph>y,

(i) the definition of ¢ guarantees every letter occurs only once 1in Uys
(1i11)the definitions of ¢ and wy guarantee all letters occur in u, precisely

in the .same order as they occur in y.

Hence Claim I1.1. holds. o

Since G and the basic languages Kl’ K2 can be effectively constructed,

the above claim together with Theorem I1I1.1 from [2] yield the theorem. o

We will consider now the so called "one-to-many simulation" among
EOL systems (forms). The decidability status of the problem is the basic
open problem concerning the simulation of one EOL form by another (see, e.g.,
(1] andv[Bi). We demonstrate that the problem is decidable.The solution

is based on a construction analogous to the one of Theorem I.1.




Definition. ("One-to-many simulation", see [6])

Let G = (2,0,0,4) and G' = (Z'9',w',A") be two reduced EOL systems such

that 2 c ', s c A" and 0 = o',
Then we define the property P2 as follows.

P.(G,G')

2
if and only-if

there exists a positiveAinteger ¢ such that for all « 3 X there exists a
D ¢ DG'(QI’X’Z) such that if o %. yaz then for all

(Dl,Dz),é,DG,(‘y,z"'f,@) x DG.(Z,Z'*,B), <DlDD2> € DntG.(yGZ,z-*,d). o

-~ Theorem-1.2; ‘For any two reduced EOL systemsﬂa'= (5}5}5}3) and -
G' = (2t,9',0',4") such that E'g ', Z.g 5" and © = o' it is decidable
whether of not PZ(E,G').

P?“OOf B T

We proceed as in the proof of Theorem I 1 and we will use the notations

and definitions stated there.

Construction of H= (6 U Q,0 UVy,0j09,8; U Az).

Let e’w’“i’Al’n and HA be as in the proof of Theorem I.1. Let
e = {loymZ): o €2y w €T, Z €surg,(1hs m)},
by ={ loymZ] € g 10 € '}, and '

W =@ B e where for 1 =1 =5,
"2 s
(i) 1f;¢ € Syr;'(lﬁé me) then “Hi = A,
(ii) if @ £sur,,(lhs "i) = {zl,z ,...,Z }o t =2 1 with forl=j=st,
v eesTs , £.2 1, th
%3 {UJ.l’OJ,Z' GJ,ﬂj% R o S
T 1Tl ][01,2’”1521]'°'[01. 1 )y 121 52

m, Z ]fd ,vi,Z lo.log 4 ym,Z2 L

t t,

[02’82’ﬁi,22] . . . [tl’

The finite subs{tugion Vv is defined as follows.




(i) If [o,m,2] €% and 4 € ¢o), then & €y([o,n,Z]),

‘(ii) If:b,n,Z]vé Q énd SLTRRRLN € ¢'(a), k=1 and for 1 E‘i =k, a € 2',
then Tay,m,200ay,m,20...Tay,m,7] € ¥ (lo,n,71) .
(1i1) v(®) contains no other elements. o

Intuitively speaking for each production w, @ codes the necessary

information concerning the possible surroundings of lhs w;y simulates

t

the effect df applying bfoduction of ¢' to the first argument of an element
of & , but "preserving" the "surrounding information".

Construction of the ]anguages?1 and'RZ.

Let @l(§) and @ (5) be as in the proof of Theorem I 1 Let

251(5)':@1@) A /\ me(c,0,£), and
S 1% - _

gg(é)i‘” SN (\/ me([o,m,x],1,8) v \V4 me([o,m,2]1,1,£)))

{7, Z)GX (o,x) X o€z'~a!

( \/ rﬂg([oa"sxl‘alsg)))

_ 116)(2 (o,

A L/\ mE{c 0.£)), where

oeole
Xy = {(m,2z) = M, P f sure, (Ths n) and Z € sur,,(lhs m)},
Xop={m €Il : P ¢ surs.(lhi ) , and for each mo€ I
X = {(o,x) : o €3'~ 4" and x € sub 12 ... |rhs w[} .

Finally K, = L(E,(£)), K, = L(E,(2)), Ky = 6% 2* N K} and K, = 627 0 K,.

Observe that K, and K2 are Q-positive languages. o

1

Hence intuitively speaking a word w € o* @* belongs to Kl if and only if
its 6-part-belongs to K, (see the proof of Theorem I.1). A word v € e*e*
belongs to K, if and only if the following conditions hold.

*
(i) For every n € ny such that P ¢ S“rg'(lﬁi m) (thus w z‘ Jhs n),

w contains at least one nonterminal letter [o,n,x] € 6.




A -G
%
7€ surG,(lhs’n) (thus ' z' u(Ths w)v with (alph u(lhs w)v) ~ {lhs v} = Z),
w contains at least one nonterminal letter [o,m,x] € 6 or at least one

(i1) For every w €I, such that § # sur.(lhs ) and every possible

nonterminal letter [o,m,7] € @ .

Construction of two sequences of languages.

We now apply the basic construction of Part I of our paper (see [2], Section III)
with @,W,Q,Q;E and?(’2 as above to get two sequences of languages p(El;gz),and
T(KI,KZ) = Lby oelio

Now we claim _the following.

Claim I.2.

PZ(G’Gl)_
if and only if
there -exists a positive integer ¢ such that S €L,

Proof o? Claim I.2.

The only if-part is trivial.
To prove the if-part assume 0w, € Lg for some positive integer ¢. Then
Lemma II1.2 from [2] implies the existence of a derivation

D such that for all derivations

:mlfgulzuzzg...(?ue
L = = = = ' V. ¥ < 3

D' : wo 3 vy 3 Vo v ey Vy s UpV, € Kl and Usv; € K2 forl =1< 2.

Again as in Theorem I.1 we can prove u, =y (y is defined as in the proof of
Claim I.1). Then inspecting @2(5), ¢ and 9, the claim immediately follows. o

The effectiveness of all above constructions then yields the theorem. o

We end the section by considering a property closely related to P2 which
is defined as follows.

Definition. Let G = (E;;;;;Z) and G' = (3',p',»"',0") be two reduced
EOL systems such that z c z'y A c A and w = o', Then
Pé(G,G’Q~o~ -

if and only if




there exists a positive integer ¢ such that for all a - x there exists a

— % @
D ¢ DG.(a,x,e)such that if » = yaz then for all

G
(DysD,) ¢ DG.(y,Z'*,e) X Dgi(z2,2'%,2), <Dy DDy> ¢ NN (ygz,z'*,z).‘u

Observe that cle&rierZ(E,G‘)~imp]ies Pé(E,G‘), but in general the
converse does not hold. We immediateTy getAthe fo]]owing result.

Corollary I.1. For any two reduced EOL systems G = (E}E}E;X) and

G' = (2',0',@",40") such that 2 ¢ 2, A ¢ 4 and ® = w' it is decidable

whether or not Pé(G,G').

Proof—="

Pt

Repfaée surs.(lﬁg n) by suré(lbé m) in the proof of Theorem I.2. o




II. CONTROLLED DERIYATIONS

Before discussing next "concrete" decidability questions concerning
EOL systeﬁs, we present some genefal results concerning derivations in an
EOL system "controlled by a sequence of basic languages" which are also
interesting on its own.

First we need the following definition which makes the notion
"contro]]ed by a sequence of basic languages" precise.

Definition.:

(1) Let‘GAm (Z,9,w,4) be an EOL system and

Tg l?KZ’K' .. Ks’Kéj‘S ?ml a finite sequence of basic languages over Z.
Then
D:w=u = U = L.e @ Uy s = U = U I P
a 1,1 e 1,2 A s 1,11 g 2,1 g 2,2 g G 2,12 G N
u - U = .,.=U . ,1.21forl =3 =5 1is called a
Sgl G 5’2,,G - G Saxs J

(Kl,Ki,KZ,Ké,...,KS,K;)—derivation in G or a To-derivation in G if

for 1 =3 =s, uj.ij

l1=j=s,1%2 i
for J s, 1 2 p< i, uJ p K

(ii) Letm=1, s =21 and for 1 =J =mlet G(j) = (Z<j),w(j),w(j),A(j))

€ K&, and
J

be EOL systems such that their alphabets are mutually disjoint. For

l1=j=m let T, : KJ 1,KJ 1,KJ 2,KJ o3 K. _,K: _ be a sequence of basic

J Js877J,s
languages over Z(J). Further, for 1 = j = m let
D. : m(j) = U, o= U, = = U, - = Uu. =
. ,1,1 . 1,2 .. " . » 1,1, . y251 .
) s3) L) T g T @) Tt )
uJ.,?_,2 eI = u, y =

= e = U, . . =, .
N . ,2’ (3 03 . . ,l 2 ,3’2‘ .
) @) T2 L) @) ) L)

= i,s,i be a Tj—derivation such that
gld) 777 s
forl =p=s, € K!' and
J.D 7J p JsP
forl = p=<s5,1=s L € K,
orl=p=s, l=sqeiy oy, q€Kkp
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Then (Dy.0,,...,0,) is called (v),75,...,%)-controlled if for 1= =m,
l=p=s, ij,p = il,p‘ o

Then we have the following two results.

Lemma II.1. For any EOL system G = (Z,0,0,4) and a sequence 0 of basic
languages over Z;TO P K K KKK oKL, s 2 1, it is decidable whether
or not there exists a To—derivation in G.

Proof ., -

Let Gland—¢6~be as in the statement of the lemma.

ConsidérAtﬁe following sequence of basic languages (which can be effectively
computed, see Corollary III.1 from [2]).

Ms'= 95 (w,K ,K'), and for 1 = 1 < s, i
Moi = 9y (@aKg_5aKe 3 N Mg 549

Then obv1ously there exists a To—derivation in G if and only if o € Ml'

Since c]ear]y it is deC1dab1e whether or not o € Ml’ the lemma holds. o

D S —

Lemma 1.2. Letm=>1, s=1and for1=j=mlet G(j) = (z(j),@(j),m(j),a(j))
be EOL systems such that their alphabets are mutually disjoint. For 1 =j =m
let

. g . | : (J)
Tj : Kj,l’Kj,l’KJ, ,K 20 KJ s KJ s be a sequence of basic languages ?ver z .
Then it is decidable whether or not there exist Dj’ Tj-derivations in G(J),

1 < < m, such that (Dl’DZ""’Dm) is (TI,TZ,...,Tm)—controlled.

Proof.

Using the above notations define the EOL system H = (Z,0,w,n) where
m . . .

NI L) IR\ IP(E D ISR U/ C DRPRSN CO I CO TSN}
j=1 j=1 j=1

Assume that for 1 = j=m, 1 <p=ss, K. =L(% (3)(,)) and K3 b= L(w( )( ))

Jsp P

where ¢éa)(g and YéJ)(g) are basic formulas. Then for 1 = p = s let

)
A old) (3)
p L(A @DJ (£)) and Ké = L( /\ ‘va (£)). Then define the following sequence
j:l : .



of basic languages (which can be effectively computed, see Corollary III.1
from [2]).

- t < .
Ms = gz(¢,KS,KS), and for 1 = p< s,

M (¢,K K!

s-p = 92\ hsoprhsap 3 Ms-p+1)'

Obviously there exist Dj’ Tj—derivations in G(J), 1 =3 =m, such that
(Dl,ng.g.,Dm) is (Tl,rz,...,Tm)—centro11ed if and only if o € Ml’
Since clearly it is decidable whether or not w € Ml’ the Temma holds. o
We will prove now two decidability results concerning derivations in
EOL systems which make use of the two previous lemmas. These properties
are formally defined now. -
Definition. .
(1) Let G = (2,p,0,4) be an EOL system, x € . y € 2¥ and ¢ a positive
integer.
Then we define the property P3 as follows.
P3(G,x,y,£)
if and only if

© z uxv for some u,v € =¥ and there exist D ¢ DG(x,y,ﬂ),
G

* * : *
D, € DG(u,z L), D2 € DG(V,Z ,£) such that <DyDD,> € D .o (uxv,z™,¢).
(ii) Let G = (E¥$:$;X) and G' = (2',0',0",A") be two EOL systems such that
Tcz',bc A and o = o',
Then we define the property P4 as follows.
P4(G,G")
if and only if
there exist a positive integer ¢ such that for all a - x, P5(G',a,x,2). o

¢

Then we have the following results.
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Theorem II.1. Far any EOL system‘g = (Z,0,0,A), X € E'+, yvé 2

3

it is decidable whether or not there exists a positive integer ¢ such that
P3(G,x,y,8).

Proof.

1A
tA

Let x = aja, ... an,'y = BBy «vv Bpo N> 0, m = 0 where for 1 n,

oy ¢z and for 1 =1 =<m, Bi €.
First construct the EOL system G = (Z,9,S,4) where S is a new symbol,
5 =32 U{S}, & =8, 0(c)=9(a)ifa €z and o(S) = {@}.

Construction of the EOL system G' = (',0', S',a").

Let ' =3UT, 2Nz=0,
T i{fo,imw'] 1 o€z, i €1{1,2),wesubl2...nandw €subl 2,..m},
A = AW e d,ww'] €2 ¢ oo €A}, and S' = [S,1,x,y].

o' is -defined as follows.

(i) If o € 2, then ¢'(0) = ¢(0).
C(31) If [6.i.w'] €3 and & € (o) then also 4 € o' ([o,1,Ww'1).

(111) If [owinw'] €2 and ypyp «oo v €0(0), k= land vy €2 for
1 <j =k, we have to consider several cases.

(14i.1) i = 1.

(i§i.1.1) If w = 1 2 ...n then
YlYZ"'Yq-l[Yq’i"wq’wé][Yq+l’il’Wq+1’wé+1]""[Yr’i"wr’w;]Yr+1 e Y
€ ¢'([o,i,w,w']), where i' € {1,2}, 1 = gqsr sk, ws= quq+l"‘wr’

- ot ' c 3 < 5 5 EE 3 : ' 3 5 Tk
= wqwq+l... W and, forqs< j=sr, WS € {1,2,...,n} and W € {1,2,...,m}" .

— —

12...s for some 1 < s < n then do as in (iii.1.1) except

W

(ii1.1.2) If w

i}

that now 1 = q = r = k.

A

i

(111.1.3) If w S(s+1)...n with 1 < s = n then do as in (iii.1.1) except

that now 1 = g = r = k.

(i11.1.4) If w = s(s+1)...t with1 < s = t<nor if w=4 then do as in (iii.l.1)

"

except that now 1 = g = r = k.
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(iii.2) i = 2.

Do as in (iii.1.1) except that now always i' = 2and 1l =q=r = k. o
The jdea behind the construction of G' is to simulate derivations of G

and in this simulation the symbols of Z have the following meaning.

let,e.g., 1 =ss<t=n,1=s" =t =mand [0,],5...t,5'...t"'] €3,
then this symbol codes the following information: we try to simulate

S = : uxv and we have derived the symbol o which "promises" to derive
G G
the subword Govv Oy of x and later on the subword BS;...Bt. of y. If

[o,2,W,8"...t'] €% (s‘ and t' as above) then this symbol codes the following

+

information: we try to simulate x = y and we have derived the symbol o which
G

"promises" to derive the subword BS,...Bt. of y.

Construction of a sequence of basic languages.

We will construct now a sequence of basic languages to "control" the derivations
in G'.
Let 3, = {[a;,2,,w') €2 0 1 € {1,2,...,n}],

= {[O3iswaw'] € EI: is= 2}, and

22
Iy = {10,2,3,d] €T 1 € {1,200}, § € (1,2,...,m} if m > 0.
Then -
¢, () = (/\ g{(o,é)) A (/\ m_e;_(cr,O,a)> ,

n —
n@ = A (Vo etz

i=1 ‘wesub 1 2...m

" oéinz, £z(o:E)

v N\ ne(e,0,),
o,l £) <0 me(c,0 &)) , and

m n
N (V mg([ﬁj.z,i,n,l,g))

i=1

L)
[a%]
—
fiaa¢
"
m
™ .
£

<
~
—~
Jre
S
I




//\\ ez(o,&)

DAV
o€ 4 T
A //A\ - me{0,0,) if m > 0; otherwise
oen' T
1, (8) =(/\N ez(0,5) ) 1 (/\ me(5,0,)).
o€ T o€z!

Finally for i = 1,2 Tet K, = L(®i(£)) and K% = L(éj(g)). o

Clear]yfiﬁthere exists,a(Kl,Ki,Kz,Ké) - derivation in G', one can easily
verify:thatiP3(E;x,y,£) for some positive integer ¢. Conversely, if
P3(E,g,y,8) for some positive integer ¢, then a (Kl,Ki;Kz,Ké) - derivation in
G' can be constructed. Hence from Lemma II.2 the theorem follows. o

Theorem I11.2., For any two EOL systems E = (Z,0,0,4) and G' = (2',0"',0',4")

such that 2 c ', A c A and o = w', 1t is decidable whether or not
P4(G,G").

Proof.

Let G and G' be as in the statement of the theorem and let S be a new

symbol. Then define Gl = (Zl,@l,S,A) and Gi = (Zi,gi,S,A') where

L =2 U (S} 2y = ' U {S}. For each a €2, ¢ (a) = o(a) and for each

—

Z
a €3', @i(a) = ¢'(a). Furthermore ;i(S) = @i(S) = {S;;}. Then a combination
of the arguments of the proofs of Theorem II.1 and Lemma II1.2 yields the

theorem. o
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