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ABSTRACT

A general mathematical framework to deal with (the decidability status
of) properties of derivations in EOL systems (forms) is’developed. It is
based on the theory of well-quasi-orders. This paper (the first of two

parts) deals with the mathematical theory of the proposed approach.







INTRODUCTION

Analysis of derivations in various kinds of grammars constitutes a
very important research area within formal language theory (see, e.g.,

[2) and [7]). This analysis becomes very cricial in the theory of grammatical
similarity (see, e.g., [5], [6] and [8]). In particular various decision
problems concerning comparability of various language families rely heavily

on decision problems concerning the underlying (master) grammars, which,

in the framework of L forms, is very well illustrated in [5]. The effectiveness
status of two very basic simulation lemmas is left open there. This illustrates
very well the general situation: we simply do not have yet general tools

to deal with (decision problems concerning) the structure of derivations

in EOL systems. There is certainly the need to develop mathematical tools

to deal with this problem area.

In this paper we develop a framework to deal with the decision status of
some properties of derivations in EOL systems. The paper is divided in two
parts. The first part develops the mathematical theory of our approach which
is based essentially on the theory of well-quasi-orders (see, e.g., [3] and
[4]). The second part applies the main result of Part I (Theorem II1.1) to
settle the decidability status of several problems concerning the "similarity
of derivations" in different EOL systems (forms). In particular we prove
that the "one-to-many simulation" among EOL forms is decidable, settling
in this way an open problem from [5]. This result together with [1] says

that both fundamental simulation lemmas for EOL forms are effective.




I. PRELIMINARIES

In this section we recall some basic notions concerning EOL systems
and establish the notation used in our paper.
(i) For a set X, # X denotes its cardinality. For a finite set of integers
X, max X (min X respectively) denotes the greatest element (smallest element
respectively) of X. We often identify a singleton {x} with its element x
and then write x rather than {x}. We also use N and N* to denote the sets
of nonnegative and positive integers respectively.
An alphabet is a finite nonempty set of symbols.
(ii) We use a and v to denote the conjunction and the disjunction operators
respectively.
(i1i) o denotes the empty word; given a word X, |x| denotes its length,
alph x denotes the set of all letters occurring in x and, for an alphabet &,
4 x denotes the number of occurrences of letters from 4 in Xx. For a

A

language K, alph K =\_J alph x.
x€K
Let » be an alphabet and x,y ¢ 2¥%; we say that x is a sparse subword of y

and we denote x <y if x = Tylpee @y N = 0, a; €2 for 1 =i < n and

_ * - 8 = .
Y = UgayUyaoUp. . a iy, Us € 27 for 0 =1 <n. Wesay that x is a subword of
y if y = uxv for u,v ¢ 2% . For a word x, sub x denotes the set of all
subwords of x.

(iv) Let K,,K, be languages. K, and K2 are considered equal if

1)
Kl U {a} = KZ U {a} .
(v) With each positive integer n, a symbol n is associated. Then if X is

a word we often consider the word X = T'ﬁ...TgT. In the case x =4,

X =12...]x =a.

(vi) An EOL system is a four-tuple G = (Z,9,0,4) where I is the total alphabet,

A < I is the terminal alphabet, wez' is the axiom and ¢ is a finite

substitution on £ (into the set of subsets of 5*). The elements of INa are

called nonterminals.




The language of G, denoted L(G), is defined by L(G) = \d),p (@)

If x é‘®( a) for a €%, then we often write a - x and we also say that

a -+ x is a production of G (we write a ;X as an abbreviation of "a X
is a production of G ").
If w = a » x is a production of G, we use 1hs n to denote the left-hand

side of n (thus lhs w = a) and rhs = to denote the right-hand side of n

Let x 6 Z . If y € ¢(x) we often write x E y or X : y (note that in this

— : + +
way A : A). We also write x E y and x 3V (x % y and x % y respectively)

if there exists an n > 0 (n > O respectively) such that y ¢ wn(x).
E *
G is ca?]ed reduced if for each a € L w = uav for some u,v € ¥
. G
F1na11y 1f for each a ¢ R A = {x : x € ¢(a)}, then

det ¢ = max {#A ta €3}, B
(vii) Let G = ( 5P 50, A) be an EOL system and let ¢ be a positive integer.

A der1vat1on in G of 1ength ¢ leading from x ¢ z toy ¢ 2* is a sequence

(x = 0,x1, ..,x = y), such that X0 E X1 s X g XoseeeaXy 1 E X, together
with a prec1se “description of how all the occurrences in X; are rewritten

to obtaln X141 for 0 = i = £-1. Such a description can be formalized (see,
e.qg., [6 ]). We depict such a derivation D by

D : X0 Z x1 E Xs E - X, » Or by
e o SR
We say that D is a derivation in G if Xg = o The sequence of words

(xO,xl,...,x ) is called the trace of D, denoted as trace D and the

¢
sequence of words (xl,...,xg_l) is called the intermediate trace of D,

denoted as itrace D. . . -
If we deal with a finite substitution ¢ on an alphabet & (into the set of
subsets ofre*), Xg € 6* and a positive integer ¢, then we refer to

D : XO 1 2 x2 g e o xg

as a derivation in the sense that we consider ¢ to be the finite substitution

associated with an EOL system.



(viii) Let G = (Z,¢,w,8) be a reduced EOL system and let a € Z.

Then the set of surroundings of a in G, denoted sure a (or sur a if

G is understood) is defined as follows (see [1]).

,Z,} where k=1, Z. cz for 1 =1 =k, and

sure a = {21,22,... ;
(1) Zi'g Zj, for all i,j € {1,...,k}, 1 # 3,

(2) For all x,y € 2*, if o % xay, then there exists an i, 1< i < k,
such that Z, ¢ alph xy,
(3) for each i, 1 = i = k, there exist x,y € z* such that % Xay and

(alph xy)\{a}v= Zi‘
We reéa]] the following Temma from [1].
Lemma I.1. Let G = (2,p,w,A) be a reduced EOL system and let a« € 2.

Then surp a 1is effectively computable. o

For unexplained notions and terminology concerning EOL systems we refer

to [6].
(ix) We conclude this section by recalling a result from [3] which will
be quite useful in the rest of our paper.

Theorem I.1. Let & be an alphabet and let K ¢ 2* . There exists a
finite subset B of K (possibly empty) such that for each word w € K,

there exist a word v ¢ B such that v< w. ©

If K and B are as in the above theorem and moreover

K = {w : there exists a v € B such that alph w = alph v and v < w},

then B is called a base for K. A base B for K is called minimal if no




II1. BASIC FORMULAS AND LANGUAGES

Throughout the paper we assume zu to be a fixed infinite set of
symbols; all considered alphabets will be finite nonempty subsets of Z,
Furthermore £ denotes a variable which ranges over Z:. We need the
following two predicates. Let b ¢ Ly WE 2: and let n be a nonnegative
integer. Then
me(b,n,w) if and only if # w=n, and
ez (b,w) if and only if # ws= 0.

Note that "me" and "ze" abbreviate phrases "more than or equal to" and
"equal to zero" respectively.

Definition. The set of basic formulas, denoted F is defined inductively

as follows.
(1) For each b ¢ Zy and each nonnegative integer n, me(b,n,%) € F and

ez(b,£) € F (those formulas are referred to as atomic formulas).

(2) If () ¢ F and ¥Y(&) € F then ¢(x) A ¥(£) € F and ¢(£) v ¥(£) € F .
(3) No other formulas belong to F. o

According to the abovc definition a basic formula ¢(£) is built up
from a finite number of atomic formulas using the operations A and v.

Atomic formulas occurring in ®(&£) will be referred to as components of

$(&). Components of the form me(b,n,&) are referred to as positive componedts

of ¥(¢) and components of the form ez(b,z) are referred to as

negative components of $(&).

Definition. Let ®(£) ¢ F . Then

alph #(g) = {b ¢ Zu : b equals the first argument of a component of ¢(£)}. o

We also consider the following subsets of the set of basic formulas.
Definition. Let #(£) ¢ F and let @ be an alphabet. Then ¢(r) is called

Q-positive if



(1) @ ¢ alph ¢(&), and

(2) no element of 2 appears as the first argument in a negative component

of (). o

A basic formula &(£) defines in a natural way a "basic language",
that is the set of all words in alph (&) that satisfy #(&).
Definition. Let ®(§) € F .
%

Then define L(3(2)) = (w € (alph #(g))* & 2(w)}.

A language K is said to be a basic language if K=L(2(g)) for some basic

formuTa'é(g)i
For an alphabet 2 we say that a language K is @-positive if K = L(%(&))
for some @-positive formula 2(£). o

We are going now to develop a number of "normal form" results concerning
basic -formulas and basic languages. First we need the following definition.
Definition. Let &#(g) ¢ F.

Then ¢(£) is said to be in disjunctive normal form if

2(g) = 2(8) v 2,(8) vo..v 2 (E) for some k = 1, and for 1 = i = k,

(£) where p; & 1 and for 1 =j < Psis

@i(?‘;) = ‘i’i’l(g) A @i’z(é) Aveo A (I)i,p_i #

@i J.(g) is an atomic formula.
In the above each @i(g), 1=i=k, is called a disjunct (of ¢(&)).

For 1 = i<k, 1=<j=s Pss each @i J.(g) is called a conjunct (of @i(g)). )

When we restrict our attention to basic formulas over a fixed alphabet,
we also need the following definitions.
Definition. Let Z be an alphabet.

(1) F., the set of all basic formulas over z is defined by

Z’
Fy o= {2(g) € F :alph ¢(g) = 2}

e e e o et g



(2) Let @l(a) and @2(g) be two elements of FZ. e say that ¢l(a) implies
P,(£) if and only if L(®(%)) ¢ L(#,(8)). #(£) and @2(&) are called .
equivalent if and only if L(@l(g))_= L(@Z(g)).

(3) The relation < on elements of F, is defined as follows. Let ¢1(5),
@z(g) € FZ . Then él(g)<i<®2(g) if and only if @2(&) implies @1(5).

(4) ®(&) ¢ FZ is said to be in strong disjunctive normal form if ¢(&)

is 1in disjunctive normal form and for each disjunct ¥(&) of (&) there

exist ¢,m = 0 such that

¥(g) = ez(by,E) A ez(by.E) A ... A ez(b,,E) A me(b),n;,8) A ggfgz,nz,g)

A vl mg(bm,nm,g)

where each letter of & occurs in precisely one conjunct of ¥(&) and
Ny < vve =M.

If @(E) is in strong disjunctive normal form and ¥(£) is a disjunct of

®(g) as above then .

type ¥(g) = ({bl’bZ""’bB}’ (El;bZ""’E%Q) is called the type of ¥(&)

(over z). If £ =0 (m=20 respectively) then the first (respectively

second component of type ¥(&) is set‘to be the empty set. o

The following result indicates the usefulness of the disjunctive and
the strong disjunctive normal form.

Lemma II.1. Let 2,2 be alphabets and let ¢(£)'§ Fz,‘ Then one can
effectively construct ah equivalent T(g) ¢ FZ in disjunctive normal form.
Moreover
(1) if L(®(&)) # P, then I'(g) is in strong disjunctive normal form, and
(2) T(¢) is @-positive if (&) is S-positive.

Proof.

Let ®(&) be as in the statement of the lemma. Obviously we can apply in &(&)
the distributive laws for A and v to get effectively an equivalent ¢'(g) ¢ Fi

in disjunctive normal form, Q-positive in the case (&) is Q-positive.



Moreover if L(®(£)} # P, for each disjunct ¥(£) of @'(£) such that
(x € 2% : ¥(x)} #9and each b €z , let
(1) Yb(g) = ez(b,r), if ez(b,£) is a component of ¥(&),
(i1) ¥, () = me(b,n,€), if b € alph ¥(z), ez(b,£) is not a component of ¥(&)
and ny = max {b : me(b,n,£) is a component of v(z)},
(i17) Yb(g) = me(b,0,£) if b € 2~alph ¥(g). Then ?(g) = /\Yb(g).
Permuting the conjuncts of.?(g) we easily get disjuncts tﬁézdisjuncticn
of which gives us a basicformula in strong disjunctive normal form,
equivalent to &(&), @-positive if &(£) is @-positive. o

We now demonstrate that the relation < is a well-quasi-order on'FZ,
i.e. it is a quasi-order (a reflexive and transitive relation) such that
every infinite sequence of elements of Fz contains an infinite ascehdiﬁg
subsequence. In the proof of the above result we will use a combinatorial
result concerning vectors of nonnegative integers, the proof of which is
the subject of the Appendix. Precise definitions and terminology concerning
well-quasi-orders are also stated there.

Theorem I11.1. Let £ be an alphabet. Then < is a well-quasi-order on FZ'

Proof.

That < is a quasi-order on FZ can be easily verified.

To prove that < is a we]]?quasi—order it now suffices to prove that any
infinite sequence 7T of elements of FZ is well-quasi-ordered with respect

to < (see Lemma Ail,(l)).

Therefore assume T is an infinite sequence of elements of‘FZ . Without loss
Qf generality we can assume that for all i z 1 such that L(t(i)) # @,

(i) is in strong disjunctive normal form (see Lemma II.1).

For each type m over Z (observe there is only a finite number of such types)
and Y(£) ¢ F, in strong disjunctive normal form let

vl (e) ”\/Y#E)




where the disjunction is over all disjuncts Wi(g) of Y(&) such that

type ¥, (£) = w if there exists a disjunct of ¥(c) of type o

otherwise / |

Y[n}(g) = FALSE (FALSE stands for a fixed but arbitrary basic formula over

% such that its language is empty).

If Y(g) ¢ FZ and L(¥(&)) = @ then we set Y["](g) = FALSE for any type w over Z.

For every type m = ({bl’bZ""’bz}’ (51;52,...;an)) over £ withms> 0 we
(] ‘

define the sequence T as follows:
for i 21, Wiy = ((int™ .
[m]

Also define the sequence p as follows:
for i =1, o™ (i) =p if w"1(i) = FALSE, and

oIy

i

{(nl’HZ”"’nm) : a disjunct of T[”](i) is of the form
ez(bl,g)‘A.gg(bz,g) Ao nez(by,E) A‘gg(bl,nl,g) A mg(bz,nz,é) Avee A
me(b N ;E) Y.
Then obviously the following claim holds.
Claim IT.1. Let m = ({by,b,, ... ,b s (51;52, ...,Bﬁ)) be a type over 3

such that m > 0. Then for 1 = i) < i,, o [”] Rm p[“] ) implies

) < <Gy, o
Claim 11.1 and Theorem A.1 yield that for every m = ({bl’bZ"'"bg}lgl;EZ""’Eﬁ))
over ¢ such that m> 0, Tiﬂlis well-quasi-ordered with respect to < .

Clearly also T[Z’g] is well-quasi-ordered with respect to <.

Since for each i > 1, «(i) = '\\\// <14y, by an apnlication of (2) of
m type overZ
Lemma A.1 we get that t is well-quasi-ordered with respect to & .
This concludes the proof of the theorem. o
Basic lénguages were defined through basic formulas. It turns out that

we can define them in a combinatorial fashion.

Theorem 11.2. Let & be an alphabet and K ¢ z*. Then K is a basic

language if and only if




(1) K is permutationally closed, and

(2) for each w € K and each u € ¥, if w< u and alph w = alph u then u ¢ K,

Proof.
The only if-part is obvious.
To prove the if-part, let K ¢ =* such that (1) and (2) hold.

Either K = § and then K = L(me(b,1,£) A ez(b,£)) where b € T, or K can be

S
written as K = U Ki’ s = 1 where for each 1 =i = s, Ki # 0 and
i=1

WpaW, € Ki implies alph Wy = alph W,3 moreover, ifl<i< j=s s then

alph Ki # alph Kj’

Then according to Theorem I.1 for each Ki (1 =i =s) there exists a finite
subset 81 of Ki such that for each w ¢ Ki there is a u € Bi with u<w.

Clearly each Bi can be chosen nonempty.
s
Let B = \U/ -Bi. Assume that = = {al,...,ar}. Then for each pair
i=1

(i,w) € {1,...,r} x B denote
Ci’w(i) = mg(a%,#aiw,g) if a; ¢ alph w,

‘ éz(ai,i) if a, £ alph w.
r
Finally Tet 2(%) = V(A c. L(E)).
wég =1 1oV
Clearly ®(£) € F and L(®(8)) = K. o

'Theorém I1.3. Let K be a basic language and let % be an alphabet.

Then K is an @-positive language if and only if
(I1.1) for each pair (x,y) € K x %, xy ¢ K.
Proof.
The only if-part is obvious.
To prove the if-part let K and & be as in the statement of the theorem

such that (II.1) holds.



If K =0, letb € I \@ and #(&) = me(b,1,£) A ez(b,g) A //\ me(c,0,&).
CESR
Clearly ®(£) is an @-positive formula and K = L(®(£)). :

If K # 0, assume K = L(®(&)) where (&) is in disjunctive normal form.

Let () = @1(5) v ¢2(g) Vielov @k(g), k = 1 where for each 1 = 1 =k,
@i(g) is a disjunct of ®(&). Furthermore assume without loss of generality
that for 1 = i = k alph @i(gf = alph ®(z) and L(2,(2)) # 9.
The fact that K is g-positive is proved as follows. "

Clearly @ c alph K¢ alph #(z) otherwise (since K # P) (II.1) cannot be valid.

Then we claim the following.
Claim II.2. Let ®(£) be as above. If ez(b,£) occurs as a component of -
@(é)vwhere b € @, then one can construct a basic formula ¥(&)
| SUChthakt-‘ LT = Tl k
(1) K=1L(¥(g)), and -~
(i1) the number of occurrences of ez(b,£), b € 2, as a component of ¥(&)
is smaller than the number of occurrences of ez(b,£), b ¢ Q‘as a component
of &(&).

Proof of Ciaim 11.2.

Let j be an arbitrary but fixed element of {1,...,k}.
Let éj(g) = @j’l(g) A éj’z(g)’A cee A éj’t(g), tz1land forlsist,
éj 1.(g) is an atomic formula. Let m be a fixed element of {1,....,t} such

that &, (&) = ez(b,£) where b € 2. Since L(¢j(g)) # 0, (I1.1) imnlies

| Ppmte =82
that k = 2.
Let then &' (2) = V &, (£) and if t > 1, &}(2) = AN (&)
1=i<j J 1siem I
. j<izk meist

(i) If t> 1, L({&))

il

L(2'(g) v #;(8)) = L(e'(g) v (ez(b,E) v #5(£)))
L(2' () v (ez(b,g) n #5(&)) v (me(b,1,2) A ¢5(£)))
L(#*(£) v (me(b,0,&) A #5(£))).

()0

Let then ¥(&) = &'(¢) v (me(b,0,8) A ¢




(§1) If t = 1, L(2(g)) = L(&'(8) v ez(b,))
(g

(
= L(2'(£) v ez(b,£) v me(b,1,&))

n

L(2' (&) v me(b,0,£)).

Let then ¥(&) = &'(2) v me(b,0,&).

Then clearly Claim II.2 holds. o

Iterating the aone constructionka finite number of times, we end with an

Q-positive formula the language of which equals K. Hence the theorem holds. o
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I11. THE T-OPERATOR

Throughout this section & will always denote an alphabet and @ will
denote either {A} or an alphabet such that 6 1 @ = @. Fgrther o and V¥
denote finite substitutions on 6 and @ respectively. We also need the
fo]]o&ing definition.

Definition. Letw € K ¢ g% ", w = Wi W, where w, € 8" and W, € ",
Then w, is called the 6-part of w and w, is called the Q-part of w. o

The following operator on languages will be a basic tool in the
rest of the paper.
Definition. Let K ¢ % *.
Then T, o (9:4,K) = {af : a ¢ 0%, € 2, there exists an x € ¢(a) such that

{x} v(p) c K}. o '

Whenever 6 and 2 are understood we write T(o,¥,K) rather than Te 9 (o,¥,K).

Observe that in the case & = {4}, the above definition (recall our
convention that Ai7A for any finite substitution V) reduces to

T(e,V¥,K) = {a € 6" . there exists an x ¢ @(d) such that x € K} = @"1

(K).
The following lemma deals with the behaviour of basic languages under
the T-operator.
Lemma I1I.1. Let K = 6** N K where K = L(8(2)), ®(&) € F and 2(&)
is Q-positive if @ is an alphabet. Then one can effecfively construct a
basic 1anguageli‘ such that T(e,¥,K) = 6*e" N K' where K' is Q-positive
if @ is an alphabet.
Proof.
(1) Let K' = T(o,¥,K).
First we prove that K' is of the desired f@rm.

Clearly if K' = P then the result holds. Therefore assume K' # §.



Obviously K' ¢ 8*e*. Then using Theorems II.2 and II.3, it suffices to
prove that K' satisfies the following conditions.

(i) K'is closed with respect to permutations on the 6-part.

(ii) K'is c]oséd with respect to permutations on the ¢-part.

(ii1) K' is closed under subword extension on the 6-part, i.e.,

if w=ap €K', a€6*, p e and a<a' such that alph «= alph a',

then a'p € K's-
(iv) If w=ap € K', a € 6%, 3 € @* and B< B' such that p' € *, then of' €K!.

Conditions (i) and (ii).

Let vy = ap € K', a € 8%, B € 2%, let o' be a permutation of a and g' a
permutation of B.

We have to prove that a'p' ¢ K'.

Since aB € K', there exists an x € ¢(a) such that for all y € y(B), xy € K.

Assume a = A Gpeesalpy N 2 0, a € g forl=<1=<n. Then a' can be written

A

Qo Qs v dx = XX5... j < . . ).
as a11a]2 a‘n and X = X{X,... X where for 1 < i = n, X € @(ai)

Let then x' = Xi X5 oeiXso Clearly x' € ¢(a') and x' results from x by per-
172 n

muting its letters. Let z' be an arbitrary element of V(g'); clearly there

exists a z € y(B) such that z' results from z by a permutation of its letters.

Then since xz ¢ K, the fact that K=9* 2* NK with K a basic language implies

x'z' ¢ K. Since x' ¢ o(x') and z' was an arbitrary element of y(8'),a'p' € K'.

Conditions of (iii) and (iv).

Let y= af € K', a € 6% , p € %, let a< a' and p< B’ such that

alph a = alph a' and p' ¢ g*.

Then we have to prove that «'p' ¢ K'.

— h < . i -
Assume a = @yag...a., N2 0, o €9 forl=<1i=<n;a uoalulazuz...anun,

* . .
u, ¢ (alph a)” for 0 <1 =n;p PBoe By M2 0, By €2 for 1 =1 sm
B' = VR ViBoVoe s BV v, € Q* for 0 <3 =m.
Further we know the existence of an x ¢ ¢(a) such that for all y ¢ y(p), xy € K.
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Let x = X Xow oo Xps Xy € @(ai) for 1 = 1 = n. Define ¢' homomorphism or

(alph a)* as follows: for 1 =1 = n, @'(ai) = {xj : j is the smallest

i, 1 =1 = n such that ay = ai}'

Then let x' = @‘(uo) Xy @Tul) X, @'(uz) e Xy @'(un);/obviously x' € g(a').
The fact that a'B' € K' is now proved by establishing the following claim.

Claim III1.1. Llet a,B,a',B', x and x' be as above.

1f there exists a z' € V¥ (B') such that x'z' ¢ K, then there exists a
z € ¥(B) such that xz ¢ K.
Proof of Claim III.1.

Let z' = VG WYIWoVy .MV where for 0 = i < m, v, € w(vi) and for

2 .
1=is=m w €y(B;). Then define z = wyw,...w . Clearly z € y(p).
We now prove that for this particular z the claim holds,
Let K = L(#(£)). Without Toss of generality we can assume ®(£) to be
in disjunctive normal form, &(&) = ¢l(g) v @2(5) VALY, ék(g), k=1
and for 1 =1 =k, ¢i(€) is a disjunct of &(&). Moreover we can assume
that alph ¢(¢) = 6 in the case @ = {A}, and alph $() =6 Ug and ¢(&)
Q-positive in the case @ equals an alphabet.
Let @i(g) be an arbitrary disjunct of (&) (1 =i = k).
Since x'z' £ K, @i(x‘z') must be false. éi(g) consists of a finite number
of positive and negative components.
Observe that
(a) for every b € & and every nonnegative integer n,
if @g(b,n,x) then Qg(b,n,x'), and
if ez(b,x) then ez(b,x'),
(b) in case @ is an alphabet, for every b € @ and every positive integer n,
if me(b,n,z) then me(b,n,z").
The above observations together with the form of @i(g) immediately yield:
if ¢i(xz) holds then @i(x'z‘) holds. Thus conversely if ¢i(x'z‘) does not
hold then @i(xz) cannot be valid. Since @i(;’z') is false for every 1 = i =<k

and the above reasoning was independent of i we have: x'z' f K implies
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This concludes the proof of the first part of the theorem.

(2) In this part we prove that K' can be constructed effectively. To this
aim we will construct a base B1 for K'. Then applying the proof of Theorems
11.2 and I1.3 a basic formula for K' can be found effectively. To construct

B, we first prove effectively a bound p, such that 6* o* n K' has a base

1
B ¢ 6% @* the elements of which are all of length smaller or equal to p.

To determine B check for each element x of 6% @* of length smaller or equal

to p whether or not x belongs to T(e,},K). Clearly, since K = §% ¥ N K

and K is a basic language given by the basic formula ¢(£), this can be done
effectively. Finally let B = {x € T(o,¥,K) : |x| = p} and

B1 =*{yw%~there js-an x € B such that y results from X by a permutation of its

letters}.
_ . + .
Let Noax = max{n : n € N and n occurs as a second argument in a component of

()} if (&) contains at least one positive component with a positive integer
as a second component, and nmax = 1 otherwise,

Let p = o max{det ¢, det ¥} #(6 U Q). The fact that it suffices to

consider words of 8%2" of length not greater than p is proved by the

following claim. * *
Claim II1.2. Let p be as above. Let y = ap € K', a € 6, B €8

such that |y| > p. Then there exists a v' ¢ K' such that alph y = alph v',

v'" #yand v'< v.
Proof of Claim III.Z2.

Let v be as in the statement of the claim. We have to_consider two cases.
(2.1) There existsa b€ 6 such that b occurs more than nmax.gg£<p

times in a.
Since aB-€ K' there must be an x € ¢(a) such that x Y(B) < K. At Teast

t > Nnax occurrences of b must be substituted by the same element of

z € o(b). Let a' result from x by removing one such occurrence of b and

let x' result from x by removing the corresponding part ¢(b). Observe

that x' € ¢(a'), alph x' = alph x and for every positive component

me(c,n,g) of ®(g) with ¢ € o, if me(c,n,x) then me(c,n,x'). (If ¢ £ alph z

this is trivial, if c € alph z then #_ X >"n. and thus # x' = nmax')



Thus X' ¥(B) < K and hence if we set v' = a'p we are done. 10

(2.i1) There exists a b€ @ such that b occurs more than n « det ¥

ma
times in B.

Let B' result form p by removing one occurrence of b. Let x be as in (2.1).
Let y' € ¥(B'). Then we prove that xy' € K. Clearly for all z € y(b),

xy'z € K. At least t = noax OcCurrences of b in g are replaced by the same

ax
Z € y(b) to get y'. Choose z = Z. Then analogously to (2.i) we can

prove xy' € K and thus v' can be taken equal to «B'. o

This concludes the second part of the proof of the theorem. o

‘The T-operator now will be used to define two sequences of languages

as follows.

Let K| = gre* H'El and K, = pre* H‘EZ where-El and‘_K“2 are basic languages

which are Q-positive if @ is an alphabet. Then we define infinite sequences

of 1anghages.

= MO’MI’MZ’ ... , and
p(Kl,KZ) = Ll’LZ’ oo s

as follows:

T(Kl,KZ)

M. = Kl’ and, for i > 0, Li = T(@,W,Mi_l) and Mi = Li n K

0 2"
In the rest of this section we will assume Kl,Kz,T(Kl,KZ) = MO’MI’MZ’ cev s
and D(KIRKZ) = Ll’LZ’ e to be as above. Figure 1 depicts the sequences
T(KI,KZ) and Q(Kl’K2)' We also depict the situation in the case @ = {A}
(see figure 2). “

U;ing the above definitions, for every positive integer k, Lk can
be characterized as‘folTows.

Lemma IT1.2. Let k be a positive integer. Then (in the notation as
above)
W € Lk
if and only if

(1) w = ap witha € 6* and p ¢ 2*, and



(2) there exists a derivation D : a R T S-SR such that for
all derivations D' : B 3 By 7 By 77 Bis @ Py € K1 and ., € K,
for 1 =1 < k. '

Proof.
The proof goes by induction on k.
If K =1, then
W € L1

if and only if

W € T(w,w,Kl)

if and only if

w = -af, a ete*, B € 2" and there exists an x € ¢(a) such that xy(B) ¢ ST

The last conditions can be easily seen to be equivalent with conditons
(1) and SZ) from the statement of the Temma.
Assume the lemma holds for 1 = k = t. Then we prove that the lemma also
holds for k-= t + 1, We have the fo]]owing.
W Lin
if and only if
w € T(cp,\y,Mt)
if and only if
W € T(w,\}J,Lt n KZ)
if and only if
(1) holds and there exists an a; € o(a) such that for all Bl €y(B),

a

1Py €Ly DKy

if and only if
(1) holds, and

there exists a derivation D : « z 9 such that for all By € V(R)

there exists a derivation D : a, = a, = ..
lyo 29

By € v(B) and all derivations D : By 3 By 77 Pes1® “e+1Ft4r € Kl and

C 20 such that for all

e e et g



By € Ky for 2 = 1< t+l
‘ if and only if
(1) and (2) hold with k = t+l. o
We are ready now to state the fundamental decidability result concerning
the sequencé"p(Kl,K ). The result will be a basic tool in the applica-
tions of the theory of basic formulas to EOL systems and forms (see [51).

Theorem III.1. For each x € 8*g* it is decidable whether or not there

exists a positive integer k such that x ¢ Lk‘

Proof.

By Lemma III.1, its proof and the obvious fact that the intersection of two basic

'(respeétively Q-positive) languages is again abasic (respectively
Q-posititve) language which can be found effectively, we can effectively
one by one generate a sequence of formulas @O(g), @l(g),, @Z(g), cee s

: *ok :
ol and L(@i(g)) nege" = Mi’
Then by Theorem II.1 there exists a positive integer i such that @i(g)

such that for i = 0, 25(8) €F

implies @r(g) for some r < i. Let io be the smallest i such that this

happens. Note that i, can be effectively computed. Then the theorem is

0
proved by establishing the following claim.

Claim III.3. There exists a positive integer k such that x ¢ Lk
if and only if

x € L1 U L2 u ... U Lio.

Proof of Claim III.3.

The if-part is trivial.
To prove the only if-part assume X € Lk for some positive integer k.

Let ix denote the smallestpositive integer i such that x ¢ Li . The fact
X

that ix < is proved by contradiction as follows. Assume ix > iO'

- - 10
Then Lemma II1.2 implies
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(1) x = ap, a € 6%, B € @* and

a a, such that

(2) there exists a derivation D : a
X

€3

15 %4

for all derivations D' : B I By I Bo AR B
X’

¢

aixpix € K1 and aiﬁi € K2 for 1 =1 < i

Then there eXists al=sjc< ix such that for all Bj € WJ(B),

a.B. € L. NK, =M . Then according to the definition of i,, there exists an
it iy 2 ig 0

r< iO such that ajﬁj €M Again applying Lemma III.2, there

. Thus aij € Lr'

exist%wawaérﬁvaf%bn-ﬁ : o 3'31 $'52 3 3 'Hr such that for all

j . . Ml. s B, = B = . - B
Bj € ¥y (p) and all derivations D' : Bj y By 3 B, I 3 B akBr € K;

and a'ip]ﬁ € K, for 1 =i < r. Combining the first j steps of D with D
and the first justeps of D' with D' and again applying Lemma III.Z2, we

get x € L for some t < ix; a contradiction. o

t
The fo]lowing result is a useful corollary of Theorem III.1. We need a

definition first.

Definitjon. Let K, K' ¢ &% be basic languages. Then
= X
¢
and x, €K for 1 =1i<¢}

g,(@,K,K") = {x € 6* & x x, for some ¢z 1, x, €K'

1¢6%2 59

Whenever 6 is understood we write g(¢,K,K"') rather than gg(®,K,K").

Corollary ITI.1. Let K,K' c 6% be basic languages then g(9,K,K")

is a basic language which can effectively be computed.

Proof.

Immediately from the proof of Theorem III.1. o
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We need the following terminology and notation.

(i) Let Z be a nonempty set and let v be an infinite sequence of elements

of Z. Then for each iz 1, (i) denotes the i th element of the sequence
T and ESEAT‘= {T(i) : i = 1}. The fact that < is a subsequence of % is
denoted by T << T | |
(i1) Let (Z,R) be a pair where Z is a set and R is a relation on Z. R is

called a quasi-order on Z if R is reflexive and transitive. R is called

a well-quasi-order on Z if every infinite sequence of elements of Z has

an infinite ascending subsequence (see,‘efg., [3], [4]) or more precisely
statedf for every T infinite sequence of»elements of Z %hére exists a

T <7, E infinite, such that for all i= 1, <(i)R T(i+1).Another equivaent
formulation (seex[3]) is the following: for every infinite sequence % of
e]emén?s of Z thgre exist 1 < i < J such that T(i)R’Tkj). Two elémenfé 7

b,c € Z are called R-equivalent, denoted b =p C» if bRc and cRb.

(iii) Let (Z,R) be a pair where Z is a set and R is a relation on Z.

For each nonnegative integer n, Z(n) denotes the cartesian product of n

identical factors Z, i.e. Z(n) =7 x ZX.u.. x 2L .
LSS —

n factors
ThenR(n) 55 the relation‘defined on Z(n) as follows. Let b,c ¢ Z(n),
T S (n). . ;
b = (bl’bZ""’bn)’ c = (CI’CZ""’Cn)’ Then bR'"/c if and only if biRci
for 1 =14 =n.

Clearly if R is a gquasi-order on Z, then R(n) also is a quasi-order on Z(n).

The following definition will be the basic tool in our considerations
concerning well-quasi-orders.

Definition. Let (Z,R) be a pair where Z is a set and R is a guasi-order
on Z. Let T be an infinite sequence of elements of Z.

T iswellquasi-ordered (with respect to R)

if and only if



for every'; < T, P infinite, there exists a < «5;, T infinite, such
that:?(i)R 7(i+1) for each i 2 1. o

Then the following result reformulates some resuTts.from [3].

Lemma A.1. Let (Z,R) be a pair where Z is a set and R is a quasi-order
on Z.
(1) An infinite sequence T of elements of Z is well-quasi-ordered with
respect to R if and only if R is a well-quasi-order on set 7.
(2) Let T3 Tose s
well-quasi-ordered with respect to R and let T be the infinite sequence

”’Tn be n infinite seaquences of elements of Z, n=> 1,

of elements of Z(n) defined by

f(i)-£~(fl(i),Tz(i),..‘,Tn(i)) for 1= 1.

Then T is well-quasi-ordered with respect to R(n).
Proof. I

See [3). ©

In the above we have presented a method to construct a sequence T,
well-quasi-ordered with respect to R(n) based on n given sequences well-
quasi-ordered with respect to R. Another analogous result will be pre-
sented now.

First we need the following definition.

Définition. Let (Z,R) be a pair where Z is a set and R is a relation
on Z. Then FIN(Z) = {X : X c Z and X finite}. (Note that § € FIN(Z).)
The relation R on FIN(Z) is defined as follows. Let b,c € FIN(Z). Then
bﬁc
if and only if
for every ¢' ¢ c there exists.a b'é¢ b such that b'Rc'. o

Immediately we get the following results,
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Lemma A.2. Let (Z,R) be a pair where Z is a set and R is a quasi-

order on Z.

~

(1) R is a quasi-order on FIN(Z).
(2) Let b € FIN(Z) and b',b" € b such that b'Rb" and b 7R b". Then

b=gb Swfb"}.

Proof.

(1) Obvious

(2) Let b,b',b" be as in the statement of the lemma. Clearly, since R
is reflexive, bR(b ~ {b"}). Also (b ~ {b”})ﬁ b. This is so because for
each ¢ €.b \ {b"}, cRc and for b", b'Rb" where b' # b", O

Based on the second part of the above lemma, we define reduced
elements of FIN(Z).

Definition. Let Z be a set and R a relation on Z. Let b € FIN(Z).
An element b" ¢ b is called redundant if there exists a b' € b such that

b'Rb" and b' éR b". b is called reduced if b contains no redundant elements. o

The above definition allows us to "simplify" elements of FIN(Z) without
“loosing any information" concerning R. Formally we have the following result,
Lemma A.3.vLet 7 be a set and R a quasi-order on Z. Let t,p be infinite
sequences of elements of FIN(Z) where for each i = 1, p(i) results from t(i)

by removing the redundant elements.
Then t is well-quasi-ordered with repect to R if and only if u is well-quasi-
ordered with repect to R.

Proof.

Obvious. o

Now we are ready to formulate a result analogous to point (2) of Lemma A.l.
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Lemma A.4. Let Z be a set and R a quasi-order on Z. Let Tyt

2,...,Tn
be n infinite sequences of elements of FIN(Z), n > 1, well-quasi-ordered
with repect to R and let T be the infinite sequence of elements of FIN(Z)
defined by

(i) = Tl(i) U Tz(i) Uu... U Tn(i) for i > 1.

Then T is well-quasi-ordered with repect to R.

Proof.

Let TaTysToanesTp be as in the statement of the lTemma. Define the sequence

p by

p(1) = (t,(1)5p(i)s. .57, (1)) For i 2 1.

Let T < 7, T infinite, (i) = =(4;) for iz 1.

Let © be the sequence defined by p(i) = p(J;) for iz 1.

Since T;:%Z,...,fn are wei]~quasi—brdered with repect to R, (2) of Lemma A.1
yields bris wé]T-quasi—ordered with repect to ﬁ(n). Since p < p , o infinite,
there existswa'g « P, p infinite, such that p(i) é(n) E(i+l), for i = 1.

Assume 5(1) = o(3, ) for iz 1.— =
1
Let then (i) = =(j, ) for i = 1. Obviously T < 7 and % is infinite.
i

Moreover (i) p(n) o(i+1) for i = 1,

ie. o3, ) R(M
;

o(jk ) for i 21,

i+l
i.e. (3, YR (d,  )s (3, ) Rt,(dy  )seees T (3, ) RT (3, )
e T L 20 M S | kgt T kg

for i = 1.

The latter result implies (see definition ﬁ)

e (G Y Uto(Gu ) U oo U (3, DR (105, VU3, DU .o Ux (3, )
19k, 20k, nUk, 19, 2k, ntk
for i = 1,

i.e. T(i) R T(i+l) for i = 1. Thus since T was an arbitrary infinite sequence

such that T <« 7 , the lemma holds. o
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In the rest of this section we will deal with the sets of vectors Vn
where n is a positive integer, defined by
Vn = {(Xl’XZ""’Xn) DXy € N for‘l <= 1=nand X5 = X5 for 1 =1 <n}.
As relation between elements of N we use

IA

The relation E(H) on N(n) will be denoted by Rn’
For 1 =j=nandbce FIN(Vn), Eiﬂj b and Eiﬁj b are defined by

min, b = min txg (X]sXps. 005X, ) € b}, and

J
max. b
J

n)

max {xj : (Xl’x2""’xn) € b}.
Now we are ready to formulate and to prove the main theorem of this section.
Theorem A.1. Let n be a positive integer. Then én is a well-quasi-order

on FIN(Vn).
Proof.

Clearly for each positive integer n, ﬁn is a quasi-order on FIN(Vn).

The proof that ﬁn is a well-quasi-order on FIN(Vn) goes by induction on n.

If n = 1 we have to prove that ﬁl is a well-quasi-order on FIN(Vl).

This is proved by contradiction. Assume that R1 is not a well-quasi-order on

FIN(V,). Then there exists an infinite sequence t of elements of FIN(V,)

1
such that for no 1 = i < j, ©(i)R, t(j) holds. This means that for all

1
1 =<1i< j, there exijsts an x € t(j) such that for every y € t(i), y > X.
Then obviously = must be finite; a contradiction. Hence él is a well-quasi-
order on FIN(VI).
Assume that the theorem holds for 1 = n < t. Then we prove that the theorem
also holds for n = t+1,
Let u denote an infinite sequence of elements of FIN(Vn). If u contains

infinitely many occurrences of the empty set, clearly an infinite ascending”

subsequence can be found. Otherwise there are two cases to consider,

U
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Case 1. There exists a j, 1 = j = n such that lim (gigju(i)) = =,

e

Let j be as above. Then 1 < p , @ infinite is inductively defined as follows.

(1) = p(k), where k is the smallest positive integer ¢ such that u(e)'# 2,

and for i =1,
w(i+1) = pu(k), where k is the smallest positive integer ¢ such that

—J
Then construct v the infinite sequence of elements of FIN(Vn_l) where for

Eﬁﬂd n(e) > max, n(i).

i 21, v(i) results from p(i) by removing the j'th component from all vectors

of w(i). Then we claim the following.

-

Claim A.1. For 1= i) < i,, 5(iy) R T(i,) if and only if v(i{)R _y v(i,).

Proof of Claim A.1l.

(i) Assgme'ﬁ(il)Rn'E(iz) and let ¢ € v(i,). Then there exists a’E'e'E(iz)
such that ¢ results from C by removing its j'th component. Then we

know that there exists a b€ [(i;) such that b R, C. Let b result

from b by removing its j'th component. Then b ¢ v(il) and clearly

-~

bR c. Since ¢ was arbitrary, v(il)Rn_1 v(iz) follows.

n-1
(1i) Assume Q(il)ﬁn_l v(i,) and let T € [(i,). Let c result from C by
removing its j'th component. Then there exists a b¢ v(il) such that

b Rn—l c. Let b be an arbitrary element of'ﬁ(il) such that b results
from b by removing its j'th component. Since Qigj'ﬁ(izj >‘mg§j'i(il),

we have b Rn'E. Since C was arbitrary,'ﬁ(il)én E(iz) follows.

This ends’the proof of Claim A.1. o

Now from the induction hypothesis follows the existence of v << v ,

Vv infinite and ascending with repect to én-l' Then using Claim A.1 the
existence of & << u , i infinite and ascending with repect to én follows.
This ends the proof in Case 1.

Case 2. There exists a nonnegative integer t such that for all j,

1<3=nand foreachiz=l, migd (i) = t.
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Let t be as above. We prove that u is well-quasi-ordered with respect to
ﬁn' Without loss of generality we can assume that all elements of p are
reduced (see Lemma A.3).

First1y we make the following observation.

(A.1) For i = 1 and each x = (Xl’x2""’xn) € pu(i), there exists an ¢,

1 =<1¢

1A

k such that xg = t.

The above observation is proved by a contradiction. Let i and x be as
stated above. Since min w(i) = t, there must be an y = (y1:¥90-00y) € 1(i)

such that Yy S t. Assume now that x = (xl’XZ""’X ) € p(i) such that

n

X5 > t for 1 = j < n. But then y R, x and x #p ¥. This implies that p(i)
n

cannot be reduced, a contradiction; hence (A.1) must hold,

Based- on—,~now n.t sequences of elements of FIN(Vn) are constructed.

For eadh'bai} (u,v) € {1,2,...,n} x {1,2,...,t} and i = 1 define

g,y (1) = L0 aXpae X)) € ul(i)  x, = Vi

Obviously
(A.2)  for iz1, p(i) = U kg (1)
‘ l1=us=n ?
1=v=t

~

We are now going to prove that each p is well-quasi-ordered with respect to Rn'

u,v
As in Case 1 again an infinite sequence of elements of FIN(Vn_l) is associated

with each My oy @S follows.

For 1 =u=n,1=v =<t define the infinite sequence v where for i = 1,

U,V

Vu v(i) results from Hy v(i) by removing from each vector its u'th component.

Then we claim the following.

Claim A.2. For 1 < i< 15wy ()R 1wy (35) 1f and only if

vu,v(il)Rn—l vu,v(iz)‘

Proof of Claim A.2.

Analogous to the proof of Claim A.1l. o

Since by-the inductive assumption VU v is well-quasi-ordered with respect to

b
-

Rn-l’ Claim A.2 implies that oy is well-quasi-ordered with respect to Rn



for each pair (u,v) € {1,2,...,n} x {1,2,...,t}. Then (A.2) together with

Lemma A.4 imply that p itself is well-quasi-ordered with respect to én and

this implies the existence of an infinite ascending subsequence with respect

to én' This ends the proof of Case 2.

Since for every infjnite sequence p of elements of FIN(Vn) we have demonstrated
the existénce éf an infinite ascending subsequence with respect to én’

R is a well-quasi-order on FIN(Vn).

This concludes the proof of the induction step and of the theorem. o
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