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ABSTRACT

This paper forms the last part of the sequence of three papers which
investigate the Generalized Post Correspondence Problem of length 2
(GPCP(2) for short). Using the results of the first two parts we
demonstrate that GPCP(2) is decidable. As a corollary we get that Post

Correspondence Problem of Tength two is decidable.






INTRODUCTION

In this paper we continue the investigation of the Generalized
Post Correspondence Problem of Tength 2 (GPCP(2) for short) started in
[ERT1] and [ER2]. Using several reduction techniques we demonstrate that
as far as the decidability status of GPCP(2) is concerned it suffices to
consider a number of "special" cases investigated in [ER1] and [ER2].
Since the decidability of those special cases was demonstrated in [ER1]
and [ER2] we are able to prove that GPCP(2) is decidable. The basic
tool in our solution is the notion of a stable instance of GPCP(2)
introduced in [ER1] and further investigated in [ER2].

We use the notation and terminology from the previous two parts.
Perhaps the only new notation is the following one. For an instance
I = (h,g,a1,a2,b1,b2) of GPCP(2), Right(I) denotes the set
{h(0),h(1),g(0),g(1)}.

Whenever we refer to a result from Part I or Part II of this
paper we precede its "identification number" by I and II respectively;

thus, e.g., Theorem I.3.1 refers to Theorem 3.1 from Part I.



1. FIRST REDUCTION THEOREM

In this section we demonstrate that in Considering the decid-
ability status of GPCP(2) one can restrict oneself to the investigation
of two cases: periodic and marked instances of GPCP(2).

Theorem 1.1. There exists an algorithm which given an arbitrary
Tnstance I of GPCP(2) that is not periodic, produces a positive integer
D and a finite set MAR(I) of marked instances of GPCP(2) such that
I has a solution if and only if either I has a solution not longer than
D, or there exists_a J e MAR(I) such that J has a So]ution.

Proof. v
.
Let I = (h,9,a;,8,,by,b,) be a non-periodic instance of GPCP(2).

Since I is non—periodic,'neither h nor g is a periodic homomorphism. -
Consequently h(01) # h(10) and g(0l) # g(10). Let z be the maximal
common prefix of h(01) and h(10) and let |z]| = My, s simi]ar]y let v be
the maximal common prefix of g(01) and g(10) and Tet |v| = mg. Let cyey
be the operation on {O,l}* such that for a nonempty word w = cu, ¢ € {0,1},
u € {0,131, cycl(w) = uc; also wé set cycl(A) = A. Then for a positive
integer k, eye denotes the k-folded composition of cyeq with itself. For
a homomorphism f of {0,1}* and a positive integer k we set f{k] to be equal
to the composition of f and cyey s hence f[k](w) = cyak(f(w)) for every
w e {0,1} .

Let ai = a5z and bi = blv. Let r be the minimal positive integer
such that for every word x € {0,1}" with x| = r, [h(x)] = [h(01)] and
g(x)] =z [g(01)|. For every word u ¢ {0,117 such that jul = r let

]

3, , = (z\ h(u)_):a2 and b, | = (v \ g(u])b,.



Let W = {(aZ,u’bZ,u) :

cycmh(h(c)) and let g' be defined by g'(c) = eye (g(c)) where
g

u € {0,1}+ and |ul = r}. Let h' be defined by

=

—
O

—t
i

c € {0,1}. It is easily seen that

T Gr ] et et
[ g]

Let MAR(I) = {(h',g‘,ai,a2 u,bi,b2 uz : (a2 u’bZ u) € W} and let
D =2r. It is easy to see that the theorem holds. The crucial observation

is that, by (1.1), for w,u € {0,1}" with lw| = r and |u] = r we have

alh(wu)_a2 = aih'(w),az,u and blg(wu)b2 = big'(w)bz,u. o



2. SECOND REDUCTION THEOREM

In the Tast section we have demonstrated that in considering the
decidability status of GPCP(2) it suffices to consider only periodic and
marked instances of GPCP(2). Since it is decidable whether or not an
arbitrary periodic instance of GPCP(2) has a solution, see Theorem I1.2.1,
in the next two sections we will consider marked instances of GPCP(2)
only.

In this section we demonstrate that if one considers the decid-
ability status of stable instances of GPCP(2) then it suffices to
consider nine "quite concrete" cases. (In what follows, for a word x
such that |x| = 2, we use #wo(x) to denote the prefix of x consisting
of the first two letters of x.)

Theorem 2.1. There exists an algorithm which given an arbitrary
stable instance I = (h,g,al,az,bl,bz) of GPCP(2) decides whether or
not it has a solution, unless I belongs to one of the following nine
categories.

I ¢ CAT

| if

=0, h(1) = 1a, where a ¢ {0,117, and

p
—~
(]
—

1

g(0) = 08, g(1) = 1, where g < {0,1}".
For i ¢ {0,1}, I ¢ CAT2 j if

i

h(0) = 0, h(1) = la, where o ¢ {0,1}", and
g(i) = 08, g(1-1) = 1y, where g,y ¢ {0,13".
For 1 ¢ (0,1}, T < CAT,  if
two(h(0)) = 00, two(h(1)) = 10,
two(g(i)) = 00, two(g(1-1)) = 10.
For i ¢ 0,13, I ¢ CAT, . if
two(h(0)) = 01, two(h(1)) = 10,

two(g(i)) = 01, two(g(1-i)) = 10.



For i € {0,1}, I « CAT5 i if

00, two(h(1)) = 11,

1]

two(h(0))
two(g(1)) = 00, #zwo(g(1-i)) = 11.

Proof. »

Consider an arbitrary stable instance I = (h,g,a],az,b1,b2) of
GPCP(2).
We consider separately several cases.
(I). At Teast one element of Right(I) is of Tength 1.
(I.T). If at Teast three elements of Right(I) are of length 1 then by
Theorem I.1.1 we can decide whether or not I has a solution.
(I.2). Assume that exactly two elements of Right(I) are of length 1.
(I.2.7). If either [h(0)] =1 and |h(1)] = 1 or |g(0)] = 1 and |g(1)] = 1,
then,by Theorem I.7.1 we can decide whether or not I has a solution.
-Thus we have the following case. |
(I.2.2). There exist k,2 e {0,1} such that (k)| =1 and [g(&)]| = 1;
if h(k) = g(2) then by Theorem 1.4.2 we can decide whether or not I has
a solution. Hence we assume that h(k) # g(1).

Let us consider h first.
Clearly we can assume that h(0) = 0 and h(1) = 1o for o # A (because
other cases can be reduced to this one using appropriate switches).

Now if g(0) = 1 and g(1) = 08 for 8 # A then by Theorem I.1.1
we can decide whether or not I has a solution.

Thus we can assume that g(0) = 08 and g(1) =1 for 8 # A, and
consequently I « CAT

']..
(I.3). Assume that exactly one element of Right(I) is of length 1.



Clearly we can assume that h(0) = 0. Consequently we have
h(1) = la for o # A and we have two possibilities for g:
either g(0) = 08 and g(1) = 1y for g # A, v # A,
or g(0) = 1y and g(1) = 08 for 8 # A, v # A.
If the first of these two cases holds then I e CATZ’O,otherwise Ie CAT2,1.
(IT). A11 elements of Right(I) are of length bigger than 1.

Clearly we can assume that first(h(0)) = 0 (otherwise we apply the
range switch).

We have the following possibilities for the pair (#wo(h{0)),two(h(1))).

(ay. two(h(0)) = 00 and zwo(h(1)) = 10,
(b). #wo(h(0)) = 01 and #wo(h(1)) = 10, and
(c). two(h(0)) = 00 and two(h(1)) = 11.

We do not have to consider the remaining possibility, two(h(0)) = 01

and two(h(1)) = 11, because applying the domain switch and the range switch
we get then the case (a) above.

(II.1). Assume now that first(g(0)) = 0.

Then thekreader can easily check that the application of Lemma I1.3.6

yields the following:

if (a) holds then two(g(0)) = 00 and #wo(g(1)) = 10,
if (b) holds then two(g(0)) = 01 and two(g(1)) = 10, and
if (c) holds then two(g(0)) = 00 and #wo(g(1)) = 11.

Thus 1in this case I ¢ CATS,O or I e CAT4’O or I ¢ CATS,O respectively.
(I11.2). Assume that first(g(0)) = 1.
Then the reader can easily check that the application of Lemma I1.3.6

yields the following:

I
It

if (a) holds then two(g(0)) = 10 and #wo(g(1)) = 00,

if (b) holds then #wo(g(0)) = 10 and #wo(g(1)) = 01, and

1]



if (c) holds then two(g(0)) = 11 and two(g(1)) = 00.
Thus in this case I ¢ CAT3 7 or I e CAT4 1 0r I e CAT5 1 respectively.
Consequently Theorem 2.1 holds. 0O



3. THIRD REDUCTION THEOREM

In this section we continue the investigation of stable instances
of GPCP(2). 1In particular, starting with the nine cases described in
the last section, we demonstrate that in considering the decidability
status of GPCP(2) it suffices to consider six categories which quite
precisely describe the exact patfern of images of homomorphisms involved
in an instance of GPCP(2). Since these six categories were investi-
gated in Part II of this paper we will be ready to settle the decid-
ability of GPCP(2) in the next section.

We start by recalling from Part II the definition of six (regular)
languages.

-+

For i £0,1}, Ay =47, B, = 1(1-1)" and ¢, = 1((1-1)1)"(a, (1-1)3.

1

Theorem 3.1. There exists an algorithm which given an-arbitrary
stable instance I = (h,g,a},az,b1,b2) of GPCP(2) decides whether or not
I has a solution, unless I belongs to one of the following six categories.
For i € {0,1}, T ¢ CL, if

As

h(0) Ag> (1) e Aps 9(i) € Ay and g(1-i) < A
For i ¢ {0,1}, I « CL

-
if
B

h(0) e AO, h(1) « By s g(i) « Ag and g(1-i) « B
For i € {0,1}, I € CL

1"

if
Cy

h(0) e CO’ h(1) « C1, g(i) « CO and g(1-1) « C].

Proof.
‘By Theorem 2.1 we may assume that I belongs to one of the nine
categories: CAT;, CAT, ., CAT5 ;, CAT, ,, or CAT5’1 for i ¢ {0,1}.

We will consider those categories separately.



(a). Assume that I CAT5,i for i ¢ {0,1}.

Hence two(h(0)) = 00, two(h(1)) = 11, two(g(i)) = 00 and two(g(1-i)) = 11.
Assume that h(0) ¢ 0". Then 0la suf(h(0)) for some o € {O,l}*.

However Ola is not prefix compatible with any element of {g(0),g(1)}

which contradicts Lemma I.3.6. |
Consequently h(0) « 0+; hence h(0) e Ag-
Assume that h(1) ¢ 1*. Then 10a e suf(h(1)) for some o « {O,l}*.

However 10a is not prefix compatible with any element of {g(C),g(1)}

>which contradicts Lemma I.3.6.

Consequently h(1) « 1+; hence h(1) ¢ Al‘

Similarly we show that g(i) e A, and g(1-1) « A;-

Thus I € CLAi.

(b). Assume that I e CAT4,1 for i ¢ {0,1}.

Hence two(h(0)) = 01, two(n(1)) = 10, two(g(1)) = 01 and wo(g(1-1)) = 10.
Assume that h(0) £ Cy- Then either 00u « suf(h(0)) or

1la e suf(h(0)) for some a « {0,1}*. However neither {00a} nor {1la}

is prefix compatible with {g(8);g(1}} which contradicts Lemma 1.3.6.
Consequently h(0) « CO.
Similarly we prove that h(1l) « Cys g(i) « Cy and g(l-1) « Ci-

Thus T ¢ CLci.

(c). Assume that I e CAT, . for i e {0,1}.
Hence #two(h({0)) = 00, two(h(1)) = 10, two(g(i)) = 00 and two(g(1l-i)) = 10.
Similarly to cases (a) and (b) we prove then that h(0) « Y

h(1) e B> g(i) e AO and g(1-1) « B;. Consequently I e Cly -
i
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(d). Assume that I e CAT, . for i ¢ {0,1}.

2,1
Hence h(0) = 0, h(1) = la, g(i) = 08 and g(1-i) = 1y where «,8,y ¢ {0,1}+.
If |a] =1 then |h(0)] < |g(0)] and |h(1)| < |g(1)] and so by
Theorem I.1.1 it is decidable whether or not I has a solution.
Thus we may assume that |o| =
Then if we consider all possibilities for (first(a),first(B)) we
get four cases, which we will consider now.
(d.1). first(a) = 0 and first(g) = O.
Hence h(0) = 0, h(1) = 10a', g(i) = 008" and g(1-i) = 1y where
0',8'sy € 10,11, a' # 4 and v # 4.
Observe that o' ¢ 0" as otherwise 0lp ¢ suf(h(0)) for some
o e {0,1}; but {0lp} is not prefix compatible with {g(0),g(1)} which
contradicts Lemma I.3.6.

*
Assume now that g' 4 0 .

Let x be a word over {0,1}. Then

#lg(x) = #19(0)#0x + #19(1)#1X ................................. (3.1)
Since 8' £ 0,

19( i) # 0 and #19(1 T) 0 vt e e e (3.2)
Since o' ¢ 0
FIN(X) = F1X e (3.3)

Let tl(x) = #lg(x) - #1h(x).

Then (3.1) and (3.3) implies that

tl(x) = #19(0)#0x + (#19(1) - 1)#1x ............................ (3.4)
Assume now that x is a solution of I. Then, obviously,

tl( X) < #raqasbibs oo (3.5)
and so (3.4) implies that
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(note that, by (3.2), #lg(O) #0).

Thus, by Theorem I.1.2, it is decidable whether or not I has
a solution.

So we can assume now that g8' e 0.
Thus h(0) = 0, h(1) = 10", n > 2 and g(i) = 0", m = 2.
From Lemma 1.3.6 it easily follows that

. k1, k2 s

g(1-i) = 10 “10 “... 10 * for some & = 1,
where if ¢ > 1 then kj zn for je {1,...,(2-1)}.

We consider separately two cases.

2 =1,
Then I ¢ CLB .
i
L =2,
Here we consider separately two cases.
i=0.

Then we have h(0) = 0, h(1) = 10", n = 2, g(0) = 0", m > 2 and
k. ko )
g(l) = 10 *10 “1 ... 10 *, 9 = 2 where kj =2n for j e {1,...,(2=1)7.

Thus by Theorem I.1.1 it is decidable whether or not I is solvable.



_]2-
i=1. -

1

Then we have h(0) = 0, h(1) = 10", n>2, g(1) = 0™, m = 2 and
k, - k

g(0) = 1Ok110 21 ... 10 2, % = 2 where kj zn for je {1,...,(2~1)}.
Construct ecol(h,g) = (.g). | |
It is easy to see that
h(0) = 0", g(0) = 1, R(1) = 15 for some & 0,11 and g(1) = 01" for
some r = 0. |

If r =0, then [g(0)] = [h(0)] and
|g(1)] = |h(1)], and so by Theorem I.1.1, Theorem I.3.1 and Theorem I.4.1
it is decidable whether or not I has a solution. |

However if r > 1, then 01" ¢ suf(g(1)) while {01} is not prefix
compatible with {h(0),h(1)}; this contradicts Lemma 1.3.6 and so
it must be that r = 0.

f

(d.2). first(a) = 0 and first(B) = 1.
Hence h(0) = 0, h(1) = 10a', g(i) = 018" and g(1-1) = 1y where
0,8y € 10,117, ' #14 and v # A.
It is easily seen that by Lemma 1.3.6, vy = Oy' for some
v oe (0,17, B |
Lemma 1.3.6 implies that o' = la" for sd&ngn“ek{éjii*.
Thus we have h(0) = 0, h(1) = 10la", g(i) = Ci' and g(1-i) = 10v'.
Then if is easily seen that, by Lemma I1.3.6, h{(0) ¢ CO’ h(1) « Cis
g(i) e'CO and g(1-i) € Cy.

Consequently I « CLC..
: i
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It

(d.3). first(a) = 1 and first(g) = 0.

Hence h(0) = 0, h(1) = 11la', g(i) = 008" and g(1l-i) = ly for some

*
o's8'sy € {0,1} ;' #Arand v # A.

It is easily seen that by Lemma I1.3.6, y ¢ 1+. Then, again by

Lemma I1.3.6, a' ¢ 1+.

By Lemma 1.3.6, 8' € 0*1* and consequeht]y we have h(0) = 0, h(1) = 12,
223, g(i) =0"1%, r=2,s20and g(1-i) = 1", n = 2.
We consider separately two cases.
i=0.
Then we have h(0) = 0, h(1) = 1%, ¢ = 3, g(0) = 0"15, r>2, s >0 and
g(1) =1", n=2
Let x be a word over {0,1}. Let
to(x) = #49(x) - #gh(x).
Then we have
tO(x) = (r—l)#ox ............................................... (3.6)

Assume now that x is a solutibn of I. Then, obviously,
tO(x) < #OalaZble
and so, by (3.6),

#.a,a,b.b
0"172"1"2
#Ox < —TT
(note that since r = 2, r-1 # 0).

Thus, by Theorem I.1.2 we can decide whether or not I has a solution.

Then we have h(0) = 0, h(1) = 1%, 2 2 3, g(0) = 1", n= 2 and g(1) = 0"15,



TS,

If s = 0 then h(0) e Aé, h(1) e A, g(0) < Ay and g(1) € Aj.

1
Consequently I e CLAl.

So let us assume that s = 1.

Construct ecoz(h,g) = (h,g). It is easily seen that h(0) = 012
for some z > 1, (1) « 17, 3(0) « 10" and g(1) « 0.

But if |g(1)] = 2 then 017 ¢ suf(R(0)) while {017} is not prefix

compatible with {a(0),g(1)}, which contradicts Lemma 1.3.6.

Consequently g(1) = 0. If [g(0)] = 1 then |g(0)] = |h(0)]
and |g(1)] < |h(1)|; thus by Theorem I.1.1, Theorem I.3.1 and Theorem
[.4.1 9t is decidable whether or not I has a solution. If |g(0)] = 2

then by Lemma I1.3.6 it must be that'ﬁ(l) = 1; thus, again, by Theorem
I.1.1, Theorem I.3.1 and Theorem I.4.1 it is decidable whether or not

I has a solution.

(d.4). first(a) = 1 and first(p) = 1.
Then we have h(0) = 0, h(1) = 1la', g(i) = 018" and g{1-i) = 1y for some
'8 sy € 10,1V, a' #4 and y # 4.

It is easily seen that, by‘Lemma [1.3.6, it must be that vy ¢ 1+,
R' € 1* and o' < 17, Consequently, h(0) = 0, h(1) = 1", n = 3, g(i) = 01",
m=1and g(1-i) = lr,_r = 2. Applying the domain switch and the range

switch we get thenkthat I e CLB .
i

(e). Assume that I e CAT;.
Hence h(0) = 0, h(1) = la, g(0) = 08 and g(1) = 1 where a,8 ¢ {O,l}+.
Then, if we consider all possibilities for (first(a),first(8)), |

we get four cases which we will consider now.

i

(e.1). first(a) = 0 and first(g) = 0.

Hence h(0) = 0, h(1) = 10a', g(0)

it

008' and g(1) = 1 where o',8' € {0,1}".
By Lemma 1.3.6, a' < 0.
As far as 8' is concerned we have two possibilities.

#:8' > 0.
Let x be a word over {0,1}. Then

= #.x and #1g(x) = #x + #19(0)#0x.

#1h(x)
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Consequently
tl(x) = #1g(x) - #1h(x) = #19(0)#Ox = #18'#0x.
Assume now that x is a solution of I. Then, obviously,
tl(x) < #1ala2b1b2
and so

#131850405

#ax < :
0 #18

Consequently, by Theorem 1.1.2, we can decide whether or not I has a
solution.

#IB' = 0.

Then h(0) = 0, h(1) = 10", n =1, g(0) = 0™, m = 2 and g(1) = 1;

hence I ¢ CLB .
0

(e.2). first(a) = 1 and first(8)

1.

Hence h(0) = 0, h(1) = 1la', g(0) = 01g"' and g(1) = 1 where a',8' ¢ {0,1} .

It is easily seen that applying the domain switch. and the range
switch and the homomorphisms switch one obtains case (e.1l).
(e.3). first(a) = 0 and first(B) = 1.
Hence we have h(0) = 0, h(1) = 10a', g{0) = 018' and g(1) = 1 where
a',B' e‘{O,l}*.

We consider separately three cases.

a' # A and B' # A.

Applying (iteratively) Lemma I.3.6 one can easily see that then h(1) « Cq

and g(0) « C,; consequently I ¢ CL. .

Hence h(0) = 0, h(1) = 10, g(0) = 01g' and g(1) = 1.

Let x be a word over {0,1}. Then we have

1]

#1h(x) = #1x and #1g(x)
Thus

#ix F #19(0)#OX'

tl(x) = #1g(x) - #1h(x) = #19(0)#0x.
Assume now that x is a solution of I. Then, obviously,

tl(x) < #1a1a2blb2
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and so

_ T181%01%

#OX < —W
Consequently, by Theorem 1.1.2, we can decide whether or not I

has a solution.

Hence h(0) = 0, h(1) = 10a', g(0) = 01 and g(1) = 1.
It is easily seen that applying then the domain switch, the range
switch and the homomorphisms switch one gets case o' = A.

0.

(e.4). first(a) = 1 and first(B)
Hence h(0) = 0, h(1) = 11a', g(0)

00g' and g(1) = 1 for some
o', e 10,11,

* % * %
It is easily seen that, by Lemma 1.3.6, a' ¢ 1 0 and g' ¢ 01 .

Ko¥, k = 2, g(0) = A™", m = 2 and g(1) = 1.

Thus we have h(0) = 0, h(1) =1
We note that if both 2 # 0 and n # 0 then we have
0 = Zast(h(0)) = Zast(h(1)) # Zast(g(0)) = Zast(g(l)) = 1 which contradicts
Lemma I.3.7.
Thus we have three cases to consider.

¢ =0 and n # 0.

k, g(0) = 0™" and g(1l) = 1.

Then h(0) = 0, h(1) =1
Let x be a word over {0,1}. Then we have
#Oh(x) = #Ox and #Og(x) = m#ox.
If x is a solution of I then we have
and consequently

#02132P1b7

70X ]

(note that m = 2 and so (m-1) # 0).
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Thus, by Theorem I1.1.2, it is decidable whether or not I has a
solution.

n=20and 2 # 0.

k

Then h(0) = 0, h(1) = 1%0%, g(0) = 0™ and g(1)

i

1.
It is easily seen that applying the domain switch, the range
switch and the homomorphisms switch one gets the case n # 0 and ¢ = 0.

n=20and £ = 0.

Then h(0) = 0, h(1) = 1%, g(0) = O™ and g(1) = 1; hence I ¢ Ly
0
This completes our proof of the theorem. o
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4. THE MAIN THEOREM

In this section we demonstrate that GPCP(2) is decidable. The
algorithm deciding whether or not an arbitrary instance I of GPCP(2)
has a solution uses algorithms from Part I and Part II of this paper
which settle the decidability of various subcases; the validity of the
algorithm follows essentially from the reduction theorems presented in
this part of the paper.

Theorem 4.1. 1t is decidable whether or not an arbitrary instance
of GPCP(2) has a solution

Proof.

The following algorithm given an arbitrary instance I of GPCP(2)

gives answer YES is I has a solution and answer NO if I has no solution.

(In the following flowchart of our algorithm, D is the constant from the
statement of Theorem 1.1 and C is the constant from the statement of
Theorem I.3.1; the set MAR(I) is the set referred to in the statement of

Theorem 1.1).
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Test 1 is obviously effective.
Test 2 is effective by Theorem I.2.1.
Test 3 is obviously effective.
Construction 4 is obviously effective.
Test 5 is effective by Lemma I.3.8.
Test 6 is effective by Theorem I.4.1.
Construction 7 is effective by Lemma I.3.8.
‘Test 8-is obviously effettive.
Test 9 is effective by Theorem 3.1 and Theorem II1.7.1.
~ The correctness of the algorithm follows from Theorem I.3.1,
Theorem I.4.1, Theorem I1I.7.1, Theorem 1.1 and Theorem 3.1. o
Corollary 4.1. It is decidable whether or not an arbitrary
instance of PCP(2) has a‘so1ution.
Proof.

PCP(2) is a special case of the GPCP(2). [
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