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ABSTRACT

Let =, A be (finite) alphabets where 1 consists of one letter
only. Let fl,fz,gl,gz be homomorphisms from £* into A* and let
al’aZ’aB’bl’bZ’b3 be words over 4. We demonstrate that it is decidable
whether or not the equation alfl(xl)azfz(xz)a3 = blgl(xl)bzgz(xz)b3

has a solution.



INTRODUCTION

Equations in free monoids are used quite frequently in solving
various problems of formal language theory, see, e.g., [La], [Le] and
[S]. In particular equations involving homomorphisms of free monoids
are met frequently in the theory of L systems and the theory of equality
languages which investigates solutions of Post Correspondence Problem
and its generalizations (see, e.g., [RS]).

In this paper we investigate the following type of equations.

. f

Let f ,gn be homomorphisms from £* into A* where & consists
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of one letter only and let al""’an+1’b1""’bn+1 be words over A. Then
the equation of the form alfl(xl)azfz(xz)...anfn(xn)an+1 =
blgl(xl)bzgz(xz)..lbngn(xn)bn+1 is called a unary n-fold equation. We
demonstrate that the problem "Does an arbitrary unary 2~fo]d.equation
have a solution?" is decidable, and we arque that the same problem for
an arbitrary unary n-fold equation is decidable. Our result turns out
to be quite important in demonstrating that the Post Correspondence

Problem for 1lists of length two is decidable (see [ER]).



I. PRELIMINARIES

We use standard language-theoretic notation and terminology.
Perhaps only the following points require additional comments.
In this paper we consider finite alphabets only.
For an integer n, abs(n) denotes the absolute value of n.
For a finite set Z, #Z denotes its cardinality.
For a word x, |x| denotes its length; A denotes the empty word.
For words x and y we write x sub y, x pref y and x suf 'y if x is a subword
of y, a prefix of y or a suffix of y respectively (x is a subword of y if
there exist words yl,yz such that y = y1><y2; y is its own prefix and
its own suffix). For a nonnegative integer m, we use prefh(y) to
denote the prefix of y of length m. If x pref y then x\y denotes
the word z such that xz = y. We say that x and y are cyclic conjugates
of each other if for some words w and z we have x = wz and Y = Zw;

we write then x v y.

In this paper we consider propagating homomorphisms only (a homomorphism is

called propagating if for no Tetter a, h(a) = 4).

We recall now a basic combinatorial result, see, e.g., [H].

Lemma 0. Let u,v € A% . Then u = w" and v = w" for some w ¢ a¥,
m, n = 0 if and only if there exist p,q = 0 so that uP? and v9 contain
a common prefix (suffix) of length |u| + [v| - z where z is the greatest
common divisor of |u| and |v|. o

The following notion is quite basic for this paper.

Definition. Let f, g be homomorphisms, f, g : 2% - A* where
#L. =1, say © = {0}). We say that f and g agree, and write them f agr g,
if there exist aps0, € A* and positive integers m, n such that
f(0) = (alaz)m and g(0) = (azal)n. Otherwise we say that f and g

disagree and write f dagr g. [J



It is not difficult to see that agr is an equivalence

relation. The following property of the agr relation will be useful in the

sequel.
Lemma 1. Let f, g be homomorphisms, f, g : o* > A* where #& = 1.
If f dagr g and f(x)subg(y) for x, y ¢ ©% then |x| < max{z,ztﬁfgi}_
|£(0) |
Proof.
~19(0)]
Assume that f(x) sub g(y) where |x| > max{2,2 l (O)’} and so
£(0) |

[f(x)| > 2|g(0)|. Hence there is a cyclic conjugate a of g(0) such that
aP and f(O)q where p,q > 2 contain a common prefix longer than |a| + |f(0)].
Thus by Lemma O,a = w" and f(0) = W" for some w € 4" and m,n = 1 which

implies that f agr'¢; a contradiction. o
In this paper we investigate the following equations.
Definition. Let n be a positive integer, & and A alphabets
* *
where #: = 1. Let fl,.,.,fn,gl...,gn be homomorphisms from £ into A
*
’an+1’b1"'”bn+1 e & . Then an wunary n-fold equation

and let al,...

is an equation of the form

alfl(xl)azfz(xz)....fn(xn)an+1 = blgl(xl)b2q2(x2>‘"gn(xn>bn+1 ..... (En)
in variables xl,...,xn.

*
A solution of (En) is a vector (al,....,an) with SRR such that

afy(ep)ayfolay). o f (a)a, g = b9 (ag)bygp(ay). g ()b, g
If (En) has a solution we say that it is soZvable. []

The following decision problem will be the subject of investigation
of this paper.

Definition. The unary n-fold solvability problem is defined as follows:

"Let (En) be an arbitrary unary’n—fo1d equation. Is (En) solvable?" [J



IT. UNARY 1-FOLD EQUATIONS

In this section we will demonstrate that the unary 1-fold

' solvability problem is decidable.

Theorem 1. 1t is decidable whether or not an arbitrary unary
I-fold equation has a solution. |

Proof.

Consider a I-fold equation
a;f(x)a, = brg(x)b, o (E1)
where f,g are homomorphisms from Z* into A*, £ = {0} and al,az,bl,b2 € A*.
Clearly it is decidable whether or not x = A is a solution of El‘ So we
will assume in the rest of this section that x = 4.
We investigate separately the following cases.
(1). f agr q.
Let us assume that x = o is a solution of (El)ﬂ and Tet us consider the
following two cases.
(1.1). [f(a)]| = |g(a)].
Let d; = Ealf(a)azl and d, = fblg(a)bgj.

Since o is a solution of (El)’ d; = d, and consequently

101Dy 1 - aja,)|
] = ,
IT(0)] - |9(0)]
(notice that [f(0)] - |g(0)| = 0, because otherwise one gets

[f(a)| = [g(a)]; a contradiction)



Thus in this case if a solution of (El) exists then it is unique and
can be effectively found.
(1.2). [f(a)] = |g(a)]
Since f agr g, this implies that f(0) ~ g(0).
Let q; = [a;[,a; = [b ], a = max{ay,a50, py = layl, by = b,
p = max{p,,py} and Tet r = [f(0)] = [g(0)]. Let ¢ = alf(a)a2 = blg(oc)b2
and Tet t = q+p+3r. '
" Assume that § = X ---X, where s > t and Xl,...,XS’e Ay also let
a = 0" for some m = 1 (notice that s > t implies that m > 3). Let
Uy = S-pgs U& = s-Bi and u = min{ul,ﬁi}. Let n be the smallest positive
integer such that a4y +nr > q and Tet n be the smallest positive integer

such that ai + nr>g. Clearly q, + (n+l)r < u, 5i + (n+1)r < u and

IA

moreover (we assume that a4, +nr ai + nr; the other case can be

considered in an analogous way)

Xl"'Xq1+nrqu+(n+1)r+1xq1+(n+1)r+2'" S

Xl"‘Xa&+ﬁkxai+(ﬁ¥l)r+1xai+(ﬁ¥1)r+2"‘Xg'
Thus
a, F(0" Na, = b.g(d™ b

1 2 1° 2°

Consequently x = o™ s atso a solution of (El).

Hence we have just shown that if (El) has a solution o« = Q" such

that [f(a)] = |g(a)]| then (El) has such a solution where Ialf(a)a < t.

)|
Thus, also in this case, one can decide whether or not (El) has a solution
and if (El) is solvable one can effectively find a solution of it.

(2). f dagr g

Let us assume that o is a solution of (El)‘ If o is such that



both |f(a)| and |g(a)]| are longer than
t = abs(]a [-]by[) + abs(la,|-[b,]) + (2max {|£(0)],[g(0)]3)?
then there exist words x, y e ©° such that either f(x) sub gly)

[9(0) | |T(0)]
}, or g(x) sub f(y) where |x| > max{2,2—— 1},
£(0)| 19(0) |

1 F(0) |
which contradicts Lemma 1 (note that max{2,? Taz@jT& = 2 max{|[f(0)|, [g(C)|}.

where |x| > max{2,2

Thus if o is a solution of (El) then either [f(a)| <t or
lg(a)| < t. Consequently also in this case it is decidable whether
or not (El) is solvable; moreover if (El) is solvable one can effectively
~ find a solution (as a matter of fact, all solutions) of it.

The theorem follows from (1) and (2). 1[I



ITI. UNARY 2-FOLD EQUATIONS

In this section we will demonstrate that the unary 2-fold

solvability problem is decidable.

Consider a unary 2-fold equation

alfl( )azfz( )a ay = blgl(x)ngZ(Y)bB ................................... (Ez)
* *
where fl,fz,gl,g2 are homomorphisms from ¢ dinto a , r = {0} and
boabobe e b

A1°82°83501>02003 <
Clearly if we look for a solution of (E2) of the form

(x,¥) = (1,8) or (x,y) = (a,A) then the problem reduces to a unary
1-fold equation. Hence in the rest of this section we assume that we
are interested in solutions (a,8) of <E2) where o = A and B = 1.
We start by considering a special case of (EZ)'
Lenma 2. Assume that there effectively exists a positive integer
constant C such that for every solution (a,g) of (EZ) we have
(faf p(e)a 2{ - lblgl(a)bzI) < C. Then it is decidable whether or

not (EZ) is solvable.

Proof.
(I). Consider all solutions (a,8) such that
191 bzl > ]alfl(a)azj .................... e ($1)

where the assumption of the lemma is satisfied, that is,

Ib

Ib bzf }al 1 (o 2{ <C

Thus in this part (I) of our proof, whenever we say "consider a

199 (o

solution (a,8) of (EZ) (al1 solutions (a,g) of (EZ))“ we mean a solution

(a,B) of (EZ) (a1l solutions (u,s) of (EZ)) satisfying restriction ($1).



Let m be a nonnegative integer, m < C. (Intuitively speaking,
for each m < C we will consider a possibility that (EZ) has a solution
(c,8) where Iblg1 )bzi la ! (a)a 2[ =m.) Let r be the minimal positive

integer such that r(fz )| > m and Tet s be the minimal positive integer

such that sjgl(O){ > m.

r
Let w = (prefy(f,(07)) ~ £,(07) , z = g,(0")
A r A 3
W= £1(0%)a, pref, (f,(07)) and Z = g,(0°)b,
Consider the following system of equations
A A

alfl(x) W = blgl(x) z

wfy(y)ag = zg,(y) by
Let R be the maxima] among all r (constructed for all m < C) and let S be
the maximal among all s (constructed for all m‘s C).
(i). MNotice that if (Fm) has a solution then also (EZ) has a solution.
Moreover, given a solution of (Fm),one_can effectively construct a
solution of (EZ).

This is seen as follows.

Assume that (a,g) is a solution of (Fm).
Then
alfl(u)Q\vfz(y)a3 =

= alfl(a)fl(os)azfz(o*)fg(g)a3 =

= b9, () g7 (0°)byg,(07)g, (8)b
and consequently (o 0°,0" ) is a solution of (EZ)'
Thus (i) holds.
Next for every y e {0} such that lv| < S consider the equation

alfl( )azfz( y)a ay = blgl(y)bzgz(y)b3 ..... T, (Ty)



and for every vy « 03" such that [v| < R consider the equation

alfl(x)azfz(y)a3 = blgl(x)bzgz(y)b3 ................................... (UY)

(ii). Notice that if (TY) has a solution then also (EZ) has a solution.
Moreover, given a solution of (Ty) one can effectively construct a
solution of (EZ)'

This follows because, obviously, if B is a solution of (TY) then
(v,8) is a solution of (EZ)'
(i11). Analogously we see that if (UY) has a solution then (EZ) has a
solution and moreover, given a solution of (Uy) one can effectively
construct a solution of (Ez).
(iv). Consider now possible solutions (a,8) of (EZ).
(i.v.1). If |a] >$ and |8] > R then, obviously, for some m < C the
system of equations (Fm) has a solution.
(i.v.2). If |a| =S then, obviously, there exists a y such that (TY)
has a solution.
(i.v.és, If |8] <R then, obviously, there exists a y such that (Uy) has
a solution.

Now the Temma (under the condition ($ )) follows from (i) through
(iv), Theorem 1 and the fact that each system (Fm) of equations consists
of two independent equations.
(IT1). Consider all solutions (a,B) such that

JayF(@)ay] > [byay(a)by]ven i (5,)

19 (e
where the assumption of the Temma is satisfied.

Analogously to the case (I) we can prove that it is decidable
whether or not there exists a solution («,B) of (EZ) such that both ($2)
and the assumption of the lTemma is satisfied. Moreover, if the answer

is positive one can effectively find such a solution.



-10-

Cases (I) and (II) together yield the proof of Lemma 2. 0

Theorem 2. 1t is decidable whether or not an arbitrary unary
2-fold equation has a solution.

Proof.

Consider the equation <E2)‘

We investigate separately the following cases.
[I]. There exists a pair of homomorph1isms hl’ h2 from the set
{fl,fz,gl,gz} such that h1 dagr h2.

We distinguish the following subcases of this case.
[1.17. fl dagr gl.

Consider all possible words v, § of the form y = alfl(x),
§ = blgl(x) such that x # A and either v pref 6 or § pref v. By
Lemma 1 the set Z of all such pairs is finite and can be effectively
constructed. Now for each x such that (y=a1f1(x),6=blgl(x)) e 7 we
consider the equation

-

yazfz(y)a3 = 6b292(y)b3 ........................................ (E1 X).
Clearly (a,B) is a solution of (EZ) if and only if 8 is a
solution of (E; ). Since the number of equations (£, ) is finite and
all of them can be effectively constructed, it follows from Theorem 1
that Theorem 2 holds in the case [I.1].
[1.2]. f, dagr g,.
This case is analogous to the case [I.1].
[I.3]. f) dagr f,, fl agr g; and f, agr 9y-
Notice that (because agr is an equivalence relation) we have that

fZ dagr 9 and fl dagr 9,- We will demonstrate now the following.



(i). If (a,8) is a solution of <E2) then there exists effectively a
positive integer C such that abs( {a 1 (a)a ] - jblgl(a)bzl) <
To prove this claim we consider separately two cases.

[f,(0)] o —

""" Let D = max{2, ZI_EWMET& aﬂdfcm:fBﬂmwffféijTjﬁ@i{@?}} + abs [a31 f f +jg2];“
S 0
Assume that fblgl(a)bzl la )a | > C.

Then there exist words v, ¢ « Z* such that gl(v) sub f?(S) where |y| > D,
which contradicts Lemma 1.

Hence Iblgl(a)bzl - }alfl( a)a 2! < C.
(i.2). Let Ialfl(a)azj > fblgl(a)bzi.

[£,(0)]
Let D = max{2,2———} and C = Dmax{|f;(0)], 19,(0) [} + abs ( [d,[ [bal) + la,].
19,(0)] )

Assume that Ja 1 (a)a a5 - [blgl(a)bZI > C.

.
*
Then there exist words v, 6 € © such that gz(y) sub fl(é) where |y| > D,

which contradicts Lemma 1.

Hence ]a ] (a)a 2] - fblgl(a)sz < C.

Now, (1) follows from (i.1) and (1.2).

Thus Lemma 2 implies that the theorem holds also in this case.
[II]. Every pair of homomorphisms hl’ h2 from the set {fl,fz,gl,gz}

is such that h, agr h2.

1
Let p be a word of the smallest length such that



ks 2, £,
,»fZ(O) =P 91(0) = Py~ and 92(0) = Py

where all of the words p, Pys Poo p3 are pairwise cyclic conjugates.
First of all we notice that by Theorem 1 it is decidable whether
or not (E,) has a solution (a,B) such that either |a| <2 or [g] < 2
(and if such a solution exists it can be effectively found).
Thus from now on we assume that x, y in (EZ) are such that both
x| > 2 and |y| > 2.

We construct now the 2-fold equation

alfl(x)azfz(y)a3 = blgl(x)bzgz(y)b3 ................................. (E2>
where
Kk k L £
— — 2 —
F100) = p 1, F,(0) = p %, G (0) = p b, Gy(0) = p 2,
k=1
a, = app
1 1 >
- ! k2"1 [T 3] I
a, = azplp where p1 = p1 1 and p1 pl = p,
a3 = pl a33
o 1 Kl"l i ] 3] '
by ¥ bypyp where p, = p,p, and p,p, = p,
] i 'Z '1 [ S ] ty 1

b2 =Py b2p3p 2 where P3 = p3p3 and Py Py =P, and
by = Py by

From the construction of (EZ)‘it easily follows that (EZ) has a
solution if and dnly if (Eé) has a soTution and moreover, given a
solution of (Eé) one can construct effectively a solution of (EZ)”
We consider now the following cases.

(1). Eé is not a power of p.
Let g = max([f (0)],[f,(0)],]a;(0)].]g,(0)]}, w = aja,a3bb,b; and Tet
C=3q(lw|+]pl).

Let (a,8) be a solution of (Ez).



Then we have
abs([é’?ﬁ(a)é&l —IE&@i(a)bZ])s G i e ($3)
which is seen as follows.

Assume that }Eiéi(u)Bél —]5&?&(&)5&] > C. Then the choice of C
guarantees that }Ei?i(a)aé[ ~IB&[ >{ay| +[p| and IEé?é(B)Eé[ - [byl > lay |+ [pl.
Consequently péé p is a subword of a word of the form pS for some s = 3.

Since p was a word of the smallest length such that fl(O) is a power of p,
this implies that Eé is a power of p; a contradiction.

Similarily we get a contradiction when we assume that

blgl(a)gzl > C.
Consequently ($3) holds.

@, ()3, ] - |

(i1). Analogously, assuming that Eé s not a power of p and («,8) is a

solution of (E), we get that ($.,) holds.

3)
Hence we have the following.

(ii1). If either Eé is not a power of p or Eé is not a power of p then

one can decide whether or not (Eé) has a solution, and if ( 2) is
soTVab1e then one can effectively find a solution of it.

To conclude the proof assume now that

t

(iv) both a, and b, are powers of p, say Eé = p° and Eé =p-.

2 2
First of all notice that by Theorem 1 it is decidable whether or

not (Ez) has a solution (a,8) such that either |a| < 2a1a2a3b1b2b3[ or

8| < }a1a2a3b1b2b3f; moreover, if such a solution exists one can
effectively find one.
Thus we assume that both o and g are longer than ialazaSEib2b3I.
We have to consider now four cases depending on whether or not

the values of ([a,| ~]E&1) and ({Eél-niEéf) are negative or not.

(iv.1). Assume that [5&{ < {Eil and ]5&! > !551 (the reader can

check the remaining cases).
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First of all we notice that both {Eil —lé&] and }Eé{*-|Eé} are
divisible by |p|; since otherwise p could not be a minimal period of
f,(0). Say [Eﬁ] —|5i] =r |p| and }Eél-»]Eé] = u |p| for some r, u = 0.

Consequently (Eé) has a solution if and only if the equation
r + kln + 5 + k2
in variables n and m has a positive solution (that is we assume both

m = Kln +t + Kzln e TP (G)

nand m > 0). Moreover, if (n,m) is a positive solution of G then
(0", 0™ s a solution of (Eé).

Consequently the theorem holds also in the case (iv.1).

The remaining three subcases of (iv) are proved in the same case.

But (i) through (iv) conclude the proof of case [II] and the
theorem follows from [I] and [II].

Remark. In this paper we have demonstrated the decidability of
the unary Z-fofd solvability problem. Our method of solution consists
of showing "directly" how to solve the problem in some cases and how
to reduce the problem to the unary 1-fold solvability problem in the
remaining cases. This method can be elaborated to prove the decidability
of the general unary n-fold solvability problem. However, the solution
becomes quite tedious and for this reason we have decided to present
a solution of the problem when n = 2. The interested reader can

certainly carry out the obvious generalization himself.
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