ON THE SEPARATING POWER OF

EOL SYSTEMS

by

A. Ehrenfeucht*
and
G. Rozenberg

QU-CS-186-80

September, 1980

* A. Ehrenfeucht Dept. of Computer Science University of Colorado, Boulder Boulder, Colorado 80309

** G. Rozenberg
Institute of Applied Math. and Computer Science
University of Leiden
Leiden, The Netherlands

All correspondence to the second author.

ABSTRACT

A word is called a *pure square* if it is of the form yy where y is a nonempty word; it is called a *square* if it contains a pure square — otherwise it is called *square-free*. A language K separates languages K_1 and K_2 if $K_1 \subseteq K$ and $K_1 \cap K_2 = \emptyset$. It is demonstrated that no EOL language (and hence no context-free language) can separate the set of all pure squares over an alphabet Δ from the set of all square-free words over Δ , where Δ has at least three letters. Thus the set of all square words over Δ is not an EOL language (and so it is not a context-free language). This settles an open problem posed by J. Berstel and L. Boasson.

INTRODUCTION

Let L be a class of languages. A way to investigate the structure of languages in L is to aim at results of the form: "If $K \in L$ and K contains some words, then K must contain some other words". A classical result in this direction is the pumping-lemma for context-free languages (see, e.g., [H]). In the pumping lemma "some words" are distinguished by certain minimal length. In general one would like to have a result of the form: "If $K \in L$ and K contains words satisfying property P then K must contain some other words (e.g., not satisfying P)" where P is a combinatorial property of words. Such a result can be formulated as follows. We say that K separates languages K_1 and K_2 if $K_1 \subseteq K$ and $K \cap K_2 = \emptyset$. Then we set K_1 to be equal to the set of words satisfying the property P (or to its subset) and we set K_2 to be equal to the set of words satisfying a property P (or to its subset) and we get the following formulation of the desired result: "If $K \in L$ then K does not separate K_1 from K_2 ".

A very basic combinatorial property of a word is a structure of repetitions of its subwords. Following [T] we say that a word is square-free if it does not contain a subword of the form yy where y is a nonempty word; otherwise we say that the word is a square. A word is a pure square if it is of the form yy where y is a nonempty word. Then a language is called square-free (square, pure square) if it consists of square-free (square, pure square) words only. Square-free languages (and sequences) have a large number of interesting mathematical applications and interpretations (see, e.g., [S2]). Also recently they form an active research topic within formal language

theory (see, e.g., [B], [ER], [S1] and [S2]).

Because of the pumping lemma it is clear that given an alphabet Δ with at least 3 letters (there exist only six square-free words over an alphabet of two letters!) no context-free language can be equal to (the infinite subset of) the set of all square-free words over Δ . However, pumping is a mechanism generating repetitions of words and so it is quite natural to ask whether a context-free grammar can generate the set of all squares over Δ . (This question was posed by J. Berstel and L. Boasson from Paris).

In this paper we answer this question in negative. As a matter of fact, we prove a quite stronger result: no EOL language (see, e.g., [RS]) can separate the set of all pure squares over Δ from the set of all square free words over Δ . This settles the original problem because the class of EOL languages (strictly) contains the class of context-free languages. We believe that our result contributes to the understanding of the combinatorial structure of EOL (and hence also context-free) languages.

We assume the reader to be familiar with basic theory of EOL languages, e.g., in the scope of [RS].

PRELIMINARIES

We will use mostly standard formal language-theoretic notation and terminology. Perhaps only the following points require an additional comment.

For a word x, |x| denotes its length and alph(x) denotes the set of all letters occurring in x; Λ denotes the empty word.

For a language K, #K denotes its cardinality and alph K = $\bigcup_{x \in K} alph(x)$; $K_1 \setminus K_2$ denotes the set theoretic difference of languages K_1 and K_2 . For a finite set K, #K denotes its cardinality.

A homomorphism h: $\Sigma^* \to \Delta^*$ is termed *propagating* if h(a) $\neq \Lambda$ for all a $\in \Sigma$.

In this paper we consider finite alphabets only.

We will follow [RS] in our notation and terminology concerning L systems. In particular we denote an EOL system by $G = (\Sigma, h, S, \Delta)$ where Σ is the alphabet of G, h its finite substitution, S its axiom and Δ the terminal alphabet of G. We will also use $\alpha \mathcal{I}(G)$ to denote Σ and maxr(G) to denote $max\{|\alpha|: \alpha \in h(a) \text{ for some } \alpha \in \Sigma\}$.

The analysis of derivations trees in an EOL system plays an important role in this paper. We will use somewhat informally the notion of a contribution of a node in a derivation tree of T to the result of T. We also need the following notions concerning derivation trees.

Definition. Let G be an EOL system and let T be a derivation tree of a word w in G, where $|w| \ge 2$.

(1) The main path of T, denoted by main(T), is the path defined by:

- (i). the first node of main(T) is the root of T,
- (ii). if v is the i'th node of main(T), $i \ge 1$, and it is not the leaf then the (i+1)'st node of main(T) is the leftmost among all those descendants of v that have the contributions to w not shorter than the length of the contribution to w of any of the successors of v,
- (iii). the last node of main(T) is a leaf of T.
- (2). The special node of T, denoted by spec(T), is the first node (counted from the root) with the property that the length of its contribution to w is not longer than $\left|\frac{w}{2}\right|$.
- (3). The type of T, denoted by type(T), is the vector (A, k, ℓ , d) such that:

A is the label of spec(T),

the contribution of spec(T) to w starts on the k'th letter of w and ends on the ℓ 'th letter of w,

the distance of spec(T) to the last node of main(T) equals d. \Box

Example. In the picture of the following derivation tree T in an EOL system the main path is in bold face and the special node is double circled:

The type of T is (B, 3, 5, 3,). \Box

Lemma 1. Let G be an EOL system and let T be a derivation tree of a word w in G. The length of the contribution of spec(T) to w is longer than $\frac{|w|}{2\ maxr(G)}$.

Proof.

Assume to the contrary that this contribution is not longer than $\frac{|w|}{2 \; maxr(G)}$. Then (because clearly spec(T) is different from the root of T) spec(T) has an ancestor in T such that the length of his contribution to w is not longer than $\frac{|w|}{2}$. This, however, contradicts the definition of the special node of T; thus the lemma holds. \square

The following class of EOL systems will be considered in this paper.

Definition. Let G be an EOL system, $w \in L(G)$ and let D be a derivation of w in G. We say that D is a fast derivation if its length is not bigger than |w|. We say that G is a fast EOL system if for every word w in L(G) there exists a fast derivation of w in G. \square

 $\it Lemma$ 2. For every EOL language K there exists a fast EOL system G such that L(G) = K.

Proof.

It is well-known (see [vL]) that for every EOL language K there exists an EOL system H generating K such that for every word w in L(H) there exists a derivation of w in H such that the length of this derivation is bounded by C|w| where C is a constant dependent on H only. Applying the C speed-up to H (see [RS]) one obtains the EOL system $G = speed_C$ H which is fast. \square

The following notions concerning repetitions of subwords in a word will be considered in the sequel.

Definition. (1). A word is called a pure square if it is of the form yy where y is a nonempty word. (2). A word is called a square if it contains a subword that is a pure square; otherwise we say that the word is square-free. \Box

Given an alphabet Δ and a positive integer n we let $PSQ_n(\Delta) \ \ to \ denote \ the \ set \ of \ all \ words \ of \ length \ n \ over \ \Delta \ which \ are$ pure squares,

- $PSQ(\Delta)$ to denote the set of all pure square words over Δ ,
- $SQ(\Delta)$ to denote the set of all square words over Δ ,
- $SQF_n(\Delta)$ to denote the set of all square-free words over Δ of length n, and $SQF(\Delta)$ to denote the set of all square-free words over Δ .

The following basic result is from [T].

Lemma 3. If Δ is an alphabet such that $\#\Delta \geq 3$ then there exists an infinite square-free word over Δ . \square

Definition. Let h be a homomorphism, h : $\Sigma^* \to \Delta^*$. We say that h is square-free if, for every w \in SQF(Σ), h(w) \in SQF(Δ). \square

The following result from [BEN] concerning propagating square-free homomorphisms will be useful in our considerations.

Lemma 4. For every positive integers $k \geq 2$, $\ell \geq 3$ there exist alphabets Σ , Δ and a propagating square-free homomorphism $h: \Sigma^* \to \Delta^*$ where $\#\Sigma = k$ and $\#\Delta = \ell$. \square

RESULTS

The following notion is the basic notion of this paper.

Definition. Let K, K₁, K₂ be languages. We say that K separates K₁ from K₂ if K₁ \subseteq K and K \cap K₂ = Ø; this is denoted by writing K₁ - K - K₂. \square

We will demonstrate that no EOL language can separate $PSQ(\Delta)$ from $SQF(\Delta)$ when $\#\Delta>2$. We start by showing that if G is a fast EOL system such that L(G) separates $PSQ_n(\Delta)$ from $SQF_n(\Delta)$, where n is even and $\#\Delta\geq7$, then the cardinality of the alphabet of G grows (fast!) with the growth of n.

Lemma 5. Let \triangle be a finite alphabet with $\#\triangle \ge 7$ and let n be a positive even integer. Let G be a fast EOL system such that

$$PSQ_n(\Delta) - L(G) - SQF_n(\Delta)$$
. Then $\#\alpha I(G) > \frac{2^{\frac{n}{2maxr(G)}}}{n^3}$.

Proof.

Let $G = (\Sigma, h, S, \Delta)$ be a fast EOL system such that $PSQ_n(\Delta) - L(G) - SQF_n(\Delta)$. Let $\#\Sigma = m$ and maxr(G) = t. Let Δ_1 be a fixed subset of Δ consisting of 7 symbols, say $\Delta_1 = \{a_0, a_1, b_0, b_1, c_0, c_1, \$\}$ and let α be a fixed square-free word over the alphabet $\Theta = \{a, b, c\}$ where $|\alpha| = \frac{n}{2} - 1$ (the existence of such an α is guaranteed by Lemma 3). Let $\Delta_2 = \Delta_1 \setminus \{\$\}$ and let g be the homomorphism from Δ_2^* onto Θ^* defined by: $g(a_i) = a$, $g(b_i) = b$ and $g(c_i) = c$ for $i \in \{1,2\}$. Let $Z(\alpha,g) = \{\beta\$\beta\$: \beta \in \Delta_2^* \text{ and } g(\beta) = \alpha\}$. Obviously

Obviously
$$Z(\alpha,g) \subseteq PSQ_n(\Delta)$$
 and $\#Z(\alpha,g) = 2^{\frac{n-2}{2}}$ (1)

We define a description of $Z(\alpha,g)$ in G to be a set of ordered pairs (γ,T) , where $\gamma \in Z(\alpha,g)$ and T is a derivation tree corresponding to a fast derivation of γ in G, such that for each γ in $Z(\alpha,g)$ only one element of the form (γ,T) is in the set. Let D be an arbitrary but fixed description of $Z(\alpha,g)$ in G.

Claim 1. Let (γ,T) and (ζ,U) be elements of D such that $\gamma \neq \zeta$ and type(T) = type(U). Then the subword contributed by spec(T) in T equals the subword contributed by spec(U) in U.

Proof of Claim 1.

The situation is best illustrated as follows:

where $type(T) = type(U) = (A,k,\ell,d)$.

Consequently $u_1 \times_2 u_2 \in L(G)$.

Assume now, to the contrary, that the subword contributed by spec(T) in T is not equal to the subword contributed by spec(U) in U, hence $x_1 \neq x_2$. Then we observe the following.

(i).
$$u_1 \times_2 u_2 \notin PSQ_n(\Delta)$$
.

This follows from the definition of the special node and the simple observation that if in a word from $PSQ_n(\Delta)$ one replaces a subword no longer than $\frac{n}{2}$ by a different subword of the same length than the resulting word is no longer in $PSQ_n(\Delta)$.

(ii).
$$u_1 \times_2 u_2 \in SQF_n(\Delta)$$
.

This is proved as follows.

Assume that $u_1 \times_2 u_2$ contains a square yy where y is a nonempty word. If $\$ \in \alpha lph(y)$ then $u_1 \times_2 u_2 = yy$ which contradicts (i) above. Hence the definition of $Z(\alpha,g)$ implies that $u_1 \times_2 u_2 = \beta \$ \beta \$$ for some $\beta \in g^{-1}(\alpha)$ where yy is a subword of β . Consequently α is not square-free; a contradiction.

Thus, indeed, $u_1 \times_2 u_2 \in SQF_n(\Delta)$ and (ii) is proved.

However (ii) contradicts the fact that $PSQ_n(\Delta) - L(G) - SQF_n(\Delta)$ and consequently it must be that $x_1 = x_2$. Hence Claim 1 holds.

We say that elements (γ_1, T_1) , (γ_2, T_2) , of D are similar if $type(T_1) = type(T_2)$.

Claim 2. If W is a subset of Z(α ,g) such that all words in W are similar, then #W $\leq 2^{\frac{n}{2}(1-\frac{1}{t})}$.

Proof of Claim 2.

Assume that the type "shared by" all words in W is (A,k,ℓ,d) . Hence if $k \le j \le \ell$ and x, $y \in W$ then the j'th occurrence in x is identical to the j'th occurrence in y. In other words, x and y can differ only by 0, 1-indices attached to occurrences of a, b, c outside of occurrences k through ℓ . Thus Lemma 1 implies that

$$\#W \le 2^{\frac{n-2}{2} - (\frac{n}{2t} - 1)} = 2^{\frac{n}{2}(1 - \frac{1}{t})}.$$

Consequently Claim 2 holds.

Proof of Claim 3.

Let $(A,k,\ell,d) \in \{type(T): T \in T_D\}$. Since, for every $\gamma \in Z(\alpha,g)$, $|\gamma| = n$ (and so $d \le n$) and the number of possible pairs (k,ℓ) that can be chosen is bounded by $\binom{n}{2} \le \frac{n^2}{2}$, we have indeed that $\#\{type(T): T \in T_D\} \le \frac{n^3}{2} \# \alpha \mathcal{I}(G)$. \square

Now we complete the proof of Lemma 5 as follows.

Clearly $\#Z(\alpha,g)$ is not bigger than the product of $\#\{type(T):T\in\mathcal{T}_D\}$ by the maximal number of words from $Z(\alpha,g)$ that can be similar. Thus Claim 2 and Claim 3 imply that

$$\#Z(\alpha,g) \le m \frac{n^3}{2} 2^{\frac{n}{2}(1-\frac{1}{t})}$$

and consequently

$$m \geq \frac{2^{\frac{n}{2t}}}{n^3}.$$

Thus the lemma holds. \square

Theorem 1. Let $\#\Delta > 2$. Then no EOL language separates PSQ(Δ) from SQF(Δ).

Proof.

(i). The theorem holds when $\#\Delta \geq 7$.

This follows directly from Lemma 2 and Lemma 5.

(ii). The theorem holds when $2 < \# \triangle < 7$.

This is proved by contradiction as follows.

Assume that $2 < \# \triangle < 7$ and that K is an EOL language such that $PSQ(\triangle) - K - SQF(\triangle)$. Let Θ be an alphabet such that $\# \Theta = 7$ and let f be a propogating square-free homomorphism from Θ^* into \triangle^* ; Lemma 4 guarantees the existence of such a homomorphism. Clearly $PSQ(\Theta) \subset f^{-1}(PSQ(\triangle))$ and $SQF(\Theta)) \subset f^{-1}(SQF(\triangle))$.

Since it is easily seen that the inverse homomorphic image of an EOL language is an EOL language whenever the homomorphism involved is propagating, we get that

$$PSQ(\Theta) - f^{-1}(K) - SQF(\Delta),$$

where $f^{-1}(K)$ is an EOL language.

This, however, contradicts (i), and consequently (ii) holds.

Thus the theorem holds. \Box

Corollary 1. Let Δ be an alphabet such that $\#\Delta > 2$. Then no EOL language can separate $SQ(\Delta)$ from $SQF(\Delta)$.

Proof.

Directly from Theorem 1. \square

Corollary 2. Let \triangle be an alphabet such that $\#\triangle$ > 2. Then no context-free language can separate $SQ(\triangle)$ from $SQF(\triangle)$.

Proof.

Directly from Corollary 1 and from the fact that every contextfree language is an EOL language (see, e.g., [RS]). \Box

We conclude this paper by the following remark. Originally the problem of separating $SQ(\Delta)$ from $SQF(\Delta)$ was posed for context-free languages. If one considers this original problem then the proof of the theorem goes in the same way except that now context-free grammars in Chomsky Normal Form play the same role as fast EOL systems played in our proof. In this case the formulation of Lemma 5 (which may be of interest on its own) becomes: "Let \triangle be a finite alphabet with $\#\Delta \geq 7$ and let n be a positive even integer. Let G be a context-free grammar in Chomsky Normal Form such that $PSQ_n(\Delta)$ - L(G) - $SQF_n(\Delta)$. Then $\#\alpha\mathcal{I}(G)$ > $\frac{2^{\frac{n}{4}}}{n^2}$."

Then
$$\#\alpha\mathcal{I}(G) > \frac{2^{\frac{11}{4}}}{n^2}$$
."

REFERENCES

- [B] Berstel, J., Sur les mots sans carré définis par un morphisme,

 Lecture Notes in Computer Science, Springer-Verlag, v. 71,

 16-25, 1979.
- [BEN] Bean, D. R., Ehrenfeucht, A. and McNulty, G. F., Avoidable patterns in strings of symbols, *Pacific Journal of Mathematics*, v. 85, n. 2, 261-294, 1979.
- [ER] Ehrenfeucht, A. and Rozenberg, G., On the subword complexity of square-free DOL languages, *Theoretical Computer Science*, to appear.
- [H] Harrison, M., Introduction to formal language theory, Addison-Wesley, Reading, Massachusetts, 1978.
- [vL] van Leeuwen, J., The tape complexity of context independent developmental languages, *Journal of Computer and System Sciences*, 11, 203-211, 1975.
- [RS] Rozenberg, G. and Salomaa, A., The mathematical theory of L systems, Academic Press, London, New York, 1980.
- [S1] Salomaa, A., Morphisms on free monoids and language theory, in Book, R (ed), Formal language theory: perspectives and open problems, Academic Press, London, New York, to appear.
- [S2] Salomaa, A., *Jewels of formal language theory*, Computer Press, Potomac, Md., to appear.
- [T] Thue, A., Über unendliche zeichenreihen, Norsk. Vid. Selsk. Skr. I Mat. Nat. Kl., n. 7, 1-22, 1906.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support under National Science Foundation grant number MCS 79-04038.