ON THE SEPARATIMG POWER OF
EOL SYSTEMS

by
*
A. Ehrenfeucht
and %

G. Rozenberg

CU-CS-186-80 September, 1980

* A. Ehrenfeucht
Dept. of Computer Science
University of Colorado, Boulder
Boulder, Colorado 80309

** G. Rozenberg
Institute of Applied Math. and Computer Science
University of Leiden
Leiden, The Netherlands

A1l correspondence to the second author.







ABSTRACT

A word is called a pure square if it is of the form yy
where y is a nonempty word; it is called a square if it contains
a pure square — otherwise it is called square-free. A Tanguage K
separates languages Ky and Ky if K1 < K and Ky n Ky = . It is
demonstrated that no EOL Tlanguage (and hence no context-free language)
can separate the set of all pure squares over an alphabet A from the
set of all square-free words over A, where A has at Teast three letters.
Thus the set of all square words over A is not an EOL language (and
so it is not a context-free language). This settles an open problem

posed by J. Berstel and L. Boasson.






INTRODUCTION

Let L be a class of languages. A way to investigate the structure
of languages in L is to aim at results of the form: "If K ¢ L and K
contains some words, then K must contain some other words". A classical
result in this direction is the pumping-Temma for context-free
Tanguages (see, e.g., [ H ]). In the pumping lemma "some words"
are distinguished by certain minimal Tength. In general one would like
to have a result of the form: "If K ¢ L and K contains words satisfying
property P then K must contain some other words (e.g., not satisfying P)"
where P is a combinatorial property of words. Such a result can be
formulated as follows. We say that K separates languages K1 and K2

if K, < Kand K n K2 = f. Then we set K1 to be equal to the set of

1
words satisfying the property P (or to its subset) and we set K, to be
equal to the set of words satisfying a property R (or to its subset)
and we get the following formulation of the desired result: "If K e L
then K does not separate K, from K,".

A very basic combinatorial property of a word is a structure
of repetitions of its subwords. Following [ T ] we say that a word is
square-free if it does not contain a subword of the form yy where y
is a nonempty word; otherwise we say that the word is a square. A
word is a pure square if it is of the form yy where y is a nonempty
word. Then a Tanguage is called square-free (square, pure square)
if it consists of square-free (square; pure square) words only.
Square-free languages (and sequences) have a large number of interesting
mathematical applications and interpretations (see, e.g., [S2]).

Also recently they form an active research topic within formal language



theory (see, e.g., [ B ], [ER ], [S1 Jand [s21]).

Because of the pumping lemma it is clear that given an alphabet A
with at Teast 3 Tetters (there exist only six square-free words over
an alphabet of two Tetters!) no context-free language can be equal
to (the infinite subset of) the set of all square-free words over A.
However, pumping is a mechanism generating repetitions of words and
so it is quite natural to ask whether a context-free grammar can
generate the set of all squares over A. (This question was posed by
J. Berstel and L. Boasson from Paris).

In this paper we answer this question in negative. As a matter
of fact, we prove a quite stronger result: no EOL Tanguage
(see, e.g., [RS]) can separate the set of all pure squares over A
from the set of all square free words over A. This settles the
original problem because the class of EOL languages (strictly) contains
the class of context-free languages. We believe that our result
contributes to the understanding of the combinatorial structure of
EOL (and hence also context-free) languages.

We assume the reader to be familiar with basic theory of EOL

languages, e.g., in the scope of [ RS ].



PRELIMINARIES

We will use mostly standard formal Tanguage-theoretic notation
and terminology. Perhaps only the following points require an
additional comment.

For a word x, |x| denotes its length and alph(x) denotes the set of
all Tetters occurring in x; A denotes the empty word.

For a Tanguage K, #K denotes its cardinality and aiph K==\\,) alph(x);
X e K

Kl\ K2 denotes the set theoretic difference of languages K1 and KZ‘
For a finite set K, #K denotes its cardinality.

A homomorphism h: Z* +»A* is termed propagating if h(a) = A for all
a e x.

In this paper we consider finite alphabets only.

We will follow [ RS ] in our notation and terminology concerning
L systems. In particular we denote an EOL system by G = (%, h, S, A)
where & is the alphabet of G, h its finite substitution, S its axiom
and A the terminal alphabet of G. We will also use aZ(G) to denote
and maxr(G) to denote max {|a| : a e h(a) for some acx}.

The analysis of derivations trees in an EOL system plays an
important role in this paper. We will use somewhat informally the
notion of a contribution of a node in a derivation tree of T to
the result of T. We also need the following notions concerning
derivation trees.

Definition. Let G be an EOL system and let T be a derivation
tree of a word w in G, where |w| > 2.

(1) The main path of T, denoted by main(T), is the path defined by:



(i). the first node of main(T) is the root of T,

(ii). if v is the i'th node of main(T), i = 1, and it is not the
Teaf then the (i+1)'st node of main(T) is the leftmost among all
those descendants of v that have the contributions to w not shorter
than the length of the contribution to w of any of the successors
of v,

(iii1). the last node of main(T) is a leaf of T.

(2). The special node of T, denoted by spec(T), is the first node
(counted from the root) with the property that the Tength of its
contribution to w is not longer than I%J.

(3). The type of T, denoted by type(T), is the vector (A, k, £, d)
such that:

A is the Tabel of spec(T),

the contribution of spec(T) to w starts on the k'th letter of w and
ends on the £'th Tetter of w,

the distance of spec(T) to the last node of main(T) equals d. [

Example. In the picture of the following derivation tree T
in an EOL system the main path is in bold face and the special node is

double circled:



The type of T is (B, 3, 5, 3,). [



Lemma 1. Let G be an EOL system and let T be a derivation tree

of a word w in G. The length of the contribution of spec(T) to w is

W

Tonger than (G

Proof.

Assume to the contrary that this contribution is not longer than
?bﬁ£¥£T37 . Then (because clearly spec(T) is different from the root
of T) spec(T) has an ancestor in T such that the Tength of his
contribution to w is not longer than lgln This, however, contradicts

the definition of the special node of T; thus the Temma holds. [

The following class of EOL systems will be considefed in this

paper.

Definition. Let G be an EOL system, w ¢ L(G) and let D be a
derivation of w in G. We say that D is a jbsf derivation if its
Tength is not bigger than |w|. We say that G is a fast EOL system
if for every word w in L(G) there exists a fast derivation of w

in G. [J

Lemma 2. For every EOL Tanguage K there exists a fast EOL
system G such that L(G) = K.

Proof.

It is well-known (see [ vL]) that for every EOL Tanguage K there
exists an EOL system H generating K such that for every word w in L(H) there
exists a derivation of w in H such that the length of this derivation is
bounded by C|w| where C is a constant dependent on H only. Applying
the C speed-up to H (see [ RS ]) one obtains the EOL system

G = speedcki which is fast. 0



The following notions concerning repetitions of subwords in a
word will be considered in the sequel.

Definition. (1). A word is called a pure square if it is of
the form yy where y is a nonempty word. (2). A word is called a
square if it contains a subword that is a pure square; otherwise we

say that the word is square-free. [

Given an alphabet A and a positive integer n we let
PSQn(A) to denote the set of all words of length n over A which are
pure squares,
PSQ(A) to denote the set of all pure square words over A,
SQ(A) to denote the set of all square words over A,
SQFn(A) to denote the set of all square-free words over A of length n, and
SQF(A) to denote the set of all square-free words over A.
The following basic result is from [ T J.
Lemma 3. If A is an alphabet such that #A > 3 then there exists

an infinite square-free word over A. [J

* *
Definition. Let h be a homomorphism, h : = - A . We say that h

is square-free if, for every w ¢ SQF(z), h(w) < SQF(a). [

The following result from [BEN] concerning propagating square-free
homomorphisms will be useful in our considerations.

Lemma 4. For every positive integersk = 2, £ > 3 there exist
*

*
alphabets =, A and a propagating square-free homomorphism h : = - A

where #2 = k and #A = £. [



RESULTS

The following notion is the basic notion of this paper.
Definition. Let K, Kl’ K2 be languages. We say that K

separates K1 from K2 if K1 < Kand K n K2 = f; this is denoted by

writing K1 - K - K2. 0

We will demonstrate that no EOL language can separate PSQ(a)
from SQF(A) when #A > 2. We start by showing that if G is a fast EOL
system such that L(G) separates PSQn(A) from SQFn(A), where n is even and
#\ = 7, then the cardinality of the alphabet of G grows (fast!) with the
growth of n.

Lemma 5. Let A be a finite alphabet with #A > 7 and let n be a

positive even integer. Let G be a fast EOL system such that

n

22maerG5
PSQn(A) - L(G) - SQFn(A). Then #a1(G) > .
n

Proof.

Let G = (£, h, S, o) be a fast EOL system such that

i

t. Let Al be a

fixed subset of A consisting of 7 symbols, say Ay = {ao,al,bo,bl,co,c1,$}

PSQn(A) - L(G) - SQFn(A). Let #2 = m and maxr(G)

and let o be a fixed square-free word over the alphabet 0 = {a,b,c}
where |al| = g—- 1 (the existence of such an o« is guaranteed by
Lemma 3). Let by = Al\{$} and let g be the homomorphism from

A; onto o defined by: g(ai) = a, g(bi) = b and g(ci) = ¢ for
ie {1,2}.

Let Z(a,g) = {B$8$ : 8 EA; and g(g) = a}.

Obviously -7

2(0,g) < PSQ_ () and #2(a,9) = 2 2 .eevennnn(1)



We define a description of 1(a,g) in G to be a set of ordered pairs
(v,T), where v ¢ Z(a,g) and T is a derivation tree corresponding to
a fast derivation of vy in G, such that for each y in Z(«,g) only one
element of the form (v,T) is in the set. Let D be an arbitrary but
fixed description of Z(«,g) in G.

Claim 1. Let (y,T) and (z,U) be elements of D such that y = ¢
and type(T) = type(U). Then the subword contributed by spec(T) in T
equals the subword contributed by spec(U) in U.

Proof of Claim 1.

The situation is best illustrated as follows:



-10-

g

— T

the k'th letter of v
the £'th Tetter of v
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2
the k'th letter of ¢ T
the £'th Tletter of ¢
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where type(T) = type(U) = (A,k,L,d).

Consequently Uy Xy Uy e L(G).

Assume now, to the contrary, that the subword contributed
by spec(T) in T is not equal to the subword contributed by spec(U)
in U, hence X] # Xo Then we observe the following.
(1). up X, U, ¢ PSQn(A).
This follows from the definition of the special node and the simple
observation that if in a word from PSQn(A) one replaces a subword no
Tonger than g-by a different subword of the same length than the
resulting word is no longer in PSQn(A).
(i1). Uy X5 Uy € SQFn(A).
This is proved as follows.
Assume that Up X, Uy contains a square yy where y is a nonempty
word. If $ e alph(y) then Up X, Uy =YY which contradicts (i) above.
Hence the definition of Z(a,g) implies that Uy X, Uy = g$B$ for some
B e g (a) where yy is a subword of 8. Consequently « is not
square-free; a contradiction.
Thus, indeed, g Xy U, € SQFn(A) and (i1) 1is proved.

However (i1) contradicts the fact that PSQn(A) - L(G) - SQFn(A)

and consequently it must be that Xp = Xy Hence Claim 1 holds.

We say that elements (yl,Tl), (yz,Tz), of D are similar if
type(T;) = type(T,).

Claim 2. If W is a subset of Z(a,g) such that all words in

1
(1-1)

N

W are similar, then #W < 2
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Proof of Claim 2.

Assume that the type "shared by" all words in W is (A,k,2,d).
Hence if k < j < £ and x, y € W then the j'th occurrence in x is
identical to the j'th occurrence in y. In other words, x and y can
differ only by 0, 1-indices attached to occurrences of a, b, ¢

outside of occurrences k through £. Thus Lemma 1 implies that

n n 1
-1 Fa-1)
Consequently Claim 2 holds.

Claim 3. Let TD = {T:(y,T) ¢ D for some v ¢ Z(a,q)}.

3

%— #a7(G).

IN

Then #{type(T) 1TeTp)

Proof of Claim 3.

Let (A,k,£,d) e {type(T) :TfsTD}. Since, for every vy e Z(a,q),
Y] = n (and so d < n) and the number of possible pairs (k,2) that
can be chosen 1is bounded by (g) < g?, we have indeed that

#type(T) s TeTy) = -2—3#aZ(G). 0

Now we complete the proof of Lemma 5 as follows.
Clearly #Z(a,g) is not bigger than the product of #{type(T) : Te'TD}
by the maximal number of words from Z(«,g) that can be similar. Thus

Claim 2 and Claim 3 imply that

n 1
3 5(1-9)
#2(a,9) <m 5 g2 "t

and consequently
n
n

Thus the Temma holds. [
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Theorem 1. Let #A > 2. Then no EOL Tanguage separates PSQ(a)
from SQF(a).

Proof.

(i). The theorem holds when #a > 7.

This follows directly from Lemma 2 and Lemma 5.

(ii). The theorem holds when 2 < #a < 7.

This is proved by contradiction as follows.

Assume that 2 < #A < 7 and that K is an EOL Tlanguage such that

PSQ(A) - K - SQF(A). Let © be an alphabet such that #0=7 and let f
be a propogating square-free homomorphism from e* into A*; Lemma 4
guarantees the existence of such a homomorphism. Clearly

PSQ(e) < £71(PSQ(a)) and SQF(e)) < F L(SQF(a)).

Since it is easily seen that the inverse homomorphic image of
an EOL Tanguage is an EOL Tanguage whenever the homomorphism involved
is propagating, we get that
PSQ(e) - £71(K) - SQF(a),
where f'l(K) is an EOL Tlanguage.

This, however, contradicts (i), and consequently (ii) holds.

Thus the theorem holds. [J

Corollary 1. Let A be an alphabet such that #A > 2. Then no
EOL Tanguage can separate SQ(aA) from SQF(a).
Proof.

Directly from Theorem 1. [

Corollary 2. Let A be an alphabet such that #A > 2. Then no

context-free language can separate SQ(a) from SQF(a).
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Proof.

Directly from Corollary 1 and from the fact that every context-

free language is an EOL Tanguage (see, e.g., [ RS]1). O

We conclude this paper by the following remark. Originally
the problem of separating SQ(A) from SQF(A) was posed for context-free
languages. If one considers this original problem then the proof of
the theorem goes in the same way except that now‘context—free grammars
in Chomsky Normal Form play the same role as fast EOL systems played
in our proof. In this case the formulation of Lemma 5 (which may be of
interest on its own) becomes: "Let A be a finite alphabet with
#A = 7 and let n be a positive even integer. Let G be a context-free
grammar in Chomsky Normal Form such that PSQn(A) - L(G) - SQFn(A).

E

Then #a7(G) > . .
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