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Abstract

In this paper, we introduce a simple new set of techniques for
deriving symmetric and positive definite secant updates. We use these
techniques to present a simple new derivation of the BFGS update using
neither matrix inverses nor weighting matrices. A related derivation
is shown to generate a large class of symmetric rank-two update
formulas, together with the condition for each to preserve positive
definiteness. We apply our techniques to generate a new projected
BFGS update, and indicate applications to the efficient implementation

of secant algorithms via the Cholesky factorization.






1. Introduction and Background

In 1965, Broyden [2] published two apparently equally reason-
able methods for generating Jacobian approximations J+ e R in a
quasi-Newton method for solving F(x) = 0 whose basic step is

_ -1
X, = Xc"Jc F(Xc)’

where F : R" »~Rn, X. € Rn, and JC e RPN is nonsingular. The method

which bears his name works very well and consists in taking
T .
C;)s , (1.1)
sTs
where s = x_ - X is the current step, and y = F(x+)—F(xC) is the

= (y-d
Jy = J .+

yield of this step. It is easy to show [7] that J, 1s nearest JC
in the Frobenius norm |||/ among all matrices in

Qly,s) ={de R Mus = y3,
the generalized quotients of y by s.

Broyden's other method does not work so well, but it seems just

as reasonable, since it is to choose

Jy =+ Ez:;%szzfgkl (1.2)
c
or, equivalently, 1T )
Jil _ J;I . (s~J% vy (1.3)
yy

the nearest matrix in Q(s,y) to J;l in the Frobenius norm. These
methods have basically the same good theoretical justifications.
Powell [17] and Greenstadt [15] defined symmetric analogs of
these methods for the case when F is the gradient of some nonlinear
functional f: R" - R. Now we are dealing with Hessian matrices, which

we will denote by Hc’ H+, and so it seems desirable to have the



approximation H_ inherit symmetry from Hc‘ Again it seems as reason-

1 as Greenstadt

able to minimize the change from Q(s,y) n {A:A=AT} to H;
does, as to follow Powell and minimize the change to HC from candidate
approximations in Q(y,s) n {A:A=AT}. Once more, the theoretical
justification is similar and good, but numerical experience favors
Powell's symmetric form of (1.1).

There are various reasons why it has been thought desirable to
maintain positive definiteness as well as symmetry in the sequence

of approximate Hessians and this is done, when possible, by the DFP

([4], [10]) update formula

« (y-H S)yT + y(y-H s)! ST(y—H s)y yT
Ho=H + c - ¢ N % - (1.4)
e | y's (y's)
-1 T.-1
or H~1 - H—l i Hc vy Hc ;S sT .
' ¢ yTHgly y's

and also by the BFGS ([3], [9], [13], [19]) formula

4 (s-Hgly)sT + S(S-Hgly)T yT(s-Hgly)s s!
Hot = H + -
* c T T2
sy (s'y)
or s STHC !
Hy = H - + ny X (1.5)
SHCS ys

Since sTy = sTH s for any H ¢ Q(y,s), it is obvious that a
necessary condition for Q(y,s) to contain a positive definite matrix
is yTs > 0. It is well-known that if HC is symmetric and positive
definite, then yTs > 0 is sufficient to ensure that both (1.4) and
(1.5) generate H_ that inherit both properties. We will give a very
simple short proof of this fact in Section 2.

Dennis and More [7] and Dennis and Schnabel [8] show that (1.4)
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and (1.5) are again least change updates. In this case, (1.4) defines
the minimum change to H. to obtain H, e Q(y,s) n {A:A=AT}. The change
is measured by I}W(HC-H+)W$M: where W is any nonsingular matrix for
which WTW = M e Q(s,y). Update (1.5) defines the least change to

- - - -1 -1 .
"1 from Q(s.y) n (A:A=AT3 measured by |4 Tt . 1o this

H
case, unlike the others, computational experience indicates that the
BFGS, which makes the Teast weighted change to the inverse of Hc’ out-
performs the DFP, which makes the least weighted change to Hc’

These derivations are unsatisfying because they relate the good
Broyden (1.1) to the less successful DFP (1.4) and the bad Broyden (1.3)
to the more successful BFGS (1.5). In Section 2, we will give a new
derivation of the BFGS directly from the good Broyden. This new deriva-
tion is invariably successful in the classroom. We also show how the
DFP 1is derived from the bad Broyden. In Section 3, we show how the new
derivation can be used to derive from the rank-one methods a larage class
of the symmetric rank-two secant updates that inherit positive defi-
niteness. We also use this same technique to obtain a relationship between
Oren's [16] sizing of the Hessian and hereditary positive definiteness.
It enables us to coerce Powell's symmetric Broyden formula, and all
the other rank two updates we derive, into having this desirable
property.

Section 4 is devoted to applying our technique to the derivation
from projected rank-one updates .of the projected rank-two updates
of the type introduced by Davidon [5]. In particular, we derive a new
projected BFGS update from the projected Broyden update of Gay and
Schnabel [11]. 1In Section 5, we relate our derivations to an algorithm

of Goldfarb [14] for updating a Cholesky factorization of Hc'



We hope that specialists will find the entire paper of interest,
but we believe that Sections 2 and 5 should be of interest to anyone
who teaches this material, since they constitute a quick and simple
way to derive the BFGS update from the Broyden update in a form that
leads directly to its Cholesky factorization implementation via the
update of the LQ factorization. These. methods are all the material
on updates that really needs to be taught in a general numerical

analysis course.



2. The BFGS and DFP from the Good and Bad Broyden Methods

In this section, we will need the following very simple Temma
characterizing when a symmetric positive definite matrix exists in
Q(y,s) for y,s e R". This Temma is quite easy, and it will form the
basis for our subsequent derijvations.

Lemma 2.1: Let y, s ¢ Rn, s nonzero, and Tlet Q(y,s) = {AsRnxn: As=y3}.
Then Q(y,s) contains a symmetric positive definite matrix if and only if,
for some nonzero v ¢ R" and nonsinguliar J e Rnxn, y=4Jdvand v = JTs.
Proof: If v and J exist then clearly y = dv = Jd's and JJ' is the
symmetric positive definite matrix we seek.

Now suppose A is a symmetric positive definite matrix with
y = As. Let A = LLT be the Cholesky factorization of A and set J = L

and v = LTs to complete the proof.

If we have a symmetric positive definite approximate Hessian HC
and we want to obtain H_, which inherits these properties as well as
the property of incorporating the new problem information by being in
Q(y,s), then the preceding Temma guides us to a solution. We probably
have a Cholesky factorization of HC = LCLI, and we know from the previous
lemma that the sort of H, we desire exists if and only if we can find
a v and J+ such that y = J,v and v = JIS. It seems quite natural to
think of trying to obtain Jy from Lc’ and in fact, we would hope to do
this without making a larger change to LC than necessary, in order to
preserve as much as possible of the information stored in LC which has

been gathered as the iteration has proceeded. This motivates choosing

J, by the following procedure.



BFGS Procedure

1. Assuming we know v ¢ Rn, find the J  « RN

which is nearest LC in
the Frobenius norm and satisfies J v =y.
2. Solve for v so that JIS = V.

The proof of the following theorem shows that the solution is the BFGS update.

Theorem 2.2: Let LC e RN pe nonsingular, HC =L LT, Y, S € Rn,

cc
s nonzero. There is a symmetric positive definite matrix H_ e Q(y,s)

if and only if yTs > 0. If there is such a matrix, then the BFGS update

_ T.
H+ = J+J+ is one such, where Ts -
(yof 2 s)(e,s)
J =L + s Hs (2.1)
+ c T

T
TX S S Hcs
S HCS

<

and either the positive or negative square root may be taken.

Proof: Recall first from Lemma 2.1 that a necessary condition for the
update to exist is that there exist nonzero v ¢ Rn, and nonsingular
J, e RPM such that J,v =y and JIS = v. Therefore
vl = (JIS)T(J;ly) = sTy

which shows that sTy > 0 is necessary.

Now we derive the BFGS update via the above procedure. If we knew
v, then the nearest matrix to LC that sends v to y is just the
Broyden update (1.1): in this setting,

.
)= 4 (y-LCv)v

+ o
vTv
Notice that this reduces the problem of determining n2 elements of
J, to finding the n components of v. Now we use the condition that
T (yTs-vTLIs)
vEdss =L sty —V.
¢ Vv



This implies that v = 4 Lcs for some scalar o, and SO0 the problen
of determining the n components of v s reduc

ed to finding the scalar q.
P?ugging back in, we See that

(yTs - usTH s)

;= + C QO
et Y

or

FGS method Another alternatiye
n using Lemma 2.1 to derive 3 symmetric and Positive definite
H, e Qy,s) would be tq first chose g to satisfy
is =y (2.2)
and then solve for v so that
J+ V =y,

The proof of Theorem 2.3 shows that if we go this, and choose J, in (2.2)

to be the bad Broyden update (1.2) tq Lg, the solution

is the DFp update.



Theorem 2.3: Let Lc’ H., s, and y satisfy the hypotheses of Theorem 2.2.

c
There is a symmetric positive definite matrix H+ e Q(y,s) if and only if

yTs > 0. If there is such a matrix, then the DFP update Hy = J+JI is one

such, where
-
(5 - AR
yHY ‘

g, = L.+
y's

for either sign of the square root.

Proof: Let us return to the derivational proof of Theorem 2.2. If we

decide, given the intermediate vector v, that we will obtain JI from

(1.2) via
T, TT
T_ 1, (kes)viLg (2.3)
Jy =L * TT
¢ v LC S

to satisfy (2.2), then the equation for y = J+v is

vTv-sTch
y=d,pvE Ly ( =T )
vLi s
c
SOV =28 Lély for some scalar 8 and plugging back in,
A
g /“"‘T"T‘
yHY
yTs -1
and v = T o1 LC Y. (2.4)
N Hc y

Again if yTs > 0,we have derived a symmetric and positive definite
update in Q(y,s). It is easily verified that if J_ is defined by

(2.3) and (2.4), then J+JI is the DFP update given by (1.4).



3. Hereditary Positive Definiteness and Oren Sizing For Symmetric

Rank-Two Updates

In the last section, we followed two different tacks in our
derivations. Assuming that we had v, for the BFGS we updated LC to J,
and for the DFP, LZ to JI. Then in each case, we obtained v from a
requirement on the transpose of the updated factor. 1In this section,
we will generalize our derivations to include scaling matrices. The
BFGS derivation turns out to be largely invariant to scaling. On the
other hand, the generalization of the DFP derivation turns out to yield
a large class of symmetric rank two update formulas, including the
PSB in the unweighted case,as well as the condition for each to inherit
positive definiteness from Hc'

Qur second interest in this section is the relationship between
Oren's [16] sizing and hereditary positive definiteness of symmetric
rank-two updates. Oren's sizing consists of first multiplying HC by
a constant 02 and then updating oZHC to H+. Our generalization of the
DFP derivation will Tead naturally to a range of sizing factors o
which make the PSB update of a sized positive definite matrix be
positive definite. A similar result holds for any update obtained
via the DFP derivation.

Let us consider first the "BFGS procedure" from the last section,
but with scaling matrices. We want H_= J+J+T and we assume we have

HC = LCLCT. Given nonsingular wL and WR in Rnxn, we consider the

procedure

1. Assuming we know v ¢ Rn, choose J, to solve
min I W (J,-L W, ]| (3.1)
J, € Qy,v) L TeTREF

2. Solve for v so that JIS =y,
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The BFGS update came from this procedure with WL = WR = 1. Note
that if we are approximating the Hessian, WL corresponds to a linear

transformation of the variable space by W[T, but WR has no natural

interpretation.
It is well-known ([8], Corr. 2.3) that, for M = W&TW§%
J, = L + (y_LCV)(MV)T (3.2)
¥ ¢ vTMv

solves (3.1) independent of W . Thus, we can say that the BFGS update
results from the above procedure with any WL and M = I. Furthermore,
WR can be any unitary matrix without changing the result. It actually
turns out that the BFGS results from any WL and any NR for which
LZS is an eigenvector of M. We postpone this and the development
for general WR to the appendix since we can think of no reason to
choose any WR or M other than I.

There would have been good choices of WL, e.g., (NZNL) e Q(s,y),
since this corresponds to scaling 9 = wLy and § = w[Ts so that
= uTs = W WM Y) = Wy = §and §, = 1 is feasible. While our BFGS
derivation was invariant under such scalings, the situation reverses
when we introduce scaling into the DFP derivation.

The generalization of the "DFP procedure" is to select nonsingular

matrices WL and WR’ assume that we know v = Jlly, choose JI to solve

. T.T
m}n HWL(J -LC)WRHF’ (3.3)
J' e Q(v,s)
and then solve for v from

y = Jd.v. (3.4)

Notice that in this case the role of the scaling matrices is reversed;
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WR corresponds to a transformation of the variable space by w&l, while
wL has no obvious justification.

As before, we see that for M = (wag):l

T T
T T, (v-LCs)(Ms) (3.5)
sTMs

solves (3.3) just as (3.2) solves (3.1). Again the answer is independent
of WL’ but this time it eliminates the scale matrix that we don't know
how to choose. We will finish carrying through the second procedure for
general WR or M, but first we state the result.

Proposition 3.1: Let LC, H+, s and y satisfy the hypotheses of

Theorem 2.2. The result of the procedure outlined by (3.3), (3.4), and

(3.5) is
T (y-HCs)(Ms)T+(Ms)(y-HCs)T sT(y—HCs)MssTM ‘
H+ = J+J+ = Hc + T - > s (3.6)
‘ s'Ms (s'Ms)
where J_ s given by (3.5) and
v = L;l(y+aMs) (3.7)

for either root o of

azsTMH;1M5+2asTMH;1yfyTH;ly—sTy = 0. . (3.8)
If

(sTMHgly)2 > (sTMHglMs)(yTHgly—sTy), (3.9)

then J, is a real matrix and H, 1s positive definite.

Proof: Again we proceed in a derivational manner beginning with (3.5)

and then (3.4),

T T

Vv-sLyv

y =9 =L+ (Ms) _m_Tw,_E_ﬁ_. (3.10)
S Ms
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Thus, for some o, y + oMs = ch. Direct substitution into (3.10) shows

that (3.4) is satisfied if and only if o is chosen so that

T 1

T - Sl T, - -
ys=vys=s (Lc y+ocLC Ms) (LC1y+aLclMs)

1.,.2T

-1
+
yoasMHC

T

_ -1
..yHC

1 Ms.

y+2as MH;
This is equivalent to o being a root of (3.8), which has real roots
if and only if (3.9) holds. Clearly, if v and J, are defined by a
real a, then H, is positive definite. It is straightforward to show

that H_ s real in any case and is given by (3.6).

It is shown in [18] that thé cjééé‘df métrices (3.6) is
equivalent to the set of all symmetric rank-two updates that can
be represented as the difference of two symmetric rank-one updates.
It should also be noted that the scaling used above corresponds exactly
to the scaling used by Dennis and Moré [7] and Dennis and Schnabel [8]
in their Tleast change derivations of the same class of updates.

Now we give the relationship of hereditary positive definiteness

to Oren's sizing. The proof is obvious.

Corollary 3.2: Let M and H_ = LCLZ be symmetric positive definite

matrices and let s, y ¢ R" with sTy > 0. If o is any number for which

To=lyy Tl Tyy=1,12
2 (s'MH_"Ms)y H "y - (s'MH_y) (3.11)
(sTMH ms )y s

then (3.6) applied to OZHC = (OLC)(OLZ) defines a symmetric positive
~definite H,, (3.9) is a strict inequality for oZHC, v defined by (3.7)
for oLc is real, and J, defined by (3.5) is a real matrix with -

_g T
H, = 3,9,.
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It is interesting to note that if 02 = 1 satisfies (3.11), then

H+ inherits positive definiteness directly from H » but that

T,~1

2 Y Hc Y .

o = —— one of Oren's recommended choices, always satisfies
Y's

(3.11) and is independent of M and Wy

We complete the section by specializing Theorem 3.2 to the PSB,
DFP, and BFGS formulas.

Corollary 3.3: Let Lc’ Hc’ s,y satisfy the hypothesis of Corollary 3.2

(sTH- 1s>(yTH by - (s"H 1y)?

and Tet 02 > T 1 . Then the PSB update of cZHC,
(s"H1s) (yTs)
: 2 ' (Y-OZHCS)ST + s(y—ozHCs) ST(y—OZHCS)SST
Hy =0 Hc * T - T 7
s's (s's)
-
is a positive definite matrix, and H, = J+J+', where
J, = oLC o
S's
_ -1
v = L (y+0LS),
s H y +V/‘S H y - (sTHgls)(yTH 1y -c%s y)
(x -_
T -1
HC S

are all real.

Proof: The proof follows from the quadratic formula and the fact that

(3.6) with M =1 =Wy 1s the PSB update.

As we discussed earlier, other than the identity, the obvious scaling
to try is M = (WRWE)—I e Q(y,s). The result is the DFP formula. The

following is straightforward.
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Corollary 3.4: Let Lc’ H , s, y satisfy the hypothesis of Corollary

c
3.2, and let 02 be any positive number. Then the DFP update H, of

oZHC is positive definite and

_ T
H, = 4,9, , —_
where LS L—ly—oLTs yT
T,-1. "¢ o
T_ T WYHY
Jy = oL+ c
c

The following corollary is not so obvious, but it is perhaps
the most interesting of all. It consists in applying a scaling from
[18] to obtain the BFGS update from the same derivation as the DFP
and PSB.

Corollary 3.5: Let Lc’ Hc’ s, y satisfy the hypothesis of Theorem 3.2.

-
M e Q (vIyt [ 55— H s1.s)
S HCs ¢

and any scalar y, (3.6) defines the BFGS update H, of H.. The BFGS

Then for any

update of any GZHC is positive definite for any real o.

Proof: First notice that (3.6) is independent of scalar multiples
of M and then plug and grind. Take (2.1) with its unspecified sign

on the radical and equate its transpose to (3.5).

The interesting thing to note here is that, by taking any DFP

scaling M ¢ Q(y,s), the BFGS scaling 1is

M = 1 M+ é I > H ,
- 5 T c
1+/_Ty.sv 1+ [Ls

S Hcs s'HS

which is a convex combination of the DFP scaling and the current

scaling. In fact, if the conditions of Dennis and Moré [6] for
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g-superlinear convergence are met, it is easy to show that M

asymptotically approaches (M + HC)/2.
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4. A Projected BFGS from the Projected Broyden Update

Davidon [5] modified the standard symmetric rank-two update
formulas in an attempt to satisfy the current secant condition Hys =y
without doing more than necessary damage to past secant conditions.

We will introduce some notation in order to state the problem. Let
{sl,,..,sm} c Rn, assume s is Tinearly independent of the space spanned
by the si'sgyand consider the following problem:

T T

Given HC =LL ,sS,¥c¢ R" with y

. _ T
cLe s > 0 find H+ = J+J+ such that
i=1,1, ..., m. (4.1)

H,s = y and H+si = Hcsi,
The s; can be interpreted as past steps and s as the current step.

Schnabel [18] proved that a solution is possible if and only if
(y-Hs)s; =0, 1=1,2, ...,m (4.2)

Gay and Schnabel [11] gave a projected form of Broyden's update
which satisfies (4.1) in the case when He and H, are not required to
be symmetric. In this section we will use a form of Gay and Schnabel's
update in place of Broyden's update in the BFGS derivation of Section 2.
The result will be a new projected BFGS formula which agrees with
Davidon's version for quadratic functionals. Our formula will satisfy
(4.1) for every S that satisfies (4.2), but it will also have a fairly
sensible partial version of (4.1) for all the Ss-

The procedure we will follow to derive the projected BFGS update

is the following. Once again we assume we have HC = LCLZ, and we

B T
want H+ = J+J+.

Projected BFGS Procedure

1) Assuming we know v e R", choose J, to solve

min 19, - L Il
Jy e Qly,v)
subject to (J,-L)Lls. =0, 1 =1, ..., m (4.3)
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2) Solve for v so that JIS =y

This procedure is carried out in the proof of Theorem 4.5. It differs
from the "BFGS procedure" of Section 2 only in the addition of condition

(4.3). In Lemmas 4.1 - 4.4 we justify this condition. Essentially,

T
c

of a necessary and sufficient condition for any "reasonable" update

Lemmas 4.1 and 4.2 show that the condition (J+—LC)L S; = 0 is half

to satisfy
T T -
(J+J+-hCLC)si 0. (4.4)
The other half is (J+-LC)T51 = (0. Lemma 4.4 shows that the above

procedure is guaranteed to produce an H,_ = J+JI which satisfies (4.4)
whenever this is consistent with H,s = y. We will state the following
lemmas in terms of matrices J, and LC and vector S, for ease in
referring to them later, but the lemmas will contain explicit
hypotheses and no other assumptions, such as LC being lower triangular,

are meant to be implied by the notation.

Lemma 4.1: Let LC, J, € Rnxn’ Si e R". 1f

+
(J.-L )LYs. = 0 (4.5)
+ el e
and
(J.-L )1 s. =0 (4.6)
+ ¢’ 7i ?
then
T o7
(9,9,-L L])s, = 0. (4.7)

Proof: The proof follows from the identity:

T T _ T T
3494 = Lebe = (L) (0L )" + L (0,-10) 7 + (9L )L



Lemma 4.2: Let the hypotheses of Lemma 4.1 hold, and assume in

addition that LC is nonsingular. Then (4.7) and

T

T
b Lch) > 2 (rank(J+~LC)) -1

rank (J+J
implies that (4.5) and (4.6) hold.

Proof: The proof will consist in showing that if (4.7) holds, then
either (4.5) and (4.6) hold or the hypothesized rank condition does

not hold. First we regroup terms in (4.8) to obtain

.
(9,9

+

Ty _ T T
Lbe) = 9,037 + (0L )L (4.9)

We see immediately that if (4.7) holds, then (4.6) implies (4.5).
Now again from (4.8),

SE(J Jl-L LT

_ To 12 4 5T T
Wpbbo)ss = 100-L ) Tsylll + 255 (d,-L )Les,

ittt ¢ i

and so if (4.7) holds, then (4.5) and (4.6) are equivalent.

Now suppose that neither (4.5) nor (4.6) holds. Since Le is

T).

nonsingular, let k = rank(J+—Lc) = rank(LC(J+—LC) Again from (4.8),

rank(J.37-L LT

Ll = 2k-(atb),

where

o8]
il

dim [( row space of J,-L ) n (row space of L (J,-L )T)]
+ c ct+ C

H

dim {z e R (3. 07-L LT

b ++ "CcC

;
)z = 0 and (J,-L)'z = 0 = (J,-L )Llz}.

Since we are supposing (4.7) but neither (4.5) or (4.6), b > 1. Now .

we transpose (4.9) and obtain, from (4.7),

B T T
0 = LC(J+-LC) s * (J+—LC)J+31.

Using this and the fact that LC(J+~LC)T51¢@ because (4.6) doesn't

hold and LC is nonsingular, we see that a = 1. Thus, rank
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T, T
(3,9,-LcLe

) < 2k-2.

The rank condition in Lemma 4.2 is required to exclude "unreason-
able updates" such as J, = Q - Lc’ Q orthogonal, which satisfy (4.7)
without satisfying (4.5) or (4.6). In the case when J, is a rank-
one update to LC we have the following easy corollary.

Corollary 4.3: Let Lcﬂ+” S obey the hypotheses of Lemma 4.2. If

T¢
+

_ T : :
rank (J+—LC) =1, and JJ Lch’ then (4.7)is equivalent to (4.5)

and (4.6).

Proof: From Lemma 4.2, (4.7) implies (4.5) and (4.6). Lemma 4.1 is

the converse.

Now we show that we can expect the result of the Projected

BFGS Procedure to satisfy (4.6), and hence (4.7), for any S for

which (4.2) 1is true.

Lemma 4.4: let LC e R be nonsinguTar,'J+ £ Rnxn’ S, Sis Y e Rn,

and Tet (4.5) hold. Set H_=L L and v = dls. If (4.2) holds for
T = = ‘ - =

s;s then (y—LCv) 55 = 0. If J,v=y, rank (J, LC) 1, and
sTy z yTHgly also hold, then (4.7) holds.

Proof: First we note that

T T
(y-HCs) S5 - (y—ch) S

T
(ch Hcs) Ss

_ T T.\T
= (LCJ+s—LCLcs) S
_ T T,T
=3 (J+-LC) Lcsi,

and so (4.2) and (4.5) imply (y-LCv)Tsi = 0. If we assume that J,v =y,

then

_ T _ T T
0= (y-LCv) s; =V (J, Lc) Sis (4.10)
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but since rank (J+-LC) = 1, for some Wi, Wy e R, (J+-LC)T =wpw

and (4.10) becomes

I .
0=y WIWZSi'

i

Thus, either (J+-Lc)v 0 or (J -L ) $S;=0. Ifo-= (J -1 )v =y - chs

(Jv)swvnﬁs—vu==Jml

I

then v = Lgly and yT§ Ys which contradicts
the hypothesis. This means that (4.6) must hold, and since we have

assumed (4.5), (4.7) must hold by Corollary 4.3.

Now we derive the New projected BFGS update. We let 61j denote

the Kronecker delta.

. nxn . _ T
Theorem 4.5 Let LC e R be honsingular, H = LCLC, and Tet

{s,y,sl,...,s Fer s Tinearly independent of the space Spanned by

{sl,,,,ﬁsm}a Assume without Joss of generality that

T -
SiHch 6ij’ Define . .
m
and Y=y-z3 H.s, (s Hess).
i=1
: (V-aH_5) (oL]5) |
Set J,=L + M‘C_T:\‘ (4.11)
+ S s'y
2 sy T
for  o¢ = :3ﬁi§;~ and define Hoo=0.9', Then
S§ Hs *
c
T — =T
e Hs s'H
H=H +YYy L ¢ (4.12)
e T =,
Sy S Hs

H,s =y, (Ll s = 0,5 - D2secumand 5, s reay s¢ sy s 0.

> +vus M, then (H+“Hc)sf =9
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Proof: The proof consists mainly of the derivation of update (4.12)
via the procedure outlined earlier.
From Theorem 2.1 of [11], the solution to step 1 of the projected

BFGS procedure is

=T
_ (y-L v)v
bt e : (4.13)
Vv
where
= T LT T
V=uy - izl Lcsi(v gcsi), (4.14)

Thus step 2 of the procedure requires that
T __(yTs-vTLZs)
VELS AV e (4.15)
V'V

which, by (4.14), implies

T m T
V=g Ecs + _g BiLcsi’ (4.16)
i=1
.
4 = §,.
for some scalars a, 81’ ces Bm' Now from (4.14) and SiHcsj 613,

we see that VxLzsi = 0 for every i, so from (4.15) followed by (4.16),

we have for every i,

TOT T T Te o Ty T, T
(LCS) Lesy = VLesy = all s) LSi¥Bss
or
_ TA\T
81 - (1‘@)(LC5) FCSi.
This allows us to rewrite (4.16) as
B T ™ 7 T.TT Mot T AT T
V= [Lcs— 131 Lcsi(LCs) Lcsi] + 121 Lcsi(LCs) Lcsi zar+z,

where r and z are defined in the obvious way and r = LZEO. Notice that

V = v-z, 0V = ar and we only need find o to have V and hence v. Note

also that
T, T

since V'Lcsi = 0 for all i.
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To find o, direct substitution shows that as in the proof of

Proposition 3.1, (4.15) is satisfied if and only if

sTy = vTv = aerr + ZurTz + sz
= aerr + ZTZ.
Thus
T _T._ 2T, T —
SYy-Zzz=2o0S5 Lch S .
m
T TAT,T. 2 _ 2T, =
s'y -i=1 [(LCS) L.s;lm =« HeS
sTy - g (sTH s.)2 =a?5THs
J oy i * ¢’
sy = o SHT
T—
and 0? = :ﬁfi%é— .
S Hcs

Next we show that (4.13) reduces to (4.11). Using v = ar,

rlz = 0, rTr = §¢HC§;and the value we have just found for az,

VIV = arly = aTT(aP+Z) = alplp = s??.

Also, by the definition of v, y,and z, and r = LCTE,
y—LCv = y—aLCr—LCz
= y-qHCE'-.? Hcsi<STHcsi)
i=1
- - S

and so (4.13) becomes
T
)

(J-oH 3) (L5
Jo= L + S,
o s:y-
which is (4.11). Notice that o and J_ are real if yTs > 0. Equation

(4.12) 1is obtained by algebra from J+J+T.

To complete the proof, notice that if 0 = (y—HCs)Tsi holds for

any s, then (H+'Hc)si = 0 from Lemma 4.4.



It is straightforward to confirm that (4.12) agrees with Davidon's
projected BFGS formula when f is a positive definite quadratic func-
tion, but not necessarily otherwise. Schnabel is currently testing
an algorithm using the above projected BFGS update; the results will
be reported elsewhere. Finally, we note that in analogy to the
weighted DFP derivation of Chapter 3, an entire class of projected
rank-two updates can be derived using the procedure (3.3) - (3.4)
with the condition

(0L ) s =0, =1, .ooym

added to (3.3).
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5. Updating Cholesky Factors

Finally we discuss the efficient sequencing of Cholesky factor-
izations in algorithms that use the update formulas derived in this
paper. A1l the algorithms of this section have already been suggested
by Goldfarb [14] using the Brodlie, Gourlay, and Greenstadt [1] factored
form of the BFGS and DFP updates and the orthogonal decompositon update
ideas of Gill, Golub, Murray, and Saunders [12]. Our purpose is to
point out that they follow very naturally from the preceding derivations.

We will focus on the BFGS formula since the development for the
others is similar. We assume we have LC, the Tower triangular Cholesky

factor of the current Hessian approximation, and that

y's
: T T
 (y -Vs'Hs Hs)s'L p
sz STHCS
sTHCs

from @2.1). Now we want the Cholesky factorization L+LI of H_ = J+J1.

However, (5.1) is an especially handy form for the algorithms of

[12] in which we are given

_ T
J+ Lch + wz
or
_ T
J+ = LCDCVC + wz
and find
gy = LQ, (5.2)
or
J, = L,DV (5.3)

+ 7 T+



-25-

respectively, in a small multiple of n2 operations. (Here Q and V

denote matrices with orthogonal columns and D a diagonal matrix.)

Equation (5.1) is handy because since QC = VC = I, the n2 work ordinarily
necessary to obtain QIZ or VZz as a first step to obtaining L, is not

needed.

It is also unnecessary to accumulate Q+ or V+a From (5.2)

or (5.3)
Hy = J+JI - L+Q+QILI - L+LI
or
H, = 9,] = LDV VI LT =1 04T,

and so we have a cheap stable computation for the Cholesky or LDLT

factorization of H_ from the corresponding factorization of Hc'
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Appendix: The scaled BFGS derivation

If we carry through the first derivation of Sectijon 2 with
matrices, then we consider:

1. Assuming we know v, choose J, to solve

min W, (3.-L )W ||
J, e Qly,v) Lo elREE

2. Solve for v so that JIS =v.

The solution is independent of WL and depends on WR through

M= W&Tw&l. As noted in Section 3, step 1 gives

; (y—LCV)(MV)T
= L [
* ¢ VTMV
and step 2 gives ‘
v = J+s = L s + Mv —
¢ v My

From (A.2),

_ o7
Mv = o(v Lcs)

for some scalar a, and substituting this into (A.2)

Substituting (A.3) into (A.1),

(y-L V) (v-L(s)

J, =L+
* ¢ (v-LZs)Tv

and so using (A.4) and doing some rearrancina of terms, we find

that the solution to our procedure is

, T

g S s (rHs)Ts

Hy = 0yl = Ho o T T T
w's (w's)

s

scaling



where
W=y - ch (A.6)

and v satisfies

v = (1-(1/a)M) "1 LT

S (A.7)
for some scalar o such that

vly = yls. (A.8)

If LZS is an eigenvector of M, we have that

T 1/2
v = (...~.x¥..§.> LTS
TH S c
s e
and the solution is again the BFGS update. The reader can also
verify that if T -1

4Tty 1/2 X
M= g [T+ —-—%———) L H L]
y's

for any positive definite H ¢ Q(y,s) and any positive scalar 8, then M
is positive definite and the DFP update results from (A.5-8). In fact,
if M is any matrix of the form

M= e T, T,
where H is defined as above, and Bl’ 82 are positive scalars, then M
is positive definite and an update from the Broyden class results.

In general, if yTs > yTHgly, it can be seen from (A.6-8) that

W can have any direction, and we have the same class of updates as
we derived with the DFP derivation with scaling matrices. If

yTs < yTHgly, we have a subset of this class.



