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ABSTRACT

The subword complexity of a language K is the function which
to every positive integer n assigns the number of different subwords of
length n occurring in words of K. A language K is square-free if no
word in it contaimns a subword of the form xx where x is a nonempty word.
The (best) upper and lower bounds on the subword complexity of infinite

square-free DOL languages are established.






INTRODUCTION

The problems of repetitions of subwords in words (and in infinite
words) were first studied by A. Thue (see [11] and [12]). Since then
those problems were investigated (and rediscovered) by quite a number
of authors with quite different motivations. In particular results of
Thue were also used in various constructions in formal language theory
(see, e.g., [3]). Recently one notices a revival of interest in Thue
problems among formal language theorists (see, e.g., [1], [2], [7], [8]
and [10]). In particular ( see [1] and [fO])'it was discovered that the
theory of nonrepetitive sequences of Thue is very strongly related to
the theory of DOL sequences. For example, Thue'soriginal examples of
square-free sequences were constructed using DOL systems and indeed, as
pointed out in [1], most (if not all) examples of nonrepetitive sequences
known in the literature are either DOL sequences or codings of DOL
sequences. In this way a quite significant connection is established
between the theory of nonrepetitive sequences and the theory of DOL
systems. The theory of nonrepetitive sequences originates a new and very
interesting research area within the theory of DOL systems while the
theory of DOL systems provides a better insight into the theory of

nonrepetitive sequences (see, e.g., [1] and [10]).

In this paper we investigate DOL systems which generate nonrepetitive
words only. In particular we investigate the upper and the lower bounds
on the subword complexity of 1énguages generated by such systems and we
establish that those languages are quite "poor" as far as number of
subwords is concerned. (For a language K its subword complexity is a

function assigning to each positive integer n the number of different



subwords of length n occurring in words of K). In a sense this result

is quite counter intuitive: one is inclined to think ﬁhat to construct
an infinite language consisting of nonrepetitive words one needs a lot

of different subwords to avoid repetitions. (This aspect of the problem
was pointed to us by J. Berstel who suggested to investigate the subword
complexity of DOL systems generating square-free words only. Actually

J. Berstel conjectured that the subword complexity of such languages is
bounded by a linear function; we prove that the number of subwords of
length n in such languages is of order n Iog2 n). UWe believe that this
paper sheds a new light on the theory of square-free languages (sequences)
and that it demonstrates how known results and techniques of the theory of

DOL systems contribute to the theory of nonrepetitive languages (sequerices).

We assume the reader to be familiar with basic aspects of DOL

systems (see, e.g., [9]).



PRELIMINARIES

We will use standard notation and terminology concerning DOL
systems (see, e.g., [9]). Thus a DOL system G is specified in the form
G = (z,h,w) where £ is its alphabet, h its homomorphism and w jts axiom;
L(G) denotes the language of G while E(G) denotes its sequénce. A Tetter
a is erasing if, for some m =1, h™(a) = A (where A is the empty word),
otherwise a is nomerasing; maxr G denotes max{|x| : x=h(a) for some
a € L}, Since the problems considered become trivial otherwise, we consider

only DOL systems which generate infinite languages.

It turns out that the notion of the rank of a letter in a DOL system

(see [5]) will be quite useful in our investigation.

Definition. Let G = (Z,h,w) be a DOL system and let, for a letter
a ez, Ga = (r,h,a). We say that a letter a ¢ ¢ is of rank 0 (in G)

if L(Ga) is finite. Let, for i = 0, op denote the set of all letters of

rank i and let, for j =1, G(j) = (Z(j)’h(j)’w(j)) where
J-1
Z(J) = I \‘k::JO E_i, w(J) = gJ(w) and, for b e Z(j), h(J)(b) = g(J)h(b)

) . . . § .
where 95y s the homomorphism on £* defined by g(j)(a) a for a e Z(J),

‘ j-1
and g,.\(a) = A for a ¢ \UJ .. Ifaletteracezt,., is of rank 0
(3) o i (J)

in G(j) then we say that it is of rank j(in G). If a € ¢ is of rank j for
some j = 0 then we say that a has rank in G; otherwise we say that a is

without a rank. [J

For a word x, |x| denotes its lengths while (if x is nonempty)
Firstx denotes the first letter of x. For a finite set A, #A denoteé its

cardinality. For a language K and a positive integer n, suan denotes



the set of subwords of length n of K while subK denotes the set of all subwords

0

of K. Given an alphabet ¢ and 4 ¢ z, pres, denotes the homomorphism

on t* defined by presA(a) = A if a e 2\a and pres,(a) = a if a ¢ 4.

We need the following notions concerning repetitions of subwords

in a word.

Definttion. A word is called square-free if it does not contain a
subword of the form x2 where x is a nonempty word. A word is called
strongly cube-free if it does not contain a subword of the form x2 firstx
where x is a nonempty word. A Zanguage is called square-free (resp.
strongly cube-free) if it does not contain a square-free (resp. strongly

cube-free)word. [J

Clearly, every square-free word (language) is also strongly cube-
free. Actually strongly cube-free words (languages) can be viewed also

differently.

Definition. A word y is said to have an overlap if there exist
words Y12¥ 00X 5X0sXg and x such that y = Y1X(Xo¥X3¥ps X = X Xy = XoX3
where X{sX,s%g are nonempty words. Otherwise we say that y is
overlap-free. A language is called overlap-free if each word in it is

over]ap-free; 0

Theorem 1. A word is overlap-free if and only if it is strongly

cube-free.



Proof,

(i). Let u be a word containing two overlapping occurrences of
the same word. Hence u = UpXqXoX3ly where for some word X, X{Xp = XpX3 = X
where X1> Xps X3 are all nonempty words; thus u has two different
occurences of x "overlapping on" X But then X1%q firstxl is a subword

of u and so u is not strongly cube-free.

(ii). Let u be a word which can be written in the form

U= upxx (first x)u2 where x is a nonempty word; hence u is not strongly

i

cube-free. Then u = u; X (first x) y (first x)u2 where x = (firstx)y. But

then u can be written in the form u = u1212223u2 where z

and z23 =y first x. Consequently u has two different occurrences of

1 = X, z2 = first X

z =27z, = 2,24 "overlapping on" Z,- But then u is not overlap-free. [J



RESULTS

In this section the subword complexity of scuare-free DOL languages
is investigated. We begin by establishing an upper bound for this

complexity.

Theorem 2. If K is a square-free DOL language then, for every

positive integer n, #suan <Cn ]og2 n for some positive integer constant C.

Proof. Let G = (r,h,w) be a DOL system cenerating K.
(i). If a € t, then either a is of rank O or a does not have a rank.

This is established as follows. If a has a rank greater than O then
G must contain a letter b of rank 1 such that, for some m = 1, hm(b) = ut:v’
where u, v e £*, uv= A and u and v consist of Tetters of rank O only.
Since both u,h™(u), hzm(u), ... and v, "M(v), hzm(v), ... are infinite

ultimately periodic sequences, L(G) cannot be sauare-Sree; a contradiction.

(i1). There exists a positive integer constant a such that if u is

a subword of K consisting of letters of rank 0 only, then |u|<q.

This is proved by contradiction as follows. Ls% u be "an arbitrarily
long" subword of K consisting of letters of rank C cnly. Since it is well
known (see, e.g., [9]) that subwords consisting of erasing letters only
are shorter than certain constant, u must contain "arbitrarily many"
nonerasing letters. Let E(G) = wo,wi,wz,... where for some 1 > 1,

w, = Xxuy. Notice that in words w

j ..swy_q We can distinguish

Oswla .
(occurrences of) subwords Ugalyseeesly

1 respectively which are the

shortest subwords which are ancestors of u. Let j be the minimal integer

such that |uj{ >2. So let u; = a vy b where a, b e 7, vy ¢ DA



Clearly Iuj[ < max {|w|, maxrG } and Vs if nonempty, consists of
Jetters of rank O only (because its contribution to ws is either empty
or it consists of letters of rank 0 only). Let u = cvd wherec, d ¢ ¢

and v ¢ £¥. The situation can be best illustrated as follows:

w
0
u.
J
.
I8 )
a V. b
w- . .
' \ \
' \ \
] :’ v \\
! \ ‘
1 \ \
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Since the length of Vs is limited and u is arbitrarily long
either on the path from a to ¢ or on the path from b to d there must
be a symbol, say e, repeating at least twice which contributes to v
a subword which contains a nonerasing letter; since both cases are
symmetric assume that e occurs on the path from a to ¢. Hence for
some m = 1 hm(e) =787, where Z, is nonempty and consists of type O
letters only with at least one of them being nonerasing. Since, clearly,
Zy5 hm(zz), hzm(zz),'... is an infinite ultimately periodic sequence of
nonempty words, L(G) must contain a word which is not square-free; a
contradiction. Hence there exists a positive integer constant g such
that each subword of L{G) consisting of letters of rank 0 only must

be shorter than q.

(iii). Now let & = (T,h,w) be the DOL system defined as follows:

= {[u,a,v] 1 u,v ¢ Za,iu[ <q, |v|]<qgand a € T \zpl,

€|
i

= [ul,al,A][uz,az,A]'...[uz,az,uﬂ+l] where
*
u13u23u3a .“,u£+1 € ZO, al,...,a£ € Z\ZO, 'e 2 1 Emd
WEU A U8y e Updplpss
for [u,a,v] € £, h([u,a,v]) = [ZO’bl’A]"'[Zk-l’bk’zk]
= *
where k 2 1, h(a) = xoblxlb2 ...bkxk,xo,...,xke L9,

bl’ ...,bk € 2\20,20=h(u)xo,zl=x1,22=x2, e 2P 1 T X

and zk=xktﬂv).
We can clearly assume that G is an everywhere growing DOL system
(i.e., for every a ¢ £, |h(a)|=22); if G is not such a system then we

can speed it up (see, e.g., [8]) and then deal with a finite number of

DOL systems ”1, ...,Gﬁ each of which is everywhere arowing. From the
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construction of G it directly follows that L(G) = g(L(G)) where g is

the homomorphism on ©* defined by g(lu,a,v]) = uav. It is proved in
[6] that if H is an everywhere growing DOL system and f is a nonerasing
homomorphism then, for every positive integer n, #subn F(L{H)) swa1ogzlw

for some positive integer D.

Thus the theorem holds. [

We demonstrate now that the above established upper bound

(n Tog, n) is the best possible.

Theorem 3. There exist a square-free DOL language K and a

positive constant D such that for every n 2 1, #subnl< =D n]ongL

Proof. Consider the DOL system G = (I,h,w) with £ = {0,1,2},
h(0) = 012, h(1) = 02, h(2) = 1 and w = 0 from [8]. It is shown in
[8] (see also [1]) that L(G) is square-free. Let G(3) = (z,h(3),0)
where for a ¢ I, h(3)(a) = h3(a); thus 6(3) results from G by starting
with the axiom 0 and then taking only each third word of G. Clearly
also L(G(B)) is square-free. Notice that if fG and fG denote the

| | *(3)

growth functions of G and G(3) respectively then

forn =0, f.(n) 3% and . (n) > & i e (1).

Now let H = (@,9;0575) be the DOL system where © = I v I u T
With T = (@:aez)and T = {a:ael}, gla) = m3ﬂah g(a) = h{a)

and 9(33 = G}ai for a ¢ £ (where for a word a ¢ z+, « results from
a by replacing every letter a in it by a and « results from a by

replacing every letter a in it by a).

Clearly also L(H) is square-free. Let n 2 1 and let us estimate

a lower bound for #sub3nL(H). To this aim consider the word
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z = g™(000) where m = [3094 2n] . Then z = 2y 2,25 Where z; e it

z, € £ and Zy € Tt. Notice that it follows from (1) that |z3] > 2n.
Let y be the prefix of Z3 of length 2n. Since L(H) is square-free
(and so by Theorem 1 also overlap-free) all subwords of y of length n

are different. Let u be one fixed subword out of these n subwords.
n

Note that E(G) has the strong prefix property (that is hn+1(w)= h (w)an

+
for each n 2 0 where a, € £ ) hence we can talk about the "fixed
occurrence of u" in zé and in all suffixes of all consecutive words of

L(H) where we consider the longest suffixes which are over the alphabet

T, Now Tet us estimate the lower bound for the number of all those
subwords of L(H) that end on this fixed occurrence of u and are of

length 3n.

Note that if t and t' are such two different subwords where

lpres_t| =n and |pres_t'| =n thent # t' (because fg 1s a
Z Z
monotonically growing function). Hence, let us estimate a bound on a

positive integer p having the property that if x = gm+p (066) then

l[pres_ x| = n. First of all, as long as 3P <, then (by (1)) p
Z
has the -desired property.

Thus (m+p) 1094 3= log4 n
1- 1og4 3
and consequently p = C 1094 n - 0.5, where C = oo,
1094 3
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Since we have n possible choices for u we get that
#subg L(H) =z n (C Tog, n - 0.5).

Consequently there exists a positive constant C, such that for all n=> 4

1
#subg L(H) = Cyn ]og4 n

(any Cl such that C1 = C - 0.5 will do).

Then it is rather easy to see that there exists a positive

constant D such that #subn L(H) = Dn]og2 n for every n > 1,

Hence the theorem holds. [

We turn now to the Tower bound on the subword complexity of

square-free DOL languages.

Theorem 4. If K is an infinite square-free language then

#subn K = n for every positive integer n.
Proof.

Let n be a positive integer. If n =1 then clearly #subn Kz n.
So let n > 2 and let z in K be such that |z| 2 2n-1. Let 25 2y
cen 2o be words resulting from z be erasing from it the first, the
two first, ..., and the (n-1) first letters respectively. Now let
y,yl,....yn_l be prefixes of length n of words Z’Zl""’zn-l respectively.
Note that all those words Ys¥qs--+s¥,_y @Ppear as subwords of z in such
a way that any two of them overlap in z. Since K is square-free,

Theorem 1 implies that K is overlap-free and consequently YaYyseoos¥q

are all different subwords of z. Thus #subn Kz2n., 0O
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Finally we demonstrate that the linear bound on the subword

complexity of square-free DOL languages is the best possible.

Theorem 5. There exist a square-free DOL language K and a positive

integer constant C such that for every positive integer n, #subn K=< Cn.

Proof. It is well-known (see, e.g., [1]) that there exists a
square-free DOL language defined by a uniformly growing DOL system.
(A DOL system G = (Z,h,w) is called uniformly growing if there exists
a positive integer constant t such that, for every a e z, |h(a)]=t.)
However, if G is a uniformly growing DOL system then (see [4]) there
exists a positive integer constant C such that, for all n 20,

#subn L(G) < Cn. O

We conclude this paper with the following two remarks.

(1). In this paper we have established lower and upper bounds on the

subword complexity of square-free DOL languages. Thue's original.

interest {(as well as the interest of the most of his‘foliowers) was

in square-free infinite words. For this reason [1] and [9] consider

DOL systems (I,h,w) with the property that « is a prefix of h(w); each

DOL system of this kind defines a unique infinite word.It is easy to see that al
results we have presented in this paper are a]sd valid for DOL systems

of this particular kind.

(2). Analogously to the notion of a square-free word (language), for every

k = 2 we can consider the notion of a k—repétitions—free word (language);
Thue considered 3-repetitions-free words which he called cube-free.It is easy
to see that our lower and upper bounds for the subword complexity remain valid

also in the general case of k-repetitions-free DOL languages.
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