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ABSTRACT
The subword complexity of a language K is the function me On
positive integers such that nK(n) equals the number of different

subwords of length n appearing in words of K. We investigate the
relationship between Th(K) and Y where K is a Tanguage and h is a
homomorphism. This study is also carried out for the special case when

K is a DOL Tanguage.



INTRODUCTION

In the framework of L systems, investigating the subword
complexity of a language turned out to be quite useful for the
understanding of the role of the deterministic restriction on-a rewriting
system, see, e.g., [ 1], [ 2], [3] and [4]. (The subword complexity
of a Tanguage K is the function Te On the positive integers such that,
for every n, wK(n) equals the number of different subwords of lTength n

appearing in the words of K).

Our paper continues the work in this directijon. In particular,
we investigate the effect of a homomorphism on the subword complexity
of a language, that is, given a language K and a homomorphism h we

investigate the relationship between h(K) and e

In the first part of the paper we investigate the situation 1in

the case that K is an arbitrary language. We demonstrate that no

Wh(K)(n)
TFK n

be established even in the case that h is a nonerasing homomorphism.

"meaningful" Tower or upper bounds for the ratio can

We also prove that if a language contains an infinite number of
subwords then its subword complexity must be at least Tinear; in

other words, sublinear subword complexities do not exist.

In the second part of the paper we investigate subword
complexities of homomorphic images of DOL languages. This class of
languages plays an important role in the theory of L systems, while
at the same time it is much more difficult to handle than the class
of DOL Tanguages, see, e.g., [4]. (Let L(DOL), L(HDOL) and L(HADOL)
denote respectively the class of DOL languages, the class of

homomorphic images of DOL Tlanguages and the class of languages of the



form h(K) where h is a nonerasing homomorphism and K is a DOL

language). Surprisingly enough it turns out that the subword

complexity of a language in L(HDOL) is bounded by a function of

order nz; in this way there is no difference between DOL and HDOLw ’
1anguages;(seew[2]). wéméfso”show fhat in the general case oer(HDOL)’Qne ”
cannot have thé tﬁéofy of subword complexity "sensitive to" natural

structural restrictions on the underlying DOL systems;iit is known (see [2])

that such a theory ex{éts‘for the'c1ass L(DOL);”HoWeVEfW%%wone considers

L(HADOL);rsuch a theory is again possible.
The reader is assumed to be familiar with the theory of

DOL systems, see, e.g., [4].



I. PRELIMINARIES

For a finite set K, #K denotes its cardinality; if #K = 1
then we often identify K with its element. For an integer x, abs X
denotes the absolute value of x. For a word y, |y| denotes its length
and alphy denotes the set of all letters occuring in y; A denotes the
empty word. If y ¥ A then firsty denotes the Teftmost letter in y,
last y denotes the rightmost letter in y and yoo denotes the infinite
in both directions word consisting of catenations of y only. For a
positive integer n, prefhy denotes the prefix of y consisting of the
n Teftmost letters in y (if |y| < n then prefny==y) and prefy denotes the
set of all prefixes of y. Analogously we use the notation sufnx and
suf x for suffixes. Also subny denotes the set of all subwords of y of
length n and sub x denotes the set of all subhéfds’of Y. For’a -
language K, prefh K= {prefny 1y e K}, pref K = kfj‘pref ¥
suan = {subny :yeK} and sub K==L~J'sub,y. ye

yeK

Given an alphabet x (fixed in the considerations) and 4 < %,
is the homomorphism on z* defined by: pres, x = A if x e Z\A

A A

and pres, x = x if x ¢ A. For a homomorphism h on o¥,

pres

maxzr h = max{|h(x)| : xez}.

A DOL system G is specified in the form G = (%, h, w) where
is its alphabet, h its homomorphism and « its axiom; L(G) denotes

the Tanguage of G while E(G) denotes its sequence. Also maxr G=maxrh.

[\

We say that G is everywhere growing if, for every x ¢ %, |h(x)| = 2,

2

v

and G is uniformly growing if there exists a positive integer t
such that, for every x e %, |h(x)]| = t; as usual we say that L(G) is
everywhere growing and wniformly growing, vespectively. L(DOL) denotes

the class of all DOL Tanguages, L(HDOL) denotes the class of all



homomorphic images of DOL languages and L(HADOL) denotes the set of

all Tanguages of the form h(K) where h is a A-free homomorphism and K

is a DOL language.

For a language K, its subword complexity is the function T

on - positive integers defined by: wK(n) = #subn K.

Since problems considered in this paper are trivial otherwise,
we consider infinite languages only (unless indicated otherwise); in

particular we consider only DOL systems G such that L(G) is infinite.

To avoid cumbersome technicalities, most of the proofs in this
paper are presented in a rather informal way. We are convinced that
the reader (familiar with the theory of DOL systems) can complete all

formal details in the proofs, if necessary.



IT1. ARBITRARY LANGUAGES

In this section we investigate the effect of a homomorphism
on the subword complexity of a language, that is we investigate the

relationship between "h(K) and T where K is a language and h is a

homomorphism.
We start by establishing the lower bound on the subtword
complexity of a Tanguage. Our first result says that there do not

exist sublinear (but not constant) subword complexities.

Theorem 1. Let K be a language. Either
(1). nK(n) > n+1 for every positive integer n, or
(2). there exists a positive integer C sucih that nK(n) <C for every
positive integer n; moreover, in this case
r
K¢ KO U Lm} l(i where r 2 1, KO is a finite language and, for every

i=1
je{l,...,r}, there exist words X5 1 Xi o and yi such that

9

+
Ki =%5.1%% %420

Proof.
let w e subK, K ¢ A* (éertain]y we can assume that #a = 2;
otherwise the theorem trivially holds). We say that w is deep if for every

positive integer n there exist words x, y such that [x]|> n, |yl >n and
xwy e K. We prove the theorem essentially by analyzing deep subwords
(of K). We use dsubK to denote the set of deep subwords of K and,

for a nonnegative integer n, dsuan denotes the set of deep subwords

of K of Tength n.
(i). Every (infinite) language contains infinitely many deep

subwords.

This is obvious.



(ii). If w is a deep subword then there exist letters a, b in a

such that wa and bw are deep subwords.
This 1is obvious.
(iii). For every nonnegative integer n, #dsubn+1K zf#dsuan.
This follows directly from (ii).

(iv). If for every nonnegative integer n, #dsubn+1 K>-#dsubn K

then, nK(n) > n+l for every nonnegative integer n.

This follows from the fact that wK(n) > #dsubnl< for every
nonnegative integer n and moreover #dsubl K = 2. Thus (the first case

of the statement of) the theorem holds.

(v). If the assumption of (iv) does not hold then there exists

a positive integer g such that #dsubn K = #dsubn +1 K.
0 0

This is obvious.
In the rest of this proof o will be a fixed constant

satisfying (v).

(vi). For every m > nys #dsub_K = #dsub_ K.
m n,

This is proved as follows.
Let, for wedsubK, R(w) = {aeh:waedsubK} and
L{w) = {bea . bw e dsub K} . By (ii) we know that both R(w) and L(w)

are nonempty. However, since #dsub_ K = #dsub K, if |w|] =n
o no+1

then #R(w) = #L(w) = 1. We will also use R(w) and L(w) to denote the

0

unique elements of R(w) and L(w) respectively.



Qow Tet Zl’ z2 € dsubm|< where m > nO.

. If 2y # 7, then prejhozl # prefnozz. This is seen as follows.
If z, # z, but pref z, = pref z, then let q be the smallest positive
1 2 No 1 o 2
integer such that the letter occurring on the g-th position in z
(say al) is different than the letter occurring on the g-th position
in zz(say az). Thus zy= ulalx1 and z, = LH_&2¥2 where ]ull = g-1. Let

u = sufnoul. Then ua, € dsubn+1 K and ua, e dsub Ky which implies

1 0 n0+1

that #dsub K > #dsub_ K; a contradiction. Consequently it must
o 1 Ny

be that if z, = z, then prefnozl # »prefnozzg

This, however, implies that #dsubn‘K = #dsubn K and so (vi) holds.
0

(vii). Now for each Wezdsubnl< we construct the double infinite
0

sequence p(w) by appending to the right of w consecutively

R(w), R(sufno(w R(w)))s... and to the left of w consecutively

L(w), L(prean(L(w)w)),...~,Then o(w) is periodic, meaning that there

exists a nonnegative integer m such that for each integer i,

Foqn () = Fon(i-m = f

. . . .
5 w)(7 m) where fp(W) is the function

(from integers into A) defining o(w).

This follows because dsubn K 1is a finite set.
0

For each o(w) we denote by pp(w) a fixed word o (called the

period of o(w))  such that o(w) = o”. Let W = {p(w) :W<£dsubn K3.
0

Now we write every word x ¢ K in the form x = F(x) D(x) T(x) where

D(x) 1is the Teftmost occurrence among all subwords y of x such that

y is a subword of some p ¢ W and among all subwords of x that are
subwords of (an element of) W none is longer than y. Now we partition

K into subTanguages as follows.
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(1). If x e K is such that D(x) is a subword of a o in W of the form

D(x) = ulpn o for some n =2 1, al,azezA* where for no m>n,D(x) can
p

be written in the form D(x) = Blpglgz for some BysBy € A¥, then we

say that x e K(p,ul,az)s

(2). UO consists of all words x in K that cannot be written in the
form F(x) D(x) T(x) where D(x) = oy pg a, for some n 21, o ¢ W and
aps 0y € A%,

(viii). UO is finite.

Otherwise, by (i), UO contains infinitely many deep subwords and

so it contains words that can be written in the form indicated in

(1) above.

(ix). Consider an infinite sublanguage M = K(p,&l, uz).

Let expM = {n=>1 :D(x)==<x1 pg oy for some x e M}. Then expM is infinite.
This 1is proved by contradiction as follows.

Assume that exp M is finite. Then, clearly, the set {D(x) : x e M}
must be finite. Hence M must be finite (because (1) implies that an

infinite Tanguage contains arbitrarily long deep subwords); a contradiction.

(x). Consider an infinite sublanguage M = K(p, al,az). Let

begM={F(x) : xeM}. Then begM is finite.
This is proved by contradiction as follows.

Assume that begM is an infinite language. Hence there exists
a letter in A, say b, such that for infinitely many words y in beg M
we have Zasty=b; let Zp = {xecM: Zast F(x) =b}. Now let
exp I, = {nz1 :D(x)==u1 pg a, for some x e Zb}. Again (see the proof
of (ix)) it is easily seen that exp Zy is infinite. But this implies

n
that bprefno(alppo) is a deep subword and so b = L(prefno(ulppo)).
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Consequently if we take a word x in M such that Zast F(x)=b and

- m .
D(x) = ull%)uz with m > o then the subword of x starting on the last

7

Tetter of F(x) and ending on the last letter of D(x) is also a subword

of p; a contradiction.

(xi). Consider an infinite sublanguage M = K(p,<x1,a2). Let

end M = {T(x) : xeM}. Then endM 1is finite.

This can be proved analogously to (x).

r
But (viii) through (xi) implies that K ¢ KO U &~,g Ki where
']:
r=1, K0 is a finite language and, for every i ¢ {1, ...,r}, there
. _ +
exist words Xi,l’xi,Z’ and z such that Ki = Xi,lyi xi,2' Then clearly

there exists a positive integer C such that nK(n) = C for every positive integer

This completes the proof of the theorem. [J

It turns out that in the most general case, that is when h is an
arbitrary homomorphism, nothing meaningful can be said about the

relationship between Th(K) and e

Theorem 2. For every positive integer e there exist a Tanguage K,
K ¢ A*, a positive integer constant C and a homomorphism h : A% »3*,
where #5 = e, such that, for every positive integer n, wK(n) < Cn

and “h(K)(n) = e,

Proof.

Let e be a positive integer and let T T ﬁoil.... be an w-word
(that is'a one way infinite word) over the alphabet © = {1,...,e} such

that every word over 0 is a subword of o Let = = {bl, ...,be},

R I o R . c e
A =3xvuf{a}l, a g2 and Tet K = {b, a b, a3...b. a3 :r=0and iqi, ... 1
o ) In 11 R P , 01 r

is a prefix of Te}.

Let us estimate Ty first. Notice that if x e sug]K for n = 1 then
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either (1). x = an,

or (2). x = as'b‘].aJC for j e {1, ...,e} where s + t =n-1,

or (3). Ipresle =2,

Clearly there is one word x satisfying (1) and en words
satisfying (2). To estimate the number of words x satisfying (3) we

proceed as follows.

If x satisfies (3) then x is of the form x =‘ybj a
for y e A¥, bjl,bj2 e £, £(x) a nonnegative integer and k(x) a
positive integer.

(). Let x e sub_K, x = yb, ak(x)b. aﬁ(x) where y ¢ 2" b,

. n J]_ JZ ° Jl’
gjé e I, £(x) = 0 and k(x) = 1. Then there exist two positive integers
91> G, such that either k(x) = q; or k(x) = SPE

This is proved as follows.
Let q be the maximal among all k(x) (for all x e sub, K).

Clearly for some u = 0, g9y = 3Y and n > 3Y. Then for every word

- k(x) L(
X ,ybjla bjza

then k(x) = q. = 34=1.

X), ly| < P Consequently if k(x) # aq

a5 Thus (i) holds.

But every word x = ytﬁ ak(x)bj aﬁ(x) is uniquely determined
‘1 2

by its suffix ak(x)bj az(x) and so (i) implies that there are no
2

more than 2en different word x « subn K satisfying (3).
ATtogether nK(n) < Cn where C = e+3.

Now Tet h be the homomorphism on A* defined by h(a) = A and

h(bi) = bi for 1<i<e. Clearly, for every nonnegative integer n,

’ll'h(K) (n) = en.

Thus the theorem holds. [J
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Notice that the Tanguage K used in the proof of Theorem 2 is
such that T is a nondecreasing function. It turns out that when one
considers an analogous situation for A-free homomorphisms then the

jump in the subword complexity is rather Timited.

Theorem 3. Let K ¢ A* be a language such that m s a
nondecreasing function. Let h be a A-free homomorphism on A*. Then
there exists a positive integer constant C such that, for every

positive integer n, h(K) (n) < Cv1wK(n).
Proof.

Let h:A*>5*, Let n >1 and Jet z « subn h(K). Since h is
A-free there exist a ¢ A u {A}, b e & u {A}, ¥ e sub K with lyl <n
such that z is a subword of h(ayb) where if a # A then z is not a

subword of h(yb) and if b # A then z is not a subword of h(ay).

Hence z = z, z, zSiWEéFé erféwéﬁéﬁ%fik 6%Wh(5), z, Q‘H(y) aﬁd‘z3 is a nrefix of
h(b). Consequently B

n
k) () = (#z)(zmam’h)-z Z

Since i is a nondecreasing function

(2maxr h)-2

ﬂh(K)(n) < (#1) n wK(n).

Hence if we set C = (a%‘z)(zmxrh)'2 the theorem holds. [

3

Comparing Theorem 2 (and its proof) and Theorem 3 one sees a

big difference between arbitrary and A-free homomorphisms as far as

their effect on the subword complexity is concerned. However, it turns
out that when one considers the case when m, does not satisfy the "nondecreasing"

restriction , the situation is quite different. First of all we demons*rate
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that :in such a case there is no meaninaful Tower bound for the ratio ————r-o.

Theorem 4. Let K be a language, K ¢ A* and let h be a

A-free homomorphism on A*. Let f be a function of positive integers

such that Tim f(n) =«. Then there exist an infinite set M of positive
e e} 00 T —

integers such that, for every m e M, f(m)-nK(m) > ”h(K)(m)‘
Proof.

Let h:a*>3* and Tet C = (#Z)(zmaaﬂgh)'d.
Since a subword of h(K) of length not exceeding n is “"obtained" from a
subword of K of Tength not exceeding n, reasoning as in the proof of

Theorem 3 we obtain that, for every positive integer n,

n

n
T L) <¢C LT ¥ 2 1

We prove the theorem by contradiction as follows. Assume that

there exists a positive integer g such that, for every n > Ng»

f(n) wK(n) < "h(K) 1 2 (2)
Consequently, for every n > Ng» We have
n g n |
T (£) = Z T () + 2 T (2) =
e =1 MO sy I Sy ey KD
Ny n
Z Ll ('Z) + Z f(’@) ™y (f,).
e=1 K =gt K
But then (1) implies that
Ny n n
£ =1 E=n&1 L=1
Consequently
tly] no n
Z m (L) <¢C Z m, (L) + z (C-f(e)) n, (£)
g =1 h(K) £=1 K77 g a K
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Since f(n) is ultimately growing, there exists a positive integer ny > ng,

such that for every n = nys f(n) > C.

Consequently, for every n > nys we have

no no nl-l
2 z 7Th(K) ('@) = C,ZZ]_ '”K (’Z) +,@=zn0+1 (C—f(ﬂ)) TYK(»?_) +
n
) (C-—f(ﬂ))'nK(K) ............................... (3)
£=n1
"9 ny-1
But for n > ny +C ) ﬂK(K)-+abs( ¥ (C-f(ﬁ))wK L@ﬂ
£2=1 ‘£=n&1
we have
n no ﬁr—-l
I (c-fe))me(e) <-C J m (&) ~abs () (C-F(2))m (L))
£=n1 L=1 £=n&1

and consequently (3) implies that
ng |
KAE X ”h(K)(K) < 0; a contradiction.

Thus (2) cannot be true and consequently the theorem holds. [

Although we cannot prove the analogue of Theorem 2 for A-free

homomorphisms we can show that, in general,no polynomial upper bound

(k) (M)

exists for the ratio MEETﬁTff.

Theorem 5. There exists a language K and a A-free homomorphism

h such that for no polynomial f, Wh(K)(n) < f(n)w, (n) for all

K
positive integers n.
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Proof.

Let t = mys My, o be an infinite sequence of positive integers

such that, for each i > 1, Miyq > m?. Then Tet K be the Tanguage

D o © mi  mi M
over the alphabet {¢,a, b} defined by K =L)1 ¢fa ',b '} and Tet
i=1
h be the homomorphism on {¢, a, b}* defined by h(¢) = ¢2, h(a) =aandh(b) =b.

Let us consider K first. Let us fix a positive integer i, let

n, = mi2 + 2 and let us compute Ty (ni). Clearly if x « subn K then
i
® Mp My Mp
X € sub ((\,1 ¢{a ',b "} ). But then x is in one of the following forms:
r=i+1l

(1). x e pref(¢a+),

pref (¢b7),

—
nN

~—
x
m

(3). x ¢ suba+,

(4). x e sub b+,

ft

(5). x e sub(a+tf7 where alphx = {a, b},

1}

(6). x e sub Ui+a+) where alphx = {a, b}.

But (remember that [x| = m? + 2) there is one x only satisfying
(1), one x only satisfying (2), one x only satisfying (3), one x only
satisfying (4), m? + 1 words x satisfying (5) and m? + 1 words x

satisfying (6). Consequently Ty (ni)= 2¥n§ + 6.
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Consider now h(K). Since by replacing ¢ by ¢2 we have "padded"
m. m, m,
h L2 iy 2 .
the Tength of words in ¢"{a ', b '} ' to mi-kz =Ny, if X e Subni K then

® 2 . M M mr
X € sub (&NJ‘ ¢“{a ",b "} "). It is obvious then that m >2 1,
=

(k) (1)

Consequently

i () g
Tm )T T 2(n,-2) + 6

Since there are infinitely many n; of the form m? + 2 where

SNy -2

i > 1 and since g(n. 2V T 6 grows faster than any polynomial, the
i

theorem holds. [
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ITI. DOL LANGUAGES

In this section we consider the effect of homomorphisms on the
subword complexities of DOL languages. We start by considering

arbitrary DOL languages.

Theorem 6. Let K be a DOL Tanguage, K ¢ A*, and let h be a
homomorphism on A*. There exists a positive integer constant C such

that, for every positive = integer n, Wh(K)(n) < an,

Proof.

Let K = L(G) where G = (A,g,w) is a DOL system with #A = m. We
assume that G satisfies the following condition:
for every n=1 and every a e, athgn(a) = alphg(a).cveiiiiit (4).
(If G does not satisfy this condition then we can speed it up, see,
e.g., [ 4], and deal with a finite number of DOL systems each of which

satisfies this condition).

Let n>1 and let zesub h(K). Then Tlet s be the smallest

integer t such that z is a subword of h(w where E(G) = Wy sty e e s

t))
Let y be (a fixed occurrence of) the smallest subword of W such that

z is a subword of h(y). The situation can be represented as follows:



h(ws

-18-~
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Clearly 1in each ws s O<is<s-1, we can distinguish (the
occurrence of) the smallest subword that is the ancestor of y in ws 3
let us denote it by e Let r be the smallest integer t such that the
ancestor of y in wy consists of at least two letters, let this ancestor

by a.

Let now, for each ie{r,r+l,...,s}, v(i) denote the number of
occurrences of letters in W that yield (through W and then h) a
nonempty contribution to z.

)21,

(1). y(i+(m1)2+1) > v(i) For r<i<s - (m+l

We prove it by a contradiction. Assume that (i) is not true,
meaning that

v(i) = y(3) for redseit (M)t 1o (5).

Let Ce ; be the leftmost occurrence 1in Ys contributing a nonempty
subword to z and let Co. s be the rightmost occurrence in Ys contributing

a nonempty subword to z. Clearly (5) together with (4) implies that

every occurrence ¢ in B which contributes to z but is different from both
Ce s and o is such that it has only one propagating descendant on each
9 3 2

level 1 + 1,...,i + (m1)” + 1 and moreover all of those descendants are

occurrences of the same letter.

On the other hand there must exist integers jl,jz such that

.. . . 2 _ _
1< <i,si +(m+1)"+ 1, Cf’jl ~cf,j2 and Cg’jl = CJL,J.2 .

But then z is a subword of h(w which contradicts the

S(3,-37)]
minimality of s.
Hence (i) holds.

2

(i1). 2= (s-r) < ((m+1)“+1)n.

This follows directly from (i).
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Now let p(z) be the prefix of z ending on the rightmost
occurrence of a letter contributed by the Teftmost occurrence of a
letter in o, and let g = Ip(z)] Let the description of z be the

triplet des z = (a,2,9)

(iii). If Z152 esubnh(K) and des zq = des Z, then z = z,.

This is obvious.
(iv). |a| =max {|w|,mazr g} = p.

This is obvious.

i
£

Now (i1), (iii) and (iv) imply that

Th() (M) =P (1) +1)nn = 0P (1) 41)0

Thus the theorem holds. O

The above theorem strengthens considerably the result from [ 2]
which says that for a DOL language K there exists a positive integer
constant C such that WK(H)SQCHZ for every nonnegative integer n. It
is also shown in[2] that there exists a DOL Tanauage K and a positive real D

such that 7, (n) an2 for every nonnegative integer n. Hence Theorem 6

K
presents the best possible upper bound on the subword complexity of an

HDOL Tanguage.

In general a homomorphism can increase the subword complexity
of a DOL language quite considerably (as a matter of fact from the
"Towest possible" to the "highest possible" — compare Theorem 7 with

Theorems 1 and 6).

Theorem 7. There exist a DOL language K, K< A¥, a positive real

C, a positive integer D and a homomorphism h: A* ~Z* such that, for

2

every positive integer n,wh ’ (n) >Cn" and WK(n)<<Dn.
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Proof.

It is well-known, see [ 2], that there exist a DOL system
G = (Z,9,w) and a positive real C such that, for every nonnegative

. 2
integer n, WL(G)(H)EZCH .

Let G' = (A,g',w) be the DOL system where A = Su{al}, a¢s,

(x)a"oer G- |g(x

and g' is defined by g'(x) = g ) for x eI, and

g'(a) = a"¥r G
Notice that G' is a uniformly growing DOL system and so, see

[ 2], there exist a positive integer D such that, for every nonnegative

integer n, WL(G.)(H)<(DH.

Let h be the homomorphism on A* defined by h(x) = x for x ez
and h(a) = A. Then clearly h(L(G')) = L(G) and consequently the

theorem holds. [J

Note that the DOL language K used in the proof of Theorem 7 is
a uniformly growing DOL language and so one cannot have a theory of
subword complexity of HDOL languages analogous to the case of DOL
1anguages;ksée f2]) where considéf%ng'everywhérekgrowing énd then uniformly
growing DOL languages gave rise to the drop of subwofd compTéXfty to

the Tevels of the order of n 1092n and n respectively.

However one obtains this kind of theory when one considers

HADOL languages.

Theorem 8. Let K be an everywhere growing DOL language, Kc A¥*,
and let h be a A-free homomorphism on A*. There exists a positive

integer constant C such that, for every positive ° integer n,

wh(K)(n):sCr11ogzn .
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Proof.

Let K = L(G) where G = (A,g,w) is an everywhere growing DOL

system. Let E(G) = Wy sWps v

Let n>1 and let z«;subn h(K). Let s=>1 be such that z is a
subword of h(ws) and let us fix an occurrence of z in h(ms). Then Tet
y be (a fixed occurrence of) the longest subword in wg which is mapped

by h into a subword of the given occurrence of z. Finally let r be the 1

smallest integer t such that w,_ contains a subword B whose constribution

t
to W is included in y; then let o be the longest such subword in e

(). o] =max {maxr g,|w|} = p.
This is obvious.

Now Tet & be o extended by two letters immediately to its left
and two letters immediately to its right (if such letters to the left
of o do not exist then we extend o to the left taking all remaining, if
any, letters to the left of o, we proceed analogously in extending a to

the right). Let ¥ denote the contribution of o to W«
(ii). z is dincluded in the image of y under h.
This is obvious.
(ii1). 2 = (s-r)< 1092n.
This is obvious.

Now let u be the leftmost occurrence in z contributed (through
h and ws) by the leftmost occurrence in o and let q be the length of
the longest prefix of z that does not contain u. Then let the

description of z be the triplet des z = (&,%,9).

(iv). If 2152, esubnh(K) and des z) = des z, then ) = z,.
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This 1is obvious.

Now (i) through (iv) imply that ﬂh(K)(n)s o p(1ogén)n for a positive

integer C and so the théoﬁem holds. o

Since in [ 2] an everywhere growing DOL language K was given
such that there exists a positive real D such that WK(n) =D n 1092 n,

Theorem 8 represents "the best possible" bound.

Theorem 9. Let K be a uniformly growing DOL language, Kc A¥*,
and let h be a A-free homomorphism on A*. There exists a positive
integer constant C such that, for every positive integer

n, wh(K)(n):£Cn.

Proof.

The‘proof of this theorem is analogous to the proof of Theorem 8
except that we get a different upper bound for the value of 2 (we will
use the notation from the proof of Theorem 8). Let v be such that for
every aez, |h(a)] = v=2.

Thus n = vY.
On the other hand, because |a| <p+4, we have n < (p+4) V¥ mazr h.
Hence

2<Tog, N s£+1ogvb— where p = (p+4) maxr .

Thus Tog, n - 1ogvﬁs£ <Tlog,n.

Consequently the set of all possible values of & for all subwords
Ze‘subn h(K) is of cardinality not greater than (1+1ogvﬁ). Thus
Wh(K)(n) sp(l+109vﬁ)n which implies the theorem. [

Since in [2] a uniformly growing DOL language K was given such that
there exists a positive real D such that ﬁK(n) > Dn, Theorem 9 represents

"the best possible" bound.
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