RSSM/99

FUNCTIONAL SPECIFICATIONS OF THE
ANNULAR SUSPENSION POINTING SYSTEM

by

Bryan Edwards
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado

CU-CS-171-80 January, 1980

This work was supported by grant NSG 1638
from NASA Langley Research Center.

Abstract

The following is a description of the Annular Suspension Point-
ing System. This description is written using the Design Realization,
Evaluation and Modelling (DREAM) system, and its design description
technique, the DREAM Design Notation (DDN).

Appendix A contains a DDN description of the Annular Suspension
Pointing System. The information contained in this description was
derived from the NASA-produced report, "The Executive Software For the
Annuiar Suspension Pointing System,” which appears as Appendix B. The
description is divided into four major sections.

The first section of Appendix A {System Overview) contains the
major units of the system, their interconnections, and the event flow
between these units. Figure 1 corresponds to Figure 1 in the original
report, with the addition of three major units: analog sources, experi-
ment computer, and the system operator. Additional communication paths
are also shown. Each communications path is labeled with a number.
These numbers correspond to the CONNECTIONS given in the DREAM descrip- .
tion. In addition, the EVENT DEFINITIONS reference the communications
paths which the events use, by appending the path number to the event
name. Finally, the legal event sequences are given in the DESIRED
BEHAVIOR section of the description, using a regular expression type
notation. In this section, a shorthand, non-standard, notation is
used to indicate the repetition of a sequence of events a specific
number of times.

The second section (LEVEL II) describes the basic operations of
each of the major units of the system. The input and output ports are
identified, and an abstract model of the operation is given in terms
of the input and output.

In the third section (LEVEL III), the notion of the internal
servicers P(1),P(2) and P(3) is introduced. The internal operation of
these servicers is not detailed. The Togical interaction between the
servicers and the input and output ports of the NASA standard space
computer is given.

The notion of the time intervals T(1), T(2) and T(3) 1is in-
troduced in the fourth section (LEVEL IV). Here we see the interaction
between the master timing pulse and the signals to the three processes
P(1), P(2) and P(3).

In Appendix B, we have included a copy of the NASA-produced
functional specification of the Annular Suspension Pointing System.

The portions of the report which were captured by the DDN description
of the system are underlined.

Some portions of the NASA report contain very detailed descrip-
tions of sections of the system. This detail is not reflected in the
DDN description. Further elaborations of the DDN description would
be required to capture this detail.

The DDN description does not capture the notion of the mode
(idle, coarse, fine, slew) of the system, and the details of the data
communicated between the system units is not given. The NASA report
does not contain enough information in these areas to allow further
elaboration.

In preparing the DDN description, the concepts available in
DDN were adequate to describe most of this embedded computer system.
The only area that DDN does not adequately describe is the notion of
a specific interval of time.

FIGURE 1
Communications paths between system components

analog
sources
12
6
, 9
nasa . . L —=Z—odv platform/
standard 4 | g%gl%ignics 7 control
space 1 assenmb] 10 electronics
computer i1 | 3 Y N assembly
)
2f 15 8 13 117 21
test | remote
support acquisition platform
equipment unit
f
161 20 14 17
\
18
system experiment
operator 19 computer
R— |

Appendix A:

DREAM Design Notation Description
of
Annular Suspension Pointing System

SYSTEM OVERVIEW
[annular_suspension pointing system]: SUBSYSTEM CLASS;
DOCUMENTATION;
The purpose of the ASPS is to control a platform which will be
flown on the space shuttle. Equipment (e.g., a telescope) will
be mounted on the platform and the ASPS will allow this equipment -7
to be pointed in a given direction with extreme accuracy (+4.84x10
radians) and this position maintained for extended periods (stability
+4.84x10-8 radians /sec) in the presence of shuttle disturbances.
END DOCUMENTATION;
QUALIFIERS;
tl per t2, t2 per t3
END QUALIFIERS;
SUBCOMPONENTS ;

nsscii OF [nasa_standard space computer ii],

dea OF [digital _electronics assembly],
tse OF [test support equipment],

rau OF [remote_acquisition unit],

ec OF [experiment computer],

pea_cea OF [platform electronics_assembly control electronics
assembly],

p OF [platform],
as OF [analog_sources],
o) OF [system operator]

END SUBCOMPONENTS;

CONNECTIONS;
PLUG (nsscii|dea_outputs, dea|nsscii inputs),
PLUG (nsscii|tse_outputs, tse|nscii inputs), 2
PLUG (dea|nsscii_outputs, nsscii|dea inputs), 3
PLUG (dea|tl tick » hsscii|tl tick),

PLUG (dea|t2 tick » nsscii|t2 tick),

-6-
SYSTEM OVERVIEW
PLUG (dea|t3 tick » nsscii|t3 tick),

PLUG (dea|pea_cea outputs, pea_cea|dea inputs),
PLUG (dea|rau outputs , rau|dea_inputs),

PLUG

PLUG
PLUG

pea_cea|master timing pulse, dea|master timing pulse),
ea_cea|dea outputs, dea|pea cea inputs),
pea_cea|p_outputs, p|pea cea inputs),

PLUG (as|dea outputs, dealas_inputs),

PLUG

(

(p

(

(

(rau|dea_outputs, dea|rau_inputs),
PLUG (rau|ec_outputs, ec|rau_inputs),

(

(

(

(

PLUG
PLUG

tse|nsscii_outputs, nsscii|tse inputs),
tse|so_outputs, so|tse inputs),

PLUG
PLUG

ec|rau_outputs, rau|ec_inputs),
ec|so_outputs, so|ec_inputs),

PLUG (so|ec_outputs, ec|so inputs),

PLUG (so|tse outputs, tse|so_inputs),

PLUG (p|pea_cea outputs, pea cea|p inputs),
END CONNECTIONS;

(oo @)

O

10
11

12

13
14

15
16

17
18
19
20

21

-7-
SYSTEM OVERVIEW
[asps_operation]: EVENT CLASS;
EVENT DEFINITION;
system_operator request experiment 19: DESCRIPTION;
This event corresponds to the system operator entering a
request, at the operator console, to the experiment com-
puter.
END DESCRIPTION;
experiment computer request platform action 17,13: DESCRIPTION:

In order to perform a given experiment, the experiment com-
puter must manipulate the platform in some predefined manner.

END DESCRIPTION;
dea_request computation_3: DESCRIPTION;

Many times, computations must be performed before a requested
platform action can occur.

END DESCRIPTION;
nsscii_computation result returned 1: DESCRIPTION;

Computations supporting the platform are performed in the
nsscii. Results are returned to the dea.

END DESCRIPTION;
dea request platform action 7,11: DESCRIPTION;
The platform is actually controlled by the pea/cea.
END DESCRIPTION;
platform responds 21,10: DESCRIPTION;
The platform responds to request from the pea/cea.
END DESCRIPTION;
platform result returned to_experiment computer 8,14: DESCRIPTION:

The results of a high-Tevel platform operation are returned to
the experiment computer.

END DESCRIPTION;

-8-
SYSTEM OVERVIEW
experiment result returned to system operator 18: DESCRIPTION;

The result of our experiment is returned to the system operator,
at the operator console.

END DESCRIPTION;
system operator request test 20: DESCRIPTION;

This event corresponds to the system operator entering a re-
quest at the test console, to the test support equipment.

END DESCRIPTION;
tse request action 15: DESCRIPTION;

In order to perform a given test, the test support equipment
must get certain data from the nsscii.

END DESCRIPTION;
nsscii_result_returned 2: DESCRIPTION;

Test data from the nsscii is returned to the test support
equipment.

END DESCRIPTION;
test result returned_to system operator 16: DESCRIPTION;

The result of a test is returned to the system operator, at
the test console.

END DESCRIPTION;
master timing pulse 9: DESCRIPTION;
This pulse is generated every T(1) milliseconds.
END DESCRIPTION; |
tl timing pulse 4: DESCRIPTION;

This pulse is generated every T(1) milliseconds as a result
of the master timing pulse.

END DESCRIPTION;

t2 timing pulse 5: DESCRIPTION;
This pulse is generated every T(2) milliseconds as a result
of the master timing pulse. Note that T(2) milliseconds is
an integral multiple of T(1).

END DESCRIPTIONS

-9-
SYSTEM OVERVIEW

t3_timing pulse 6: DESCRIPTION;

as a result

very T(3) milli
Tiseconds is

vey se
e. Note that T(3
(2).

This pulse is generat

ted e
of the master timing puls
an integral multiple of T

conds
) mil

END DESCRIPTION;

-10-
SYSTEM OVERVIEW
DESIRED BEHAVIOR;

SHUFFLE(
REPEAT(
SEQUENCE(
SEQUENCE(
SEQUENCE(master timing pulse 9, tl timing pulse 4),

)tape[j3

tl per tz

t2_timing pulse 5
t3_timing_puTse 6)),

REPEAT(
SEQUENCE(
system operator_request experiment 19,
REPEAT(
SEQUENCE(
experiment_computer requests platform action 17,13,
'REPEAT
(SEQUENCE
(dea_request computation 3,
nsscii_computation result returned 1)),
REPEAT
(SEQUENCE
(dea_request platform action 7,11,
platform responds 21,10)),
platform resuTt returned to experiment computer 8,14)),
experiment result returned to system operator 18)),

REPEAT(
SEQUENCE(
system operator request test 20,
REPEAT(
SEQUENCE(
tse_request_: action 15,
nsscii_results_returned 2)),

test result returned to system operator 16)))
END DESIRED BEHAVIOR;
END EVENT DEFINITION;
END EVENT CLASS;
END SUBSYSTEM CLASS;

-11-
LEVEL II

[system operator]: SUBSYSTEM CLASS;

ec_outputs: OUT PORT;
END PORT;
tse outputs: OUT PORT;
END PORT;
ec_inputs: IN PORT;
END PORT;
tse inputs: IN PORT;
END PORT;
operator: CONTROL PROCESS;
MODEL;
ITERATE
SELECT
(PERHAPS): SEND ec_outputs;
(PERHAPS): SEND tse outputs;
END SELECT;
SELECT
(PERHAPS): RECEIVE ec_inputs;
(PERHAPS): RECEIVE tse inputs;

END SELECT;
END ITERATE;
END MODEL:
END CONTROL PROCESS;
END SUBSYSTEM CLASS;

-12-
LEVEL II
[experiment computer]: SUBSYSTEM CLASS:

rau_outputs: OUT PORT;
END PORT;

so_outputs: OUT PORT;
END PORT;

rau_inputs: IN PORT;
END PORT;

so_inputs: IN PORT;
END PORT;

experiment: CONTROL PROCESS;:
MODEL
ITERATE
RECEIVE so_inputs;
SEND rau outputs:
RECEIVE rau-inputs;
SEND so_outputs;
END ITERATE:
END MODEL s
END CONTROL PROCESS:

END SUBSYSTEM CLASS:

[remote acquisition u
dea outputs: OUT
END PORT;

ec o

E

uts:

utputs:
ND PORT;

dea inputs: 1IN PO

END PORT;

ec_inputs:
END PORT;

acquisition: CONT
MODEL 3
ITERATE
RECEIVE
SEND
RECEIVE
SEND
END ITERATE;
END MODEL ;s
END CONTROL PROCES

END SUBSYSTEM CLASS;

-13-
LEVEL II

nit]: SUBSYSTEM CLASS;

PORT;

QUT PORT:

RT3

IN PORT;

ROL PROCESS;

ec_inputs;
dea outputs;
dea_inputs;
ec_outputs;

S

-14-
LEVEL II

[platform]: SUBSYSTEM CLASS;

pea_cea outputs: OUT PORT;
END PORT;

pea_cea_inputs: IN PORT;
END PORT;

platform: CONTROL PROCESS;
MODEL ;
ITERATE

RECEIVE pea cea_inputs;
SEND pea_cea outputs;

END ITERATE;
END MODEL:
END CONTROL PROCESS;
END SUBSYSTEM CLASS;

-15-
CLEVEL II
[analog sources]: SUBSYSTEM CLASS;

dea outputs: OUT PORT:
END PORT 3

source: CONTROL PROCESS:

SR VAV S SR VE g (VA B ANV S NI O

ITERATE
SEND dea outputs;
END ITERATE:
END MODEL;
END CONTROL PROCESS;
END SUBSYSTEM CLASS;

-16-
LEVEL TI
[test support equipment]: SUBSYSTEM CLASS;

nsscii_outputs: OUT PORT;
END PORT;

SQ !

utp JtS. QUT PORT,
ND PORT

FT‘IO

nsscii_inputs: IN PORT;
END PORT:;

so inputs: IN PORT;
END PORT;

support: CONTROL PROCESS;
MODEL ;
ITERATE
RECEIVE so_inputs;
SEND nsscii_outputs;
RECEIVE nsscii_inputs;
SEND So_outputs;
END ITERATE;
END MODEL;
END CONTROL PROCESS;

END SUBSYSTEM CLASS;

-17-
LEVEL II

[platform electronics assembly control electronics assembly]: SUBSYSTEM
CLASS;

master timing pulse: OUT PORT;
END PORT;

dea_outputs: OUT PORT;
END PORT;

p_outputs: OUT PORT;
END PORT;

dea inputs: IN PORT;
END PORT;

p_inputs: IN PORT;
END PORT;

control: CONTROL PROCESS;
MODEL ;
ITERATE
SELECT
(PERHAPS): SEND master timing pulse;
(PERHAPS): RECEIVE dea inputs;
SEND p_outputs;
RECEIVE p_inputs;
SEND dea outputs;
END SELECT;
END ITERATE;
END MODEL;
END CONTROL PROCESS;
END SUBSYSTEM CLASS;

-18-
LEVEL II

[nasa_standard space computer ii]: SUBSYSTEM CLASS;

dea_outputs: OUT PORT;
END PORT;

tse_outputs: OUT
END PORT;

PORT ;

dea_inputs: IN PORT;
END PORT;

t1 tick: IN PORT;
END PORT;

t2 tick: IN PORT;
END PORT;

t3 tick: IN PORT;
END PORT;

tse inputs: IN PORT;
END PORT;

nsscii_executive: CONTROL PROCESS;
MODEL ;

perform initialization;
SEND dea outputs;
RECEIVE dea_inputs;
ITERATE
SELECT
(PERHAPS): RECEIVE tl1 tick;
SEND dea outputs;
(PERHAPS): RECEIVE t2 tick;
(PERHAPS): RECEIVE t3 ticks
(PERHAPS): RECEIVE tse inputs;
SEND tse outputs;

END SELECT;
END ITERATE;
END MODEL ;
END CONTROL PROCESS;
END SUBSYSTEM CLASS;

-19-
LEVEL II

[digital electronics assembly]: SUBSYSTEM CLASS;

nsscii_outputs: OUT PORT;
END PORT:

tl tick: OUT PORT;
END PORT;

t2 tick: OUT PORT;
END PORT;

t3_tick: OUT PORT;
END PORT;

pea_cea outputs: OUT PORT;
END PORT;

rau_outputs: OUT PORT;
END PORT;

nsscii_inputs: IN PORT;
END PORT;

master_timing pulse: IN PORT;
END PORT;

pea cea inputs: IN PORT;
END PORT;

as_inputs: IN PORT;
END PORT;

rau_inputs: IN PORT;
END PORT;

-20-
LEVEL II

dea_executive: CONTROL PROCESS;
MODEL 3
ITERATE
SELECT

(PERHAPS): RECEIVE master timing pulse;
SEND t1_ticks
SELECT
(PERHAPS) SEND t2 tick;
(PERHAPS) SEND t2_tick;
SEND t3 tick;
END SELECT:

(PERHAPS): RECEIVE rau_inputs;
MAYBE
SEND nsscii_outputs;
RECEIVE nsscii_inputs;
END MAYBE;
MAYBE
SEND pea_cea outputs;
RECTEVE pea cea inputs;
END MAYBE;

(PERHAPS): RECEIVE as_inputs;
END SELECT;
END ITERATE;
END MODEL ;
END CONTROL PROCESS;
END SUBSYSTEM CLASS:

-21-
LEVEL III

'[nasa_standard space computer ii]: SUBSYSTEM CLASS'

SUBCOMPONENTS 3

pl, p2, p3 OF [process]

END SUBCOMPONENTS

CONNECTIONS 5

PLUG
PLUG
PLUG

PLUG
PLUG

(
(
(
(
(
PLUG (

END CONNECTIONS;

nsscii_executive:

pl_initiate:
END PORT;

p2 initiate:
END PORT;

p3_initiate:
END PORT;

pl complete:
END POKT;

p2_complete:
END PORT;

p3 complete
END PORT;

)
)
)
pl|complete, nsscii_executive|pl complete)
p2|complete, nsscii_executive|p2 complete)

)

p3|complete, nsscii_executive|p3 complete

nsscii_executive|pl initiate, pl|initiate),
nsscii_executive|p2 initiate, p2|initiate),
nsscii_executive|p3 initiate, p3|initiate),

CONTROL PROCESS;
LOCAL OUT PORT;
LOCAL OUT PORT;
LOCAL OUT PORT;
LOCAL IN PORT,

LOCAL IN PORT;

LOCAL IN PORT;

22~
LEVEL III

MODEL ;

perform initialization;
SEND dea_outputs;
RECEIVE dea_inputs;
ITERATE
SELECT
(PERHAPS): RECEIVE tl tick;
SEND pl initiate;
(PERHAPS): RECEIVE t2 tick;
SEND p2 initiate;
(PERHAPS): RECEIVE t3 tick;
SEND p3_initiate;
(PERHAPS): RECEIVE pl complete;
SEND dea_outputs;
(PERHAPS): RECEIVE p2 complete;

(PERHAPS): RECEIVE p3_complete;

(PERHAPS): RECEIVE tse inputs;
SEND tse outputs;

END SELECT;
END ITERATE;
END MODEL;
END CONTROL PROCESS;

-23-
LEVEL III

[process]: SUBSYSTEM CLASS:

complete: OUT PORT;
END PORT;

initiate: IN PORT:
END PORT;

process: CONTROL PROCESS;
MODEL ;
ITERATE
RECEIVE initiate;
perform operations;
SEND complete;
END ITERATE;
END MODEL;
END CONTROL PROCESS;

END SUBSYSTEM CLASS;

-24-
LEVEL IV
'[digital _electronics_assembly]: SUBSYSTEM CLASS'

QUALIFIERS:
tl per t2, t2 per t3

END OUANTETEDRS ¢
Ly il LLNG 3

(A win

LOCAL SUBCOMPONENT

tl pulses OF [0:: tl per t2],
t2 pulses OF [0:: t2 per t3]

END LOCAL SUBCOMPONENT;
dea_executive: CONTROL PROCESS;
MODEL 5

SET tl1 pulses TO O;
SET t2 pulses TO 0O;

ITERATE

SELECT
(PERHAPS): RECEIVE master timing pulse;
SEND t1_tick;
SET tl _pulses TO tl pulses + 1;
IF t1 puises = t1 per t2 THEN
- SET t1 pulses TO 0;
SEND t2_tick;
SET t2 pulses TO t2 pulses + 1;
IF t2 pulses = t2 per t3 THEN
SET t2 pulses TO O;
SEND t3_tick;
END IF;
END IF;

(PERHAPS): RECEIVE rau_inputs;
MAYBE
SEND nscii_outputs;
RECEIVE nsscii_inputs;
END MAYBE
MAYBE
SEND pea_cea outputs;
RECEIVE pea cea_ inputs;
END MAYBE;
(PERHAPS): RECEIVE as_inputs;

END SELECT:
END ITERATE;
END MODEL3
END CONTROL PROCESS;

-25-

Appendix B:

Functional Requirements
of
Annular Suspension Pointing System

(Produced by NASA
Langley Research
Center Personnel)

-26-

THE EXECUTIVE SUFTWARE FOR THL ANNULAR SUSPENSION POINTING SYSTEM

I. IWTRODUCTION.

This document attempts to describe the Annular Suspension Pointing
System (ASPS) hardware facilities and the structure of the software
executive in sufficient detail that it can be used as an example of the
requirements for concurrent programing in NASA embedded computer
systems. The hardware details are provided for those who are
unfamiliar with the general layout of the ASPS. This description is
intended to be accurate and every effort will be made to ensure that it
correctly reflects the software currently being written for the ASPS
engineering model. The engineering model is a ground-based system used
for testing. This is the first version of the software which will be
used. This description is also intended to be complete in the sense
that the functions of the software is defined in sufficient detail

(albeit informally) that only minor parametric details are needed
before the software can be constructed.

Two consequences of the fact that the software described is for an
engineering model are that the software is instrumented and the
existence of a human operator is assumed. The instrumentation is for

performance evaluation and error analysis. It will not be specified
here since it does not affect the ASPS executive function.

The purpose of the ASPS is to control a platform which will be flown on
the Space Shuttle. Equipment (e.2. a telescope) will be mounted on
the platform and the ASPS will allow this equipment to be pointed in a
given direction with extreme accuracy (+ or - 4.84e-7 radians) and this
position maintained for extended periods (stability + or = 4,840-8
radians.per. sec.) . inathe presence of Shuttle disturbances.

-27-

II. HARDWARE CONFIGURATIOKN OF THE SYSTEM

Figure 1 shows the organization of the major hardware units comprising
the ASPS

Definitions:

a) TSE: Test Support Equipment. The TSE consists of a terminal and a
computer., It will be used to generate various inputs from the operator

and display messapges to the operator for ground testing of the ASPS.

b) NSSC II: NASA Standard Space Computer II. The NSSC II is basically
an IBH System 360 computer. It will be wused to carry out the

computations which implement the control laws for the platform.

c) DEA: Digital Electronics Assembly, The DEA dis an electronics
assembly based on a 2-80 microprocessor which 1is _used as an I1/0
controller for the NSSC II. Figure 2 shows the major hardware units of
the DEA.

d) _PEA/CEA: Platform Electronics Assembly/Control Electronics
Assembly. The PEA is the electronic assembly on the platform which,

together with the CEA, is responsible for moving the platform and
sending position information to the NSSC II.

e) RAU: Remote Acquisition Unit. The RAU provides 32 digital input
and 32 digital output lines. It is connected to the experiment

computer i.e. the experiment which is using the ASPS, and all 1I/0
between the DEA and the experiment computer is through the RAU.

The system of interest for the executive consists of an NSSC 1II
computer connected to the DEA. The DEA is connected to the NSSC II by
16 inputs, 16 output and several control lines. During flight all 1/0
to the NSSC 1II is through the DEA. In the engineering model, I/0 to

the KSSC II can also be from the TSE. Analog data to or from the
platform is converted (A/D,D/A) in the-DLA and preprocessed in the DEA
before being sent to the NSSC II. -

The experiment computer sends platform control commands (e.g. point
telescope in a particular direction) to the DLA, which in turn requests
the NSSC II to compute the control laws. This output is sent through
the DEA to the PEA/CEA which moves the platform.

The system master timing pulse is generated by the PLA and sent to the
DEA. This is a pulse every T(l) milliseconds which is used for

real-time timing. T(l) is a fixed integer whose value has not been
finalized.

NOTE: This pulse is not sent directly to the NSSC II.

-29-

III. HNSSC II CHARACTERISTICS

This section provides a summary only and is not intended to be
conplete. Full details of the machine can be obtained from the
hardware reference manual.

The NASA Standard Space Conputer II (NSSC II) is very much like an IBM
System 360. A thorough knowledge of S$/360 is assumed in this sumnary.
The NSSC II”s instruction set contains 83 of the 87 instructions from
the S/360 Standard Set. (Recall that the Standard Set does not include
decimal, direct control, protection or floating point instructions.)
The exceptions are HIO(9L), SIO0(9C), TCH(9F), and TIO(SD). The
senantics of these 83 instructions are identical to /360 except for
the following areas:

(1) The S/360 interval timer at location 80(decimal) is not
implemented.

(2) Effective addresses are limited to 16 bits except for the LA(41)
instruction which generates a 24-bit result.

Added to these 83 instructions are three new instructions:

Mnemonic Opcode - Format
Timer Read and Set TMRS A4 RS
Start 1/0 SIO A5 f RS

«

Set Storage Key SSK 08 RR

-30-

The NSSC II supports a real-time clock and an interval timer. The
real-time clock is 32 bits long, 1is incremented by 1 each 112.64
microseconds and causes no interrupt on overflow. The interval timer
is 16 bits long, is decremented by I each 112.64 microseconds and
generates an external interrupt on change of sign from positive to
negative.

The clocks are read, or read and set, individually by the TMRS

instruction. Reading yields a timer value in a register. Setting
involves a value from storage being placed in the timer.

There are four kinds of I/0. They are: '

(a) Direct.

(b) Buffered.

(c) Direct Memory Access (DMA).

(d) External Interrupt.

Direct I/0 constitutes transferring 16 bits of data to/from the NSSC II
from/to the DEA via a 16 bit bus. Transfers of this type are the

result of the NSSC II executing a SIO instruction. Note that this is
totally different from the SIO instruction on S/360.

Buffered 1/0 is a means of performing block transfers of data to/from
the NSSC II memory in parallel with normal execution of the NSSC II.
When buffered I/0 takes place, memory references and sequencing are
controlled by hardware within the CPU but this does not interefere with
instruction execution. The NSSC II has provision for up to 16 devices
to perform buffered I/0. A fixed storage location is used on the NSSC
II to point to a buffered I/0 device table with 16 entries. An entry
contains two words each of ‘which is a word count and address pair. One
word 1is for input and the other is for output. The word count is the
number of ‘words to be transferred and the address is the main memory
buffer location. If the relevant word count 1is positive when a
buffered I/0 operation begins, then the count is decremented and the
address is incremented in the table entry as each word is transferred.
When the transfer is complete the word count will be zero (assuming no
error). If the word count is initially negative, the word count is
modified during the buffered 1/0 operation but is reset to its original
value when the operation completes. The number of words transferred in
this case 1is the absolute value of the word count. A buffered 1/0
operation is initiated using direct I/0 (SIO instruction) to send 16

-31-

bits of data to the device which will perform the operation.

Direct memory access is literally direct access of the NSSC II mMemory.
The ASPS system does not use DMA.

L U=EC U

An external interrupt changes the state of the NSSC II as a result of
an external stimulus and as such can be regarded as an input mechanismn.
The ASPS system does not use external interrupts for data input.

Memory on the NSSC II is protected in blocks of 1024 bytes. Storage
keys are two bits long, and they are used for write protection only.
One bit is used to inhibit CPU and buffered I1/0 storing and . the other
is used to inhibit DHA storing. Storage keys are set by the Set
Storage Key (SSK) instruction, and also, following an interrupt, the
storage key of the first block of memory is set to allow CPU and
Buffered I/0 storing but inhibt DMA storing. No other storage keys are
affected by interrupts.

As well as the above, the NSSC Il is equipped with a set of short
precision (l6-bit) dinstructions which operate with 16-bit fixed point
twos complement numbers. They are manipulated in the lower half of the
general-purpose registers and there is no sign extension as on a 5/360.
A long precision fixed point (64-bit) instruction set is available
also. An even-odd register pair is used for holding 64-bit numbers and
only ADD, SUBTRACT, COMPARE, LOAD and STORE instructions are provided.

-32-

IV. ASPS EXECUTIVE FUNCTIONAL DESCRIPTION.

The ASPS executive has the primary goal of providing scheduling in real
time of certain processes. There are three tinme periods of interest.
At present they are 10 milliseconds, 100 milliseconds and ! second but
these may be adjusted. These time periods will be referred to here by
the symbols T(1l), T(2), and T(3), in millisecond time units.
Associated with these time periods are three sets of processes. The
set {P(l,j)} is associated with T(l), the set {P(2,3)} with T(2) and
the set {P(3,j)} with T(3). Certain computations must be conpleted
every T(1l) milliseconds, others every T(2) milliseconds and still
others every T(3) milliseconds. T(2) and T(3) are integer nmultiples of
T(1). and T(3) is an integer multiple of T(2).

timing is centered around an I/0 interrupt from the DEA which is
derived from, but not coincident with, the system master timing pulse.
This interrupt will be generated by the DEA every T(Il) milliseconds
regardless of what the NSSC II does, although the NSSC II can mask it.
On system start-up, the ASPS executive performs any data
initializations which are necessary, signals the DEA that
initialization is complete using direct I/0, and then places the NSSC
II in the wait state with no processes active.

Processing begins when the first I1/0 inierrupt arrives from the DEA.
From then on, P(l,j) must be completed every T(1l), P(2,j) every T(2)
and P(3,3) every T(3) millisecconds of real time for some jo Real time
can be thought of as a sequence of T(3) time periods. Each T(3) time
period is broken into an integral number of T(2) time periods, each
T(2) time periods is broken into an integral number of T(l) time
periods. The quantity j is called thee mode and a different

process is used for each mode. The mode is the operating state of the
platform and currently N (i.e. the number of modes) is 4. They are
called IDLE, COURSE, FINE and SLEW. The system changes mode based on
certain inputs (see below) and only certain transitions are valid.

Mode changes can only occur at the begining of a T(3) millisecond time
period.

The NSSC II interval timer is not used for any determination of

real time. It 1is used solely as a check on the system master timing
pulse. At the beginning of each T(l) time period (i.e. following the
interrupt from the DEA) the interval timer is loaded with a value
slightly larger than T(l). If the timer ever expires then clearly an
error has occurred. For the initial version of the executive, if the
timer interrupt ever occurs, the system will not attempt to recover but
merely inform the operator and enter the wait state.

When the I1/0 interrupt at the beginning of T(l) occurs the executive is
entered. The DEA will already have completed a buffered input
operation and placed a total of L(IN) words into the NSSC II memory.
L(IN) is currently 38. This block of data is in two parts. The first

-33-

L(IN)-2 words are data for process P(l,j) and thé last 2 are input to
another process (see below). Prior to initiating P(1,j), these two
words are removed by the executive and used to build a table in a

crea
separate menery area.

When P(l,j) completes, a table of outputs of length L(OUT) have been
produced. L(OUT) is currently 32, A direct output is sent by the

executive to the DEA which then begins a buffered output operation,
i.e. the DEA removes the results of P(1,j) for its own use.

After the direct output has been sent, part of P(2,j) 1is run. For
every j, the process P(2,j) must be completed in a T(2) time period.
It is organized as a series, of subprocesses which, when executed in
series constitute the entire process P(2,j). These subprocesses will
be denoted P(2,j,k). For every j and k, the process P(1l,j) and
P(2,j,k) can be executed sequentially in less than T(l) milliseconds.
Clearly k has to be less than or equal to T(2)/T(l) in order to meet
the deadline. The breaking of P(2,j) into a series of subprocesses is
not a requirement but merely the process structure in the present
design.

Uhen P(2,j,k) completes, P(3,3) is resumed. It continues to execute
until either:

(a) the next I/0 interrupt from the DEA occurs or

(b) P(3,j) completes.

P(3,j) must be completed in a T(3) time period. P(3,j) for the current
J is initiated at the beginning of each T(3) time period and following
the completion of P(3,j) the processor will be in the wait state if
P(1,j) or P(2,j) are not executing. P(3,j) operates on a table of data
which is constructed for execution i of P(3,3) during execution i-1.
The table is L(BACK) words long and is in fact constructed from from
the 2 word blocks which were not input to P(1,j) during the executions
of P(l,j) (see above). The first of these two words is a key and the
second is a data word. 1f the key is negative, the data word is to be
ignored. If the key is positive it consists of two parts. The first
is an index indicating where in the data table the data word belongs.
The second* part is an identifier indicating to which of several
possible tables the data word belongs. During any given T(3) time
period all of the data words will be intended for the same data table.

If the identifier changes during a given T(3) time period, an error has
occurred.

Switching of modes can only occur between execution of P(3,3), i.e. at
most only every T(3) milliseconds. One of the constituents of the data
table for P(3,j) is a mode change indication. This designates the mode
which the system will be in for the next T(3) time period. Valid mode

-34-

transitions have not yet been decided.

In addition to real time management

5 + i \ ~
other sources of interrupt on

the executive must respond to the

rean TT

b
S L A T T O B U |
£l N55C II. The machine check and

program interrupts are both to be regarded as errors, and processing
will consist of informing the operator and putting the system into the
wait state. Supervisor call interrupts must provide supervisor
services 1in the normal way and only two such services are presently

defined. They are:
(1) SVC code 55(hex) - Process P(3,j) has ended.
(2) SVC code AA(hex) - Process P(l,j) has ended.

External interrupts are to be regarded as errors except for the
interrupt generated by the operator from the TSE. Processing in this
case 1s currently undefined and so all external interupt processing

consists of informing the operator and putting the system into the wait
state.

-35-
10

V. SUMMARY OF TIMING.

Refer to Fig. 3 for the system timing:

(a) The PEA generates a sync pulse every T(l) milliseconds.
(b) Starting at the trailing edge of the sync pulse, the DEA
(c) The DEA interrupts the NSSC II when input is complete.

(d) The NSSC II computes with the data and deposits the output in the
buffer.

(e) The NSSC II then signals the DEA to indicate that data is
available.

(f) The DEA begins to remove data from the output buffer in the NSSC
II.

(g) The NSSC II then performs the next sequential parts of the T(2)
msec computation.

(h) Once (g) is complete the NSSC II reverts to background processing.

(h) The sequence repeats.

-36-

Hyed 17

nvy

SLrgN| 99MNYH /
AN

/1IN

/39
vad | (I

ZIN

BTN OMIHI] UALSH)

/S F¥NO/ o

‘1/

-37-

2¢
nedino Oﬁtml
xiii.. HEY
ovYoLg

c1rdion NS AY¥oH3aH su1g 91 E

34LTYO5IQ TYg Aﬁs » m.ﬁv

KUY YOS teq srdiop
o1 sirdreo A(N \y/ Nyl 4ndLog
Do MY
08z K sog viga
2g Toxrg 2
nogr Oy nd?D AI!.!{ 4 V Fovo1g
T ‘ /~\ SL1g A
Sicdil ASl °yd (1% 32 baeq LOINf
FLIYOSIA, , YaWIH
A HYS LdN|
[s - LYy903,]
sLrdtN) U3 e
— PHIYUN] TIISSN
kAR ..!avm»
"] oY NY NH D) M.m Z

N MNQ\\..G\\U\

(€°¢)d Jo uorindoxy

(€°2)d Fo uoTinosxy

14933ng II DSSN wWody eleq

’1e7dwoo st (CT)d 38Ul viIq TeU3TS

1
«Q
7

(C°1)g Bursssaooxg doog 31seyg

IT DSSN ©03 adnaxsiul Q/I

1933ndg II OSSN O3ul ®Ble(q

9sTIng 2UAS vHd

(w)

(3)

B

(@)

(p)

(2)

(q)

A = GpUODSSTITIN (1)L~

£ HYNHIA

