RSSM/96

SOFTWARE DEVELOPMENT ENVIRONMENTS:
PRESENT AND FUTURE

by

WiTliam E. Riddle
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

CU-CS-170-80 January, 1980

This work was supported, in part, by grant NSG 1638
from NASA Langley Research Center.

To be presented at the International Computer Technology
Conference, 12-15 August, 1980, San Francisco, California.

SOFTWARE DEVELOPMENT ENVIRONMENTS:
PRESENT AND FUTURE

William E. Riddle
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

Ahstract: Computerized environments which facilitate the
development of appropriately functioning software sys-
tems are discussed. Their current status is reviewed
and several trends exhibited by their history are iden-
tified. A number of principles, some at (slight) vari-
ance with the historical trends, are suggested and it is
argued that observance of these principles is critical
to achieving truly effective and efficient software de-
velopment support environments.

Several years ago, Weinberg originated the Parable
of Irving the Genius Tailor [1, page 210] to succinctly
indicate the major problem with then-avaiiable program-
ming languages; namely, that the languages had been de-
signed and implemented with only cursory attention to
programmer requirements and, as a result, programmers
were forced to carry out the task of programming in un-
natural, and sometimes quite convoluted, ways. Although
not solely because of Weinberg's jibe at the frequently
misdirected efforts of language designers, the computer
science community seems to have gotten the point and
useful, natural programming languages are now generally
available and receiving increased acceptance as the lan-
guages-of-choice for a variety of projects, in industry
and government as well as academia.

Yet the process of development of software continues
to be siow, costly and error-prone. The problem is that
Janguages are merely vehicles for description, media in
which system developers can record and express their
(correct or incorrect) ideas. Further, programming lan-
guages are intended for the communication of ideas to a
computer and, thus, descriptions in these Tanguages dwell
on operational detail and obfuscate more abstract prop-
erties of the program's functionality, performance or
economics.

What is needed in order to facilitate software
development are software development envirorments
which provide facilities supporting the rational produc~
tion of a software system's executable description.
Such environments must facilitate not only the conception
of the system's description but also the assessment of
its validity and quality and the exploration of alterna-
tive versions. We do not yet fully understand the na-
ture or the form of these facilities, but we are fortu-
nate in that we have the resources and knowledge to com-
outerize candidate facilities and experimentally deter-
mine their efficacy.

Qur purpose here is to take note of what has been
accomplished in the evolution of software development
environments and suggest some principles to guide future
evolution. In the next section, we explore the nature
and characteristics of development environments more ex-
tensively. We then review the development environments
which currently exist and identify several trends evident
in their evolution. In the final secticns, we indicate

This work was supported, in part, under grant NSG 1638
from NASA Langley Research Center.

the ways in which extant development environments are
inadequate and propose a number of principles which are
critically important for further advancement.

DEVELOPMENTS ENVIRONMENTS

The primary purpose of a software system develop-
ment environment, regardless of the extent to which it
is computerized, is to provide a context for the orderly,
rational evolution of the system under development. The
premise is that aid in performing development activities
is crucial to attaining an acceptable system, on sched-
ule and with a reasonable consumption of resources; and
the approach is to facilitate the use of development
techniques and observance of development principles in
the performance, control and management of the develop-
ment process so that progress is consistently and quick-
1y made. To be of maximum utility and effectiveness, a
development environment must provide help during the
entire Tifetime of an evolving system from its initial
conception as a set of user or customer desires, through
design, implementation, maintenance, and modification,
to its ultimate retirement.

A development environment must support three dis-
tinct types of activities occurring during development.
First, there are creation activities, that is, activ-
ities concerned with preparing an executable description
of the system and unambiguously recording decisions and
rejected alternatives. These activities are manifest
as text manipulation tasks and the facilities needed to
support them must aid both text preparation and text
retention.

Secondly, assessment activities must be supported.
These activities concern the measurement of the quality
and validity of the system under development and the ex-
tent of its development. Assessment activities with the
former intent can be called consistency assessment ac-
tivities since they usually involve the inference of the
system's characteristics and the determination of whether
or not these are acceptably related to the system's de-
sired/required characteristics. Those with the latter
intent can be called completeness assessment activities
since they pertain to the measurement of the extent of
completion, in order to either assess the degree of com-
pletion or identify which aspects of the system are in-
complete.

Exploration activities are the third type of activ-
ities which must be supported. In these activities, the
intent is to develop an understanding of various alter-
natives so as to be able to make a reasoned, intelligent
choice among them. Structure exploration activities
attempt to identify the best organization or operation
for the system and binding exploration activities are
oriented toward finding the best allocation of resources
provided by the computing environment. Of course, ex-
ploration activities require the ability to assess the
characteristics of the various alternatives; but they
also require the ability to keep track of what the

alternatives are and their differences and similarities.

The tangible components of a development environ-
ment are tools, software which can be used in perform-
ing the development activities delineated above. Tools
may be general ones which support a variety of activ-
ities, but more usually they have a purpose falling
within one of the activities distinguished in this dis-
cussion.

The intangible components are the development pro-
cedures, principles and practices which development
practitioners are encouraged or required to use. There
is an obvious, close interrelationship between these
methodological components of the environment and the
tool components - the procedures, practices and prin-
ciples included in the development environment shape
the function and nature of the tools and the tools,
themselves, give concrete meaning to the methodological
rules and guidelines. The tangible and intangible as-
pects of a development environment must, therefore, be
defined concurrently - proscribing either in isolation
runs the risk of defining an infeasible or ineffective
environment.

The core of a development environment is the set of
languages provided for describing the characteristics,
properties and functioning of a system during its de-
velopment. These languages provide the media for com-
munication, the basis for defining assessment tech-
niques, and the means by which the relationships among
alternatives may be explicitly or implicitly defined.
Further, the languages allow the precise definition of
the development environment's tool and methodological
components in terms of how descriptions in the languages
are prepared, modified, related and analyzed.

A broad spectrum of development environments is
possibie, depending upon the number and variety of lan-
guages and the extent to which a single development
methodology guides the definition of the environment.
At one end of this spectrum are toolboxes which provide
a relatively large number of languages, generally hav-
ing no well-defined interrelationships, and which sup-
port a variety of development methodologies. The tools
included in a toolbox are either general ones, useable
upon descriptions in any of the languages and therefore
ignorant of the specific details of any particular lan-
guage, or specific ones strongly linked to one partic-
ular language and usable only with descriptions in that
language. The tools are also generally independent so
that they may be employed in a variety of combinations
in support of the variety of methodologies for which
the toolbox can be used.

At the other extreme in the spectrum are develop-
ment systems. These "union shops" of the development
environment world provide a single, obviously very
general, language and provide support for only a single
methodology - practitioners who do not know (or like)
the language or who do not subscribe to the enforced
methodology cannot obtain help from this type of
environment.

It should be obvious that the ideal development
environment lies somewhere between these two extremes.
These development support systems should provide a
coordinated set of languages having well-defined rela-
tionships and features which allow the easy and natural
expression of the properties, characteristics and func-
tions of interest. This implies that development sup-
port systems generally cannot be universal and, rather,
are oriented toward the development of a specific class
of systems. Further, the tools provided by a develop-
ment support system should be interdependent, integrated
around a collection of methodologies which are similar

in nature but which accommodate a number of development
styles. The "happy medium" to be struck is one which
encourages (and rewards!) good practices but does not
stifle dindividuality. The characteristics of these
ideal development environments will be discussed further
in the last two sections.

PROGRAM CONSTRUCTION TOOLBOXES

Current-day software system development environ-
ments are, for the most part, of the toolbox variety and
tend to support implementation activities occurring dur-
ing the development of relatively simple systems. These
program construction environments provide tools to aid
in the development of an executable description of the
program and in the determination of the program's run-
time behavior. They tend not to embody any particular
development methodology.

In order to suggest quidelines for producing de-
velopment support systems, it is instructive to look at
the components of current-day program construction en-
vironments and take note of several trends evidenced by
their history. The first of these topics is the subject
of this section and the second is discussed in the next
section.

Our assessment of the current state of advancement
in the preparation of program construction environments
is oriented toward the facilities which the average
development practitioner could expect (or could demanc!)
to find as part of their computing facility. They are,
therefore, those facilities which are well enough de-
veloped to have heen transferred out of "research”
status - other facilities which are still under develop-
ment are not discussed. It should also be emphasized
that it is not necessarily feasible to implement all of
the facilities indicated here on all computing systems
and that their implementation on resource-impoverished
computing systems is currently a research topic.

The typical program construction environment makes
available a plethora of programming languages, generally
enough to satisfy any taste, style or proclivity. In
addition to general-purpose, procedural languages, lan-
guages are usually provided for specific problem domains
(e.g., Snobol), specific solution spaces (e.g., Lisp),
or specific solution activities (e.g., RPG). As is true
of toolboxes in general, the languages are independent
and no attempt has been made to define relationships
among different languages.

The vast majority of tools present in a program con-
struction environment provide support for text prepara-
tion activities. The task of translating a human-orient
ed, problem-oriented description into executable code is
well-understood and translators of significant sophisti-
cation, in terms of the language constructs they can
successfully handle and the optimization they can per-
form, are commonplace. Preprocessors, especially those
providing structured-programming dialects of (generally
older) languages lacking a reasonable set of execution
control constructs, are also commonplace. Finally, for
those wishing to prepare a translator for a language of
their own design, there are a variety of parser and
Texical analyzer generator tools.

Other, language-independent, text preparation tools
are also available in current-day program construction
environments. Chief among these are text editing sys-
tems of which there is an extensive variety. The best
appear to be ones which are character-oriented and CRT-
based; but line-oriented editors seem preferable when
only hard-copy terminals are available. Subroutine
Tibraries also provide help in preparing the text of a

program.

Text retention tools are usually present as part of
the general-purpose file system provided by the operat-
ing system. Protection and access control facilities
are supportive of program construction; the latter, in
particular, being valuable in the enforcement of develop-
ment principles such as the principle of information hid-
ing [2]. Retrieval facilities are typically file-orient-
ed and, therefore, not very sophisticated with respect to
composing a program out of units much smaller than a
procedure. This failing can, however, be circumvented
with facilities which allow the free composition of files
by placing directives in one file indicating that all or
part of another file is logically part of the file con-
taining the directive.

A variety of tools are typically provided to aid con-
sistency assessment. Simple tools of this type are gen-
erally built into the language translators and check for
syntax errors. Semantic error detection tools are also
frequently provided as part of translators. Some of
these check for simple errors such as a mismatch between
arguments in a procedure invocation and the corresponding
parameters. Others perform more sophisticated checks but
require the users to give additional, semantic informa-
tion so that the check can be carried out. For example,
a units checker tool [3] has been developed for Pascal -
it requires the specification of units, e.g., miles/hour,
for program variables and then analyzes arithmetic ex-
pressions to determine whether or not units cancel
properly.

Tools for checking the consistency between the pro-
gram's overall dynamic (i.e., run-time) behavior and the
program developer's expectations are primarily of the
validation variety. This class of tools includes de-
bugging support systems, path analyzers, testbeds, test
coverage analyzers, test data generators, etc. These
tools are typically language-specific. Also falling in
this class are machine simulators which allow the execu-
tion-style checkout of a program even though the machine
on which it will eventually execute is not available.

Other tools for checking a program's dynamic behav-
ior by static verification techniques are not yet prev-
alent, but are becoming more common. Most generally
available are those, typified by DAVE [4,5], which check
for properties which stem from semantic rules (such as
definition of a variable's value prior to its first use),
from rules of good practice (such as use of a variable
before redefinition of its value), or from general re-
quirements pertaining to an entire class of systems
(such as absence of deadlock). More sophisticated tools,
typified by [6] and [7], use symbolic execution tech-
nigues and allow the checking of properties defined by
the program developer and specific to the program itself.

The remaining development activities of completeness
assessment, structure exploration and binding exploration
are generally not directly supported by any specific
tools. Rather, there is a hodgepodge of tools which have
been "collected" over the years that tend to allow de-
velopers to investigate a program's completeness and ex-
plore alternatives. Generally included in this collec-
tion are cross-reference facilities, linkage editors,
time-histogram facilities, etc. Specialized job control
languages also provide support in carrying out these
activities. Finally, additional support is sometimes
provided by homogenizing programming language interfaces
so that multi-lingual programs can be constructed.

TRENDS IN THE EVOLUTION OF
PROGRAM CONSTRUCTION TOOLBOXES

The history of the development of program construc-
tion toolboxes exhibits some trends which, when extrap-
olated, indicate what can be expected in the future. We
do not propose that extending development in the direc-
tions indicated by these trends will be sufficient to
achieve truly effective development support systems. But
the trends are indicative of an already established mo-
memtum which provides a context for other evolutionary
trends which we will propose, in a subsequent section,
as additionally necessary.

One trend that is quite obvious is toward interactive
environments which provide the means for much quicker
information transfer between developers and the computer,
and vice versa. Once computer system users make the
change from thinking of programs as a deck of cards to
viewing their programs as text streams, interactive en-
vironments greatly speed up the activities of program
text preparation, entry and modification. In addition,
such environments offer a basis for speeding up the
other development activities of assessment or explora-
tion. The overall benefit is that developers are freed,
by the virtue of higher-quality "secretarial services,"
to devote a larger proportion of their time to more
important, more intellectually challenging development
tasks. Of course, this benefit comes at some cost, but
this is generally not prohibitive and recognized as well
worth it.

Another trend is inc.ovation. With the development
of sophisticated operating systems to serve as vehicles
for the delivery of tools to development practitioners,
there has been a tendency to provide a common interface
to the various facilities provided within and under the
operating system. Another aspect of integration has been
provision of facilities which allow the various tools to
be conveniently used in the combinations required under
a number of development approaches and styles.

Closely related is a trend toward verification. An
example is the development of debugging facilities which
are oriented toward high-level rather than assembly-level
languages; for example, the development of the debugging
subsystem for the Algol-W language [8]. It is important
to note that this trend toward unification generally im-
plies a narrowing of scope of attention to a smaller num-
ber of languages, found by use over a number of years to
be valuable, natural and sufficient for the representa-
tion of programs.

Closely related to these two trends is one which can
be characterized as centralization. The tendency has
been to provide new tools as part of a translator, per-
haps optionally invokable. The usual, overriding reason
for this is that the tool needs the facilities provided
by the parser component of the translator and the (wise)
decision is made to embed the tocl in the translator
rather than duplicate the parser. It should be noted,
however, that when new language constructs are involved,
the tool is frequently provided as a stand-alone facil-
ity; for example, structured programming preprocessors
are the norm. However, the desire to make the tool in-
dependent of existing translators sometimes adversely
affects the new language constructs.

Another trend, critical to providing program con-
struction environments of any reasonable quality and
effectiveness, has been toward program animation to pro-
vide help for the activities of assessment and explora-
tion. Because of the availability of the machine on
which the program will run (or a simulation of the
machine), there is a strong temptation to use execution
to gain an understanding of a program's dynamic behavior.

Further, this "easy way" is encouraged because of the
trend to centralize tools into a single programming sys-
tem - it is frequently impossible, for example, to have
the syntax of a program checked without also executing
the program or at least having an executable translation
of the source text prepared. There is increasing recog-
nition, however, that the inference of a program's dy-
namic properties by execution is generally neither cost-
effective nor effective.

The final trend to be commented on here concerns the
environment's languages rather than its tools and can be

described as a trend toward higher-quality representation.

One aspect is a move toward increasing the understand-
ability of programs. Founded upon a recognition that
allowing an arbitrary relationship between the physical
structure of a program and its logical flow (i.e., the
paths of execution through it) unnecessarily increases
the complexity of a program, and fostered by the desire
to automatically verify a program's correctness, there
has been both a general recognition that a programming
language must provide a rich set of simple, powerful and
easily understood execution control constructs and an
increasing tendency in the definition of new languages
to provide such a set.

Another aspect of understandability enhancement has
been a move toward a separation of concerns. One simple

example, evidenced by the Gypsy language [9] among others,

has been the provision of constructs to explicitly con-
trol the scope of variables rather than have the biock
structure of the program indicate its resource require-
ments and the scope of variables. A more sophisticated
example is provided by the constructs present in the Ada
language [10] which allow a subprogram's intent (i.e.,
its specification) to be stated separately and redun-
dantly of its implementation.

A closely related aspect is the tendency to intro-
duce, into a language's definition, rules of usage that
are relatively easily checked and which foster the pro-
duction of "correct" programs. The thought behind this
tendency is that a program's function is more easily
understood, and more easily checked for validity, if
aspects of its operation (and sometimes its behavior)
are stated redundantly in all of those places where they
are of interest. Constructs for explicit control of var-
ible scope are an example, as are those for specifying
the types of variables. It should be noted that facil-
ities for redundant specification are usually accompanied
by rules, enforced by the language's translator, requir-
ing that the redundant specification be made by the lan-
guage's users. This reflects the fact that these facil-
ities stem from a realization that their use typically
leads to "more correct” programs and that their imposi-
tion can speed the development of programs which func-
tion correctly.

Another closely related aspect is the trend in lan- -
gquage and translator design to provide facilities sup-
porting modularity, typified by incremental compilation
facilities. These facilities are usually coincident
with procedure definition facilities which means they
are not always sufficient. But they do tend to facil-
itate incremental program development,.

INADEQUACIES OF
PROGRAM CONSTRUCTION TOOLBOXES

The general trend in the evolution of program con-
struction toolboxes has been to provide facilities for
hastening the development of appropriately functioning
programs. Part of this has been the preparation of cre-
ation activity facilities which free development prac-
titioners from devoting an inordinate amount of their

efforts to the preparation and maintenance of the text
of their program descriptions. Another part has been

the introduction into programming languages of constructs
fostering the development of correct, understandable pro-
grams. The final part of this trend has been the de-
velopment of facilities for the consistency assessment
of programs.

An obvious inadequacy is the lack of facilities pro-
viding direct, high-quality aid for completeness assess-
ment and exploration activities. The problems associat-
ed with these activities have been somewhat less impor-
tant and attention has been justifiably directed toward
the more important problems associated with creation and
consistency assessment activities. But it is also true
that these problems have been intellectually managable
for the vast majority of programs developed, and it is
only with respect to the development of large-scale,
complex programs (i.e., software systems) that these
problems become unmanagable and aid is required.

When attention is turned to software systems as
opposed to programs, several other inadequacies become
apparent. These inadequacies primarily stem from a
failure to take into account the special nature of sys-
tems that make them quite different from ordinary pro-
grams. Systems are a conglomeration of interacting
parts; sometimes this decomposition of a whole into
parts is a natural phenomenon and sometimes it is artifi-
cially induced because of our inability to otherwise
cope with the system's complexity. Thus, all activities
concerned with developing & system must consider the sys-
tem's parts and their interactions and it is facilities
for direct consideration of interactions that are absent
from current-day program construction environments.

More specifically, what is missing are facilities to
perform modelling. What is needed is the ability to
focus upon the interactions, either as a prelude to de-
veloping parts which support these interactions or in an
attempt to assess the interactions of already developed
parts. This requires the ability to abstract the func-
tional, operational characteristics of the parts, i.e.,
the ability to prepare models of a part's interface and
functionality.

Some modelling capabilities are inherent in a pro-
gram construction environment. It is possible, for ex-
ample, to develop a system prototype, a simplified ver-
sion which does not exhibit all of the properties of the
eventual system but can be used in order to gain an
understanding of systems of the type being developed.

Use of models of this type can be called evolutionary
programming [11] and can provide a very effective de-
velopment method as evidenced by the MTS operating sys-
tem [12] which was developed as a succession of progres-
sively more elaborate "models." But it is equally impor-
tant to be able to prepare horizontal models which rep-
resent the entire system but only to a level of detail
which is somewhat short of an executable version of the
system. These types of models are of particular impor-
tance during the early stages of development, by what-
ever development method is being employed, when the task
is to infer or specify overall system properties without
the ability (or necessity) of executing the system to de-
termine its properties.

This leads to another inadequacy of current program
construction environments, being the strong orientation
toward functionality properties. During software system
development, particularly when there are no previously
developed, similar systems to provide hints concerning
the system's eventual properties, practitioners need the
capability to obtain estimates of the system's economics
and performance. While this can be accompiished by im-
plementing the system and gathering statistics during its

operation, this would be a regression to an ancient
practice, described by Graham [13] as building systems
Tike the Wright brothers built airplanes - constructing
them, pushing them off a cliff, watching them crash and
starting all over agian.

Another inadequacy has been implicit in the discus-
sion so far - the inadequate recognition of pre-imple-
mentation development stages. During these stages, it °
is critically important to be able to unambiguously re-
cord and rigorously assess the policies and strategies
governing the system rather than the mechanisms and al-
gorithms used in its implementation. The languages pro-
vided are inadequate for expressing these attributes of
a system and the tools provided do not support investi-
gation of the system's properties as derived from these
attributes. Further, the languages and tools are not as
helpful as necessary or desirable during the post-imple-
mentation stages of maintenance and modification, which
are more akin to pre-implementation stages than they are
to implementation itself.

The final inadequacy to be noted here is in essence
a secondary effect of the strong orientation toward the
implementation stage of development. With respect to
software systems, the development of software
is no longer a personal thing between one person and the
computer - there is, instead, a development team (some-
times more appropriately misspelled "teem"), as well as
project managers, customers, users, acceptance testers,
documentors, user-guide writers, etc. Each of these
persons has differing descriptional requirements and
this severely complicates the problems of communication
and highlights the fact that programming languages and
programming language oriented tools are not sufficient
for an effective development support system.

PRINCIPLES GUIDING FUTURE EVOLUTION

We do not propose "starting all over again® in order
to prepare effective development support systems. First,
evolution, as opposed to revolution, is too well recog-
nized as an efficient and successful paradigm. Second,
revolution is not warranted, at this point, since program
construction environments are basically on the right
track and their inadequacies stem primarily from consid-
eration of too small a set of concerns. Third, we feel
that the trends evident in the evolution of program con-
struction environments are, with only two exceptions, en-
tirely appropriate and conducive to the eventual emer-
gence of development support systems.

Therefore, in this section, we present several prin-
ciples which we feel have affected the evolution of de-
velopment environments only secondarily or not at ali,
but which must be given strong emphasis in order that
the evolutionary process yields effective development
support systems and that the emergence of such systems,
and their delivery to working practitioners, is both
guick and timely.

Prineiple 1: Enhance the expressive power and richness
of the languages underlying the develop-

ment envirovment.

The need to describe characteristics in addition to
functionality and operation and the need to communicate
essential information to a variety of audiences means
that languages are needed to directly support a multi-
plicity of views of the system being developed. The
traditional dual views of data flow and control flow are
a simple illustration of what is needed - description
capabilites providing alternative views and having a

formal (although not necessarily algeorithmically ana-
lyzable) relationship. Perhaps the ideal would be to
have a single representational technique, not necessar-
ily directly used by developers, from which all other
system descriptions are analytically derivable. Whether
or not this is an ideal, and what the various descrip-
tion techniques should be, will require a good deal of
investigation.

In addition to evolving a set of coordinated, formal-
ly relatable languages, it is important that none of the
languages exhibit a rococo nature. For example, the lan-
guage which was developed as the basis of the DREAM de-
sign support system [14] is somewhat of this nature. In
trying to put into one language, in consistent forms,
all of the descriptional capabilities we felt necessary,
we possibly created the PL/I of design description lan-
guages. The lesson learned is that it is much better to
define a multitude of languages, each having a well-de-
fined purpose, than it is to define a single language
having a multitude of purposes - this follows the ob-
vious extension of the trend toward separation of con-
cerns evidenced by recent developments in programming
language design.

Further, in the development of individual languages
we should strive for a reasonable balance between suffi-
ciency and naturalness. Having a parsimonious set of
constructs is desirable because of the attendant clarity
of the language and the relative ease with which one may
chtain a formal basis for the language. Naturalness is
obviously important but tends to increase the language's
"size." In order to realize the aim of having formal
relationships among the lanquages, it is perhaps best to
err on the side of sufficiency.

One last word of caution is that we must be careful
not to create a Tower of Babel situation as we cannot
afford to forestall and inhibit progress by a “profusion
of tongues." This analogy indicates that we should be
as concerned with the meta-languages we use to define
the languages as we are with the languages themselves.

Principle 2: Develop more extensive animation facilites,
in close coordination with the development

of languages.

The most challenging of development activities is
assessment, taxing our inference capabilities to their
utmost, particularly in the case of concurrent systems.
We must, therefore, increase the facilities, whether they
be simulation-based or anaiytic in nature, available for
aiding the inference of a system's properties while it
is under development and the estimation of the properties
it will eventually exhibit when its development is com-
plete.

So that we do not suffer decidability and computa-
tional complexity problems, the animation tools should
be of a feedback variety. By this, we mean that the
tools should derive information for the developers con-
cerning the system's dynamic properties, but should not
attempt to completely certify that a system exhibiting
these properties is appropriate, leaving that task for
the developers to perform by interpreting the derived
information. Animation tools of this sort have been de-
veloped ([4,5,15] for example) and experience with their
use indicates that while quality is a serious problem,
they provide immeasurable assistance by uncovering po-
tentially erroneous situations which would have escaped
detection under a less-rigorous inspection done without
the tool's aid.

That the development of animation tools and of de-
scription languages must be coordinated is obvious since
each affects the form and content of the other. An

additional reason is that, for effective system develop-

ment, the processes of synthesis and analysis must be
tightly interleaved so that assessment is a continuous
activity, integrated with the activities of creation and
exploration - otherwise, we are back with the Wright
brothers again.

Prineiple 3: Give concentrated attention to providing
tools which directly support exploration

activities.

On the surface, this principle means that support
must be developed for preparing and exercising system
models, both prototypes and horizontal abstraction mod-
els. Additionally, however, differential elaboration
of these models must be facilitated since it is in this
way that alternatives for achieving some system part can

be assessed within the context of the rest of the system.

This assessment-in-context is critically important to
any meaningful exploration of alternatives.

To facilitate and enhance the exploration of alter-
natives, it is also necessary to provide facilities for
the aggregation and structuring of information concern-
ing the system being developed. Underlying Dijkstra's
development of the guarded command construct [16] was
the important observation that the creation of a pro-
gram is not an orderly process but is more generally a
relatively random porcess in which computational details
emerge in an order which does not correspond to the
order in which they are performed during program execu-
tion. This phenomenon is even more true of the pre-
implementation development stages and thus it is im-
portant to provide an environment under which pieces of
information can be recorded in the order of their gen-
eration and structured into a coherent base of informa-
tion from which developers can extract "chunks" com-
posed of interrelated pieces of information.

Even more sophisticated facilities are important for
the support of exploration activities. First, the in-

formation retention facilities must be able to distin-"

guish and keep track of versions of a system, prefer-
ably with only straightforward, natural directives from
the developers as to the relationships among pieces of
information concerning the system. Second, the facil-
ities must allow the modification of the system descrip-
tion within any relatively arbitrary "slice" through the
information base. Finally, the facilities should ideal-
1y monitor and guide the information agglomeration pro-
cess, checking for inconsistencies and missing informa-
tion - this capability obviously demands a significantly
more extensive understanding of the development process
than we currently possess.

Principle 4: The process of natural selection should be

facilitated at every opportunity.

This principle is obvious and should not need to be
stated, but there is a frequent tendency to forget this
basic tenet of evolution. It is useful, therefore, to
point out some concerns relating to this principle which
should be kept in mind.

First, experimentation is an absolute necessity.
This means, however, that much more is required than the
conduct of experiments intended to investigate the effi-
cacy and efficiency of various practices, principles and
procedures - that is, various methodologies. It means
that individual tools must be constructed with attention
to providing mechanisms for monitoring their individual
and collective use. It means that the operating system
environments through which the tools are delivered to

development practitioners must allow the monitoring of
tool usage and the collection of statistics on tool
utijlization. Finally, it means that an understanding
must be developed of how to conduct the experiments,
what data to collect, how to reduce the data to meaning-
ful derived measurements, and how to use the results to
guide future evolution and experimentation.

To facilitate evolution, it is also necassary to
have an organization underlying the development environ-
ment which is conducive to the reorganization, extension
and modification of the tools present in the environment.
Users should be able to employ the tools in whatever
sequence and combination seem warranted and productive
given the intents of the tools. The tools themselves
should be robust enough to function, at least to the
level of reporting an error, in (perhaps bizarre) con-
texts not originally envisioned. Users should also be
able to modify the tools, particularizing them to spe-
cific tasks. (This, however, raises some serious sup-
port questions.) Finally, it should be possible to
easily add new tools to the environment.

To achieve this modifiability of the tools
and their use, we feel that it is not appropriate to
continue the trend toward centralization. In fact, it
would be best, at this point, to unbundle the tools
typically present in a programming system. The avail-
ability of a stand-alone parser, for example, would
facilitate the development of other stand-alone tools
while reducing the effort needed to produce them. Inter-
face problems arise, but we feel they are solvable and
the benefit gained is well worth it.

The process of natural selection further requires a
management environment which facilitates and encourages
the use of tools. 1In addition to sometimes well-founded
suspicions as to the efficacy and efficiency of indi-
vidual tools, practitioners also possess a "momentum" in
the use of well-known practices and procedures which in-
hibits their adoption of new tools. Management should
foster the surmounting of this inertia by indicating
that the use of tools, even those without clearly estab-
Tished "credentials," is both expected and respected.
This requires that management be willing to give the
necessary monetary support to using and learning to use
the tool. Management must also give monetary support to
the task of toolsmithing and establish this as a respect-
able and desirable activity.

Critical to establishing an envircnment in which
natural selection can easily run its course is the de-
velopment of criteria by which tools may be judged.

These criteria are necessary in the design of experiments,
required so that practitioners can make intelligent
choices of which tools to use and when, and almost pre-
requisite to management willingness to provide the neces-
sary support and encouragement. However, waiting until
these criteria are fully developed would introduce a de-
bilitating delay and it is necessary that some risks be
taken and there be a willingness to develop and refine
the criteria concurrent with the experimental useof tools.

Principle 5: Encourage, but do not mandate, the use of
development practices, procedures and

prineiples.

At this point in the evolution of development method-
olegies, not enough is known as to their value in partic-
ular development situations to warrant their strict im-
position. Rather, their value must be explored simulta-
neously with the exploration of criteria for tool usage
and of tools themselves. In addition, we feel that it
will never be appropriate to mandate the usage of a
single set of principles, practices and procedures for

development because there will always be a wide variety
of viable styles and a wide variance in practitioner
sophistication and level of experience.

It seems best, therefore, to head toward development
environments which embody a development philosophy rather
than a strict methodology, which provide tools supporting
a variety of styles consonant with the development phi-
Tosophy, and which (perhaps subtly, perhaps blatantly)
reward working within the guidelines of the philosophy.

Principle 6: Human engineering considerations should be

of primary concern.

An environment which fosters natural selection, en-
courages experimentation and invites practitioners to
use tools in support of their development activities
cannot exist without the tools being easy and convenient
to use. There should be relatively homogeneous inter-
faces to the individual tools. The tools should be
oriented toward users who are unsophisticated with re-
spect to computer science in order to foster their in-
volvement in the development process, particularly dur-
ing the preimplementation stages. The tools should pro-
vide users with extensive control over its functions and
facilities so that their usage may easily be tailored
to the task being done and the users' need.

With respect to human engineering concerns, we feel
that the trend toward interactive environments is not
necessarily a good one to pursue. The activities of
assessment and exploration seem to be primarily off-line
activities and the development environment would, there-
fore, seem best supported by remote-job-entry facilities
coupled with high-speed, hard-copy output facilities.
The exception would seem to be the use of interactive
graphics devices, such as in the Tell system [17], to

provide quick display of different system characteristics.

CONCLUSION

The transfer of technological developments from re-
search status to use by "real-world" practitioners seems
to fairly consistently require a ten-year period of time
f18]. In this paper, we have attempted to propose and
Justify some principles guiding the preparation of soft-
ware development environments which are critically nec-
essary to achieving, and hopefully speeding, this :
transfer rate. We first reviewed the state-of-the-art
of development environments, noting their strong orien-
tation toward the construction of relatively simple soft-
ware systems. We then indicated some of the trends
evidenced by the evolution of these program construction
environments and some of their inadequacies. These ob-
servations formed a basis for suggesting several prin-
ciples (some at slight variance with previously estab-
Tished trends) to guide future evolution and arguing
their criticality to achieving truly effective and effi-
cient development support environments.

Qur observations have been primarily with respect to
development practitioners - specifiers, designers, im-
plementors, and maintainers. They have some validity
with respect to other agents - managers, users, customers,
acceptance testers, etc. - participating in the develop-
ment process, but the special concerns of these agents
have not been given adequate attention here.

Because of the quasi-research, quasi-development
nature of the task of continuing the evolution of de-
velopment environments, it would appear that the most
success would result from university/industry or univer-
sity/government collaborative efforts. Preliminary im-
piementations and feasibility studies, tasks that

industry and government software development divisions
frequently cannot devote time to carrying out, could be
performed in university environments guided by the prac-
tical experience of industry personnel. Production-ver-
sion implementation and effectiveness assessment, tasks
that university projects frequently lack the resources
to adequately attack, could be performed in industry or
government with the guidance of university researchers,
particularly with regard to the conduct and interpreta-
tion of experiments. It would seem that the differing
interests, experiences and capabilities of the various
segments of the software engineering community are not
extensive or rich enough for any one segment alone to
meaningfully attack the overall problem; and it would
seem that a collective effort would be effective and
beneficial.

ACKNOWLEDGMENTS

Many of the observations made here emerged during
the presentations and discussions at the Software
Development Tools Workshop held in May, 1979, at Pingree
Park, Colorado, and the author is indebted to the work-
shop participants for allowing him to "pick" their
brains. The author would like to also thank Guy Bristow,
Bryan Edwards, and Jack Wileden for helpfui
discussions.

REFERENCES

1. G. M. Weinberg. The Psychology of Computer Pro-
gramming. Van Nostrand Reinhold Co., New York,1971.

2. D. L. Parnas. Information distribution aspects of
design methodology. Proc. IFIP Congress 71,
Ljubijana, August 1971, pp. TA3/26 - TA3/30.

3. S. H. Saib. SQLAB: Tools for program verification.
Proc. NASA Workshop on Tools for Embedded Computing
Systems Software, Hampton, Virginia, November 1978,
pp. 117-120.

4, L. D. Fosdick and L. J. Osterweil.
sis in software reliability.
3 (1976), 305-330.

5. G. Bristow, C. Drey, B. Edwards and W. Riddle.
Anomaly detection in concurrent programs. Proc.
4th_International Conf. on Software Engineering,
Munich, September 1979.

6. L. A. Clarke. A system to generate test data and
symbolically execute programs. IEEE Trans. on
Software Engineering. SE-2, 3 (September 1975),
215-222.

7. W. E. Howden. DISSECT: A symbolic evaluation and
program testing system. IEEE Trans. on Software
Engineering, SE-4, 1 (January 1978), 70-73.

8. E. Satterthwaite. Debugging tools for high level
languages. Software - Practice and Experience,
2, 3 (July 1972), 197-217.

9. A. L. Ambler, D. I. Good, J. C. Browne, W. F.
Burger, R. M. Cohen, C. G. Hoch and R. E. Wells.
Gypsy: A language for specification and implemen-
tation of verifiable programs. Software Engineer-
ing Notes, 2, 2 (March 1977), 1-I0.

10. Preliminary Ada Reference Manual.
14, 6 (June 1979).

11. C. Hewitt. Remarks at Software Development Tools
Workshop. In Riddle and Fairley (ed.), Software
Development Tools, Springer-Verlag, Heidelberg, to
appear February 1980.

Data flow analy-
Computing Surveys, 8,

SIGPLAN Notices,

12.

13.

14.

15.

16.

17.

18.

An Introduction to M.T.S. Computing Center, Uni-
versity of Michigan, Ann Arbor.

P. Naur and B. Randell (ed.) Software Engineering.
Scientific Affairs Div., NATO, Brussels, Belgium,
January 1969.

W. E. Riddle, J. C. Wileden, J. H. Sayler, A. R.
Segal and A. M. Stavely. Behavior modelling during
software design. IEEE Trans. on Software Engineer-
ing, SE-4, 4 (July 1978), 283-292.

P. Henderson. Finite state modelling in program
development.. SIGPLAN Notices, 10, 6 (June 1975),
221-227.

E. W. Dijkstra. General commands, nondeterminacy .
and the formal derivation of programs. Comm. ACM,
18, 8 (August 1975), 453-457.

P. G. Hebalkar and S. N. Zilles. TELL: A system
for graphically representing software design. Proc.
Compcon Conf., San Francisco, 1979.

C. A. R. Hoare. Keynote Address. Proc. 3rd Inter-

national Conf. on Software Engineering, Atlanta,
Georgia, May 1978.

