An Almost-Linear Algorithm for Two-Processor Scheduling *

Harold N. Gabow

CU-CS-169-80

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

* This research was supported in part by National Foundation Grant MCS 78-18909..

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE

| ACKNOWLEDGMENTS SECTION.

Abstract

n unit-length jobs subject to precedence constraints are to
be scheduled on two processors to minimize finish time. Previous
algorithms for this well-known problem begin by finding the trans-

itive closure, and so use time O(min (mn, n2‘61)),

An O(m+na(n))
algorithm is presented. The algorithm constructs a "Texicographic

maximum schedule," which is shown to be optimal.

1. Introduction

Consider the following well-known model for multiprocessor
scheduling [C]: A set of n unit-length jobs is to be executed by p
identical processors; a dag specifies precedence relations among the
jobs. We seeka schedule minimizing the finish time w.

For arbitrary p this problem is NP-complete [U]. For fixed
p = 3 no polynomial-time algorithm is currently known. Here we in-
vestigate the tractable case p=2.

For this case several polynomial-time algorithms have been
~given. They all begin by finding the transitive closure of the dag.

This requires time O{(min (mn, n2'61))

» where m is the number of edges
of the dag. (The first bound follows from doing n depth-first
searches; the second follows from reducing transitive closure to
matrix multiplication [AHU,P].)

The algorithm of Fujii, Kasami and Ninomiya [FKN] 1is based on
matching techniques. Excluding transitive closure time, it requires
the time to find a maximum matching, O(nz's) [K). Coffman and Graham
[CG] give an algorithm based on a lexicographic numbering scheme. Sethi
[S] shows the numbering can be done in time O(m+na(n)). (This |
algorithm can begin by finding the transitive closure or trans-
itive reduction. However, both operations require the same time [AGU]).
Garey and Johnson [GJ] give an algorithm for scheduling with precedence
constraints and deadlines, which also solves our problem. It uses
time O(nz) to compute modified deadlines.

Time bounds for these algorithms often assume the transitive
closure (or reduction) of the dag is given. In practice this is unlikely.

On general dags the transitive closure step dominates, and the algorithms

-3a

all use time O(min(mn,nz'el)).

O(n2'61)).

(Actually the algorithm of [FKN] is

Here we present an algorithm that does not use the transitive
closure. The time on an arbitrary dag is almost linear, O(mtna(n)).
The algorithm uses the idea of a "lexicographic maximum schedule."
Such a schedule always executes nodes on the longest paths of the dag.
(This is a refinement of Hu's rule for scheduling trees [H].)

Section 2 proves that a lexicographic maximum schedule is always

optimal. Section 3 gives the algorithm.

2. Lexicographic Maximum Schedules

This section provides the theoretical basis of the algorithm.
Lexicographic maximum schedules are defined and shown to be optimal.

First we review some well-known definitions. A scheduling
problem is defined by a dag (directea acyclic graph), having n nodes
and m edges. If there is a directed path of one or more edges from
node x to node y, then x is a predecessor of y, and y is a successor
of x. A dag can be partitioned into levels i, i=u, ..., 1: Tlevel i
contains all nodes x that start paths of length i-1 but not i. In this
case, level(x) = 1.

A schedule is a sequence of sets Si’ i=1, ..., w, that partition
the nodes, such that 155| <2, and if x ¢ Si’ Yy e Sj and x precedes y,

then i < j. A schedule executes the nodes of Si in the ith time slot.

w is the finish time. We seek an optimal schedule, i.e., one with

minimum finish time.

It is convenient to introduce dummy nodes for idle time in the
schedule. Thus, we denote set Si of a schedule as the pair(xi,yi),where
either Si = {Xi’yi}’ or Si = {Xi} and \z is a dummy node. By convention,

level 0 contains the dummy nodes. So level(d) = 0 for a dummy node d.

A level-by-level schedule "executes levels" in the order u,...,l.

Suppose levels u,...,i+1 have been executed. If level i contains s

nodes, it is executed in {%1 time slots: The first L%1 slots each ex-
‘ nd
ecute two nodes of level i. If s is odd, the (%1 slot executes a

node f of level i and a node t of a lower level. (t may be a dummy

node of level 0).

The [%] time slots form the execution of level 1. The ordered

pair (f,t) is a jump from f to t. Note a node in level i can be ex-

ecuted (i.e., jumped) before the execution of level i. Thus s can be

less than the number of nodes originally in Tevel 1.

Suppose a level-by-level schedule S makes jumps <fi’ti)’ 1<icgk,
where 1eve1(fi) is decreasing. Then (1eve1(t1)...,1eve1(tk)) is the

jump sequence of S. Note the jump séquence determines w, since the

number of time slots with an idle processor is the number of zeros in
the sequence. We compare jump sequences using lexicographic order. A

lexicographic maximum schedule is a level-by-level schedule with the

largest possible jump sequence. A lexicographic maximum schedule
always jumps to the highest level; if on some Tevel several jumps go
to the highest level, the one that enables subsequent jumps to be
highest is chosen.

We show any lexicographic maximum schedule is optimal. (Clearly
it suffices to show just one such schedule is optimal). It is interest-
ing to note that if we extend the definition in the opvious way to an
arbitrary number of processors, then any lexicographic maximum sched-
ule is optimal, for dags that are in-forests or out-forests [H].

We begin by studying "covers." Two nodes are compatible if
neither precedes the other. If S is a set of nodes, a cover of S is

a partition of S into sets of one or two compatible nodes. Extending

our convention for schedules, we denote a set of a cover as a pair
(x,y), with y possibly a dummy node. A cover is a cover of all the
nodes. Clearly a schedule is a cover (if we ignore the order of the
schedule).

Fujii, Kasami and Ninomiya [FKN] show how a cover gives a sched-
ule. For this result, define a node to be ready at a given point in
a schedule if all its predecessors have been executed, but it has not;
a set of nodes is ready if its individual nodes are all ready.
Lemma 2,1: If C is a cover, there is a schedule with w = |[C|. Further,

any sequence of ready pairs can be chosen to begin the schedule.

Proof: See [FKN]; the Appendix contains a slightly different proof.
Note a "sequence of ready pairs" means a sequence (xi,yi), i=1,...,k,
where (Xi’yi) is ready after the preéeding pairs have been executed. [

“Our main method for modifying schedules is the following.
Lemma 2.2: Let (Xi’yi)’ i =1,2, be in a schedule S*, such that

(1) (Xl’yl) is executed before (XZ’yZ)

(11) Tevel(x,) > level(y,).
Then there is a cover C of all nodes but X1» Xo» Such that [C[=[S[-1.
Proof: We define pairs (xi,yi) eS, 3<is<f, £22, so as in Figure 1,

(1) Xy precedes X, for 2<i<t-1.

+1°
(2) Yy precedes Yier® for 1<i<e-2; Yo.1 and Y, are compatible.
(3) 1eve1(xi) = Teve?(yj_z), for 3<9 <2,

(Note a dummy node is compatible with any other node). This suffices for

*Note the subscripts do not mean these pairs are the first two executed
by S. Also, recall y; may be a dummy node.

the Lemma. For then C = S - {(X1=y1>[15i <L} + {(xi,yi_2)13$ i<t} +

(y£~1’y£) is the desired cover, by (2) - (3). (Note all nodes X5s ¥
are distinct, by (1) - (2).)

If y; and y, are compatible, take £=2. Otherwise node y; pre-
cedes Yy by (i).

Now assume (Xl’yl)""(xi’yi) have been defined for some
122, so (1) - (3) are satisfied (for i<£). Choose X;4q @S any suc-

cessor of x; on Tevel (y§~1)' Note x,,, exists since level (xi) >

+1
level (yi-l)‘ (For i=2 this is (ii); for i =3, level (Xi) =
level (yiuz) > level (yi~1)’ by (3) and (2).) Choose Yipq SO
(Xg415Y547) €S-

Clearly (1) and (3) hold for i+l. For (2), take £ = i+l if
¥; and Yi4 are compatible. Otherwise Y5 precedes Yi41> Since x,
precedes Xi41" So (2) holds for i+l1.]

Lemma 2.3:An optimal, level-by-level schedule always exists.

Proof: By induction, suppose the Lemma is true for dags with <n nodes.
We show it is true for dags with n nodes by considering two cases.
Let S be an optimal schedu}e. Recall Tevel u is the highest level of
the dag.
Case 1: Level u has at least two nodes.
If S contains a pair (x,y) with both nodes in Tevel u, then we
can assume S begins by executing (x,y); the Lemma follows by induction.
If S contains no such pair we modify it so it does, as follows.
Let (x;.y;) eS with X;» but not y., in Tevel u,i=1,2. Construct cover

C of Lemma 2.2. (Note level (Xi) >1eve}(yj), so the hypotheses hold).

¥
'

C = C+ (xq,x,) is a cover with |C'|=|S|. Applying Lemma 2.1 to C'

gives an optimal schedule that begins by executing (xl xz), as desired.

Case 2: Level u has exactly one node.

Let x, beonlevel u,with(xz,yz) eS. If y,has no predecessors
(oris adummy) we can assume S begins by executing (xz,yz), so the Lemma
follows by induction. Otherwise, let Xy be a predecessor of Yo with
no predecessors; let (Xl’yl) eS. Construct cover C of Lemma 2.2.

Now C' = C+~(x1,x is a cover with |C'| = |S|.. As above Lemma 2.1 gives

)
an optimal schedule that begins by executing (xl,xz). a

Lemmas 2.4-5are useful intransforming schedules to become lex-
jicographic maximum. For these Lemmas take 0 and M as level-by-level
schedules; take j, 1<Jj=<u, so the jump sequence of 0 is lexicographic
maximum up to, but not at, a jump at level j, while M is lexicographic
maximum up to and including j.

We first refine the notion of "readiness": Let S be a level-

by-Tevel schedule, and let nodes x, y satisfy level(x) > level(y).

y is x-ready in S if x does not precede y and further, all predecessors

of y below level(x) are jumped from above level(x). Clearly if y is
x-ready we can make (x,y) a jump, assuming x itself is not jumped.
Lemma 2.4: (a) If (x,y) is a jump in M with Tevel(x)=2j, then y is
x-ready in 0.
(Q) If (x,y) is a jump in O with level(x) >j, theny is x-ready

in M. (We do not allow level(x)=j).
Proof: (a) Let (x,y) be a jump that violates the Lemma. Choose
level(y) as high as possible. We derive a contradiction as follows.

Node y has a predecessor w below level(x) that is not jumped
from above level(x) in 0. M has a jump (v,w). Since level(w) >
level(y), the Lemma holds for (v,w), so w is v-ready in 0. Hence, w

is ready in 0 whenk1evel(x) is reached, and 0 can be modified to jump,

from level(x) to w. The modified schedule has a larger jump sequence

than M (on or before level j). This is the desired contradiction.
(b) The argument is similar. It is necessary to assume

level(x) > j, so that modifying M to jump from level(x) to w increases
the jump sequence.]

We use "chains" to modify schedules, as illustrated in Figure 2.
A chain consists of nodes x;, 1sis<c+1, and y;» Osisc, for c21,
where |

(1) (Xi’yi) is a jump in 0, for 1<i<c;
(i1) (yi,xi+2) is a jump in M, for 0<i<c-1;

(i1) 1eve](xi) = Ievei(yiml), for 1<i<c+1.
These conditions imply all nodes in a chain are distinct, ex-
cept possibly X1 7Y, and Xet1 =Y (It is also possible that Xe+] and
y. are dummies.)
Lemma 2.5: (a) Let (s,t) be a jump in M with }eveY(xi)> Tevel(s) >
max(]evel(yi),j~1) for some i, l<i<c. Additionally for i=c, Ye is
not jumped from above level(s) in M. Then 1eve1(t);zleve1(yi).

(b) Let (s,t) be a jump in O with ?evei(xi)> Tevel(s) > |
max (1eve1(yi), j) for some i, 1<1i<c. Additionally for i=c, X4l is
not jumped from above level(s) in 0. Then level(t) =]eve](yi).
Proof: MWe prove (a); (b) is similar. We show that in M,

(i) Ys is s~-ready
(ii) z is not jumped from above level(s).
Together these imply (s,yi) is a valid jump for M. Since M is lex-

jcographic maximum onor above j, level(t) z]eve](yi), as desired.

For (i), note 'z is xi—ready in M, by Lemma 2.4. This implies 'z
is s-ready, since level(s) <1evel(xi) and s is not jumped in M.

For (ii), if 1 <cs M jumps frg@_yi, S0 . is not jumped.
If i=c, (i1) holds by hypothesis. O

The next argument refers to a k-schedule. This is a level-by-
level schedule for levels u,...,k (and nodes in Tower levels jumped
from these levels). A k-schedule is just a prefix of a complete

schedule. We also refer to a lexicographic maximum k-schedule, i.e.,

one whose jump sequence is maximum. Such a jump sequence is a prefix
of the jump sequence of a lexicographic maximum schedule.

Theorem 2.1: A Texicographic maximum schedule is optimal.

Proof: Suppose the Theorem is false. Let j be the lowest level such
that some optimal level-by-level schedule has a lexicographic max-
imum jump sequence up to but not including a jump at level j. Let 0 be
such a schedule. Let M be a Texicographic maximum j-schedule. (Thus
M's jump sequence is maximum up to and including j. So Lemmas 2.4-5
apply to 0 and M. It does not matter that M is a j-schedule rather
than a schedule). Take 0 and M to have as many jumps in common as
possible. We derive a contradiction, by showing 0 can be modified to
decrease j, or one of 0 and M can be modified to get more common jumps.
In short, a "better" schedule than 0 or M can be found. We consider
two cases:

Case A: 0 and M agree on all jumps except the one from level j.

Case B: 0 and M do not agree on all jumps above level j.

Case A: Let J consist of all nodes on or below level J» not Jjumped

from above Tevel j. 0 restricts to an optimal schedule Oj on J.

10w

We obtain the desired contradiction by modifying Oj s0 it starts with
M's jump from level j.

Let the jumps from level J be (Xl’yl) in 0, (yO’XZ) in M, so
]eve](xlj = 1eve1(y0) = j, Teve1(y1) < Ievei(xz). Assume X] # ¥os other-
wise the argument is similar but simpler. Let (xo,yo), (x2,y2)e 0.

So]eve](xo) = 1evel(y0). We obtain the desired schedule from a
cover.

First get a cover C of J"xl"XZ’ by applying Lemma 2.2 to Oj and
(xl,yl), (xz,yz), (The hypotheses of Lemma 2.2 obviously hold.) If is
easy to see from the proof of Lemma 2.2 that C and“Oj agree on level j,
except at x;. So (x .y)eC. SetaCl = C-(x0,yo)~+ (xgsxq1) + (yo,xz},
¢’ is a cover of J, and |C'| =[Ojl. On level j, C' has exactly
one jump (yo’XZ)’ From Lemma 2.1, C' gives an optimal schedule thét
begins by executing level Jj,with jump (yo,x). From Lemma 2.3, levels
below j can be executed level-by-level. This gives the desired
schedule. ;

Case B: Take jumps (Xl’yl) in 0and (y .x,) in M, with Teve](xl) =
1eve1(yo), level(yl) = 1eve](x2), (xl,yl) # (yo,xz), and 1eve1(x1) as
high as possible. Let these jumps be the start of a chain (defined as
in (i)-(i11) above), with ¢ maximal. The chain ends in one of several
ways:

Case 1: There is no jump from Ye in M.

Case 2: There is no jump from Xet] in 0, and Ieve](xc+1) > j.

Case 3: There are jumps (xc+1,yc+1) in 0, (yc,xc+2) in M, with
1eve1(xc+1) = 3, Tevel(yc+1) < 1eve1(xc+2).

These cases exhaust all possibilities. For if Case 1 does not apply,

-11-

1eve1(yc) = 1eve1(xc+1) > j, since M is a j-schedule. If Cases 1 and 2
do not apply, the jumps in O and M are to different Tevels; this only
occurs at level j. (Note Case 1 includes the possibility that y, is a
dummy .)
Now we derive a contradiction, by showing that in each case we
can get more common Jjumps.
Cases 1-2: The arguments are similar. We give the argument for
Case 2. Modify 0 to 0', as follows:
(1) Replace jump (xi,yi) by (yi—l’xi+1)’ for 1<1i=<c.
(i1) If Yo * % and (u,yo) e 0, replace it by (U’Xl)'
(iii) If Yo * Xer and (V’Xc+1) e 0, replace it by (v,yc)‘
Clearly |0'| = |0], 0' has the same jump sequence as 0 and more jumps
in common with M. We will show 0' is a valid schedule, i.e., it re-
spects the precedence constraints. Then these properties show 0 is
a better choice than 0, the desired contradiction.
We show 0' is valid in two steps. First we show the new jumps in

0' (those of (i)-(iii)) are valid. Then we show the old enes (those in

0n0") remain valid.
Consider the new jumps of (i). Note Xi41 is yi_1~ready in 0,

by Lemma 2.4. Thus the new jump (yi) is valid. (In Case 1 this

-17%4+1

argument uses the fact that]eve](xc) > 3.)

(ii) does not introduce jumps, since it is easy to see
level(u) = level(yo): (u,yo) is not a jump from u, by the choice of
1eve](x1). It is not a jump to u, since 0 has jump (Xl’yl>'

For (iii), level(v) = level(x ,,) (by Case 2). It suffices to

ctl
show level(v) < 1eve1(xc). For then (v,yc) is valid because (xc,yc) was.

Assume on the contrary, level(v) > ieve](xc). The choice of 1eva](xl)

Simplies 1eve](v)<<1eve1(x1). Now Lemma 2.5 applied to jump (v,xc+1) implies

-12-

1eve1(xc+1)'2 1eve1(yi) for some i < ¢, a contradiction.
Now consider an old jump (s,t) of 0. Clearly (s,t) remains

valid if level(s) > 1eve](x1) or level(s) < level(x So assume

c+1)'
1eve1(xi) > Tevel(s) > leve1(y1) for some i, 1<i<c. If i = c and

X is jumped from above level(s) in 0, then again it is clear (s,t)

ctl
is valid. Otherwise, all hypotheses of Lemma 2.5 hold. (Note level(s)>j,
by Case 2. In Case 1 level(s) = Jj.) Thus level(t) zleve](yi), and
(s,t) remains valid.
Thus all jumps of 0' are valid, as desired.
Case 3: We construct a schedule P that is better than 0, in two steps.
First modify 0 to a j-schedule 0', in a way similar to Cases 1-2:
(i) Replace jump (Xi’yi) by (yi~1’xi+1)’ for 1 <i <c+l.
(ii) If Yo * %Xp and (u,yo) e 0, replace it by (u,xl).
0' is a valid lexicographic maximum j-schedule. The proof is the same
as in Cases 1-2. Note to show the new jump (yc,xc+2) is valid, we use

Lemma 2.4 (a) with Tevel(x) = j. Also, 0 does not Jump Xoo from above j,

as in the argument for v in Cases 1-2.

Now construct P: Let C” be an optimal level-by-level schedule
on the nodes below j not jumped in 0'. Take P to be 0' above and on
level j, and 0'' below it.

P is a valid level-by-level schedule. It has the same jump
sequence as M up to and including level j, by (i). Finally, P is optjma1.
For let J consist of all nodes on or below level J not jumped from above
J in 0. Now follow the argument of Case A: 0 restricts to an optimal
schedule 0j on J. Oj can be modified to a schedule of the same
cardinality on J ~xc+1-+yc. The schedule begins by executing level J
with jump (y_.x_,,). Below level Jjtheschedule is 0" . Thus, since

|0'| is the size of 0 up to and including level j,and |0"|is the size

-13-

of 0 below level J, |P| = |0], and P is optimal.
The above properties of P show it is a better choice than 0,

a contradiction. 0

3. Scheduling Algorithm

This section shows how to compute a lexicographic maximum
schedule in time O(m+na(n)).

We start by sketching a simple two-pass procedure that is
O(nz). Pass I combutes the jump from level f (if it exists), for
f=u, ..., 1: It finds the highest Tevel t that f can jump to. If
level t contains several nodes that can be jumped, it guesses one
arbitrarily.

This guess is practically irrelevant. It clearly does not effect
a subsequent jump to level t or above. Suppose some level jumps below
t. At that point level t contains no ready nodes. Any lexicographic
maximum schedule must have jumped all the nodes in level t that Pass
I jumped. So the highest level with a ready node in Pass I is the
lexicographic maximum level.

The guess does matter in computing the jump from level t. Pass I
may inadvertantly jump a node that gives the best jump from t. To
remedy this, Pass I keeps track of the nodes that must be jumped
(as explained above.) The remaining nodes are called "free" nodes.
Pass I always éomputes the best jump from a free node in level f.

Pass II fixes up bad gquesses, i.e., free nodes thatswere inadvertantly
Jumped.
This approach leads to an O(nz) algorithm. The bottleneck is

finding the highest Tevel t to jump to. Because of the arbitrary

-14-

behavior of t, it is not apparent how to do better than a sequential
search for t. Doing 0(n) such searches uses time O(nz).

For greater efficiency we restructure the computation. Pass I
computes the jumps to level t, for t = u, ..., 1: For each node y
in level t, it finds the highest level f that can jump to y. It
guesses that f jumps to y. As above, this guess is irrelevant to
computing subsequent jumps, except for the jump from level t. Pass I
keeps track of the free nodes in each level,and always computes jumps
from free nodes. Pass Il fixes bad guesses. |

This second approach has the advantage of a simpler "highest
level" computation. The first approach computes the highest level t
to jump to; a given t may be highest at various, arbitrary times.

The second approach computes the highest level f to jump from: a
given f is highest only once. (After its jump has been found, f is
no longer a candidate.) This fact permits the use of set merging
techniques to replace an 0(n) search by an o (n) FIND.

Now we state the algorithm in pseudo-Algol. The schedule is
specified in arrays FROM and TO. For u = f > 1, (FROM(f), TO(f)) is
the jump from level f. If TO(f) = -1, there is no jump from f
i.e., level f is even when it is executed. If TO(f) = 0, node FROM(f)
is scheduled with an idle period. Clearly these arrays give enough
information to deduce the entire schedule, if desired.

Pass I uses two main data structures. First, it uses set
merging techniques to find when nodes become ready and to assign
jumps. When Tlevel t is being scanned, a level f = t is called

unassigned if either f = t, or f > t and the jumps to level f make

~15-

f odd (so there is a jump from f) but TO(f) = 0 i.e., no non-trivial
jump has been found. Each unassigned level f has a set,

U(f) = {g]u=g=f and f is the highest unassigned level <g}.
These sets are manipulated by operations FIND(g) (which returns f
with g ¢ U(f)) and UNION(f,g) (which does a destructive merge of
U(f) into U(g)) [AHJ].

The second data structure is used to assign jumps and find free
nodes. When Pass I scans level t, it computes for each node y in
level t the value

R(y) = the highest unassigned level that can jump to y,
and for each unassigned level f > t the list

LIST(f) = {y|R(y) = f}.

LIST is used to assign jumps. It is also used to compute a substitute
jump node in level t, SUB(t). Call a node y in level t'fﬁgg if

y = TO(f) implies f < R(SUB(t)).

If a free node y is TO(f), y need not be jumped: SUB(t) can be
jumped instead. Pass II uses SUB(t) to eliminate situations where
a free node y is both a FROM and a TO value.

procedure LMS; comment An arbitrary dag is given as input. LMS

returns the jumps of a lexicographic maximum schedule in
arrays FROM and TO;

begin

Initialization:

0. do a breadth-first search of the dag to define levels u,...,1;
set SUB(t) = 0, TO(t) = 0, U(t) = {t}, LIST(t) = ¢, for ux2t=>1;
set U(0) = {0}, R(0) = 03 4

-16-

nPass I:

for t < u to 1 do begip
for each node y in level t dg begin
1§ y has no predecessors then R(y) < FIND(u)

else begin

£« min {e]a predecessor p of y is executed at level e,
i.e., p = T0(e), or p is in Yevel e and is not jumped};

if T0(L) = 0 and some free node in level £ does not precede y
comment the test for "free" is described in the text above;
then R(y) < £
else R(y) « FIND(2-1);

end;

A
if R(y) > t then add y to LIST (R(y));
end;
ATV

while some LIST(f) = ¢ do begin
remove the first node y from LIST(f);
TO(f) « y; g <« FIND(f-1); UNION(f,q);
if g > t then add LIST(f) to the end of LIST(g)
else if LIST(f) = ¢ then SUB(t) « the last node in LIST(f);
end;
i
if Tevel t has an even number of nodes that are not jumped (i.e., not
TO values) then
begin TO(t) « -1; UNION(t,t-1) end;

end Pass I
AT

Pass II:

for f <1 tgu gg‘begin
if TO(f) = 0 then begin

Tet FROM(f) be a free node in level f, that does not precede TO(f)
if TO(f) > 0;

H

if FROM(f) = TO(g) for some g then TO(g) « SUB(F);

end end end LMS;
AT AR A

-17-

Figure 3 illustrates this algorithm. Now we show it is correct.
Lemmas 3.1-2 show LMS finds a valid level-by-level schedule. Lemmas 3.3-6
-show the schedule is Jlexicographic maximum.

First consider Pass I. It only specifies the TO part of a jump.

So say there is a valid semi-jump from (Jlevel) f to (node) y if

(1) Tevel f contains a free node that does not precede y;

(11) any predecessor of y that is below level f is TO(g) for

some g > f.
Lemma 3.1: Immeéiately after Pass I,

(a) if TO(f) > 0, there is a semi~-jump from f to TO(f);

(b) if TO(f) is a free node in level t, there is a semi-jump
from f to SUB(t).

Proof: We show that during Pass I, after level t is processed (i.e., at
tine 11), (a)-(b) hold for level(TO(f)) = t. The proof is by induction on
t (uzt=1). Assuming (a)-(b) hold above t, we prove them for t as follows.

First note from 1ines 9 and 11, the sets U(f) are maintained as in
their definition above.

Now we show lines 3-5 set R(y) to the highest unassigned level
with a semi-jump to y. (For the purposes of the proof itself, it is
unnecessary to show R(y) is highest.) If no semi-jump exists, R(y) = t.

If y has no predecessors, R(y) is the highest unassigned level,
as desired. Otherwise, consider £ of line 4, and let p be a predecessor
executed at level-£. Clearly there is no semi-jump from above £ to y.
Since p is the last predecessor executed, there.is.a semi-jump to y

from any level below £. .Level £ itself can semi-jump y exactly when

~18-

the test of line 5 is true (by the definition of semi-jump). These

remarks show line 5 sets R(y) as desired.

Line 6 clearly sets LIST(f) as in the definition above. So the
first time line 7 is reached, an unassigned level f has a semi-jump to
each node y in LIST(f). This property is maintained every time
through the loop (lines 7-10). Thus line 9 assigns valid semi-jumps,
and {a) holds.

For (b), note if TO(f) is free in level t, then by definition
f < R(SUB(t)). The above characterization of R shows there is a semi-
Jump from f to SUB(t).

At the end of Pass II, let J be the level-by-level execution of‘
the dag defined by jumps (FROM(F), TO(f)),u=f=1.

Lemma 3.2: J is a valid schedule.
Proof: We show first that J is well-defined, and then that J respects
precedence constraints.

"Well-defined” means that node FROM(f) exists, and further, it
is not jumped. These two facts imply there is a level-by-level execution
with jumps (FROM(f), TO(f)).

Consider a given level f. Pass II may change TO(f) in line 15.
However this occurs at most once, and when lines 13-15 are executed for
the given f, either

(1) TO(f)

or (1i) TO(f)

i

¥y, the value computed in Pass I,

SUB(Tevel(y)).

i

So in line 14, FROM(f) exists (by Lemma 3.1 (a)-(b)). Line 15 insures

FROM(f) is not jumped. So J is well-defined.

-19-

To show J respects’précedence, we show for any Jjump (FROM(f),
TO(f)), a predecessor p of TO(f) that is below f is jumped from above
f. Lemma 3.1 (a)-(b) shows that after Pass I, some level g > f has
TO(g) = p. It suffices to show p is not free. For then line 15 does
not change TO(g), and level g jumps p, as desired.

Let p be on level t. After the loop of lines 7-10, R(SUB(t))

e U(t). But f £ U(t), since f is unassigned at level t. Hence
f > R(SUB(t)). So g > R(SUB(t)) and by definition, p is not free. 0

Lemma 3.6 shows J is a lexicographic maximum schedule. Consider
Pass I after level t is processed (more precisely, right before line 11
is reached). Define a family of sets V(f) as follows. If f is an un-
assigned level, f > t, then V(f) = U(f). If f =t, V(t) = U(t) n

{f{f>R(SUB(t))}. Otherwise V(f) does not exist. (InFigure3
for t =-2, V(2) = {10}.)

In level t, the sets TO(V(f)) partition the non-free nodes. Note
this implies Pass II does not change the values TO(V(f)). Thus
"TO(V(f))" has a unique meaning.

Let M be a Texicographic maximum schedule. Lemma 3.6 proves
that for all levels t and all sets V(f), the following is true:

(a) M jumps exactly the same nodes of level t from V(f) as

J does, i.e., those nodes of level t in TO(V(f)).
(b) M jumps below Tevel t from U(f) (sic) exactly when J does,
i.e., from level f for f > t.

In (b), the sets U(f) are those sets immediately after level t
is processed. So these sets partition the levels t and above. It is
easy to see that if (b) holds for all levels t' = t, then for such t', M
jumps from f to t' exactly when J does. In particular when t =1, J

is lexicographic maximum,

-20-

Lemma 3.6 is proved by double induction: assuming (a)-(b)
for levels t'>t, and on level t for sets V(f'), f'>f, it shows (a)-(b)
for V(f). Lemmas 3.3-5 are used in the induction. So in these Lemmas

assume (a)-(b) for t', f' as above.

Lemma 3.3 extends Lemma 3.2 to certain schedules used to compare
J and M. InU(f) let g be the lowest level (if any) that jumps to t in J.
Construct a g-schedule G as follows:

1. Define values TO(k) for k = g.: If level k does not jump
below t in J, then TO(k) is the value set by Pass I. Otherwise TO(k)
is the node jumped by M (if any).

2. Modify these values to a g-schedule G: Run Pass II on
these values, initializing f (in Tine 12) to g rather than 1. (The
free nodes are as in Pass II for J).-
Lemma_3.3: G is a valid g-schedule. It has the same jump sequence as

M, except possibly for jumps from U(f) to t in J.

Egggf;‘ The characterization of G's jump sequence follows easily from
the construction. Note in step 1 above, if T0(k) is the node jumped by
M then it is below Tevel t. For in this case k' jumps below t in J. So
inductive assertion (b) applied to set U(k) shows M Jjumps below t.

The argument for validity follows Lemma 3.2. First we show G
is well-defined. Cases (i)-(ii) are as before. In addition there is
the possibility

(ii1) TO(f) = y, the node jumped by M.
In this case M has a jump (x,y). So node x is not Jumped in M. This
implies x is free, since M jumps all non-free nodes (by inductive

assertion (a)). Hence FROM(f) exists in line 14.

-21-

Next we show G respects precedence. For jumps to level t or
above, the argument is as before. So consider a jump for TO(k) =y,
where y is the node jumped by M. We show that if p is a predecessor of y

below k, G jumps p from above k. Clearly M jumps p from above k.

If p is below t, G copies M, by definition. Otherwise suppose p is

on or above t. We can apply the inductive assertion (a) to level(p)
and the set V(h) that jumps p (in M). (Even if level(p) = t,

h >k >f, so (a) holds for V(h)). This implies p is not free. Hence
G jumps p from above k, just as J does. 0

Lemma 3.4 characterizes the nodes jumped by J.

Lemma 3.4: For any node y in level t and any set V(h), y e TO(V(h))
if and only if R(y) ¢ V(h).

Proof: First suppose R(y) ¢ V(h). Consider the loop of lines 7-10.
As long as y is on some LIST, it is 6n LIST(k), where U(k) is the set
that currently contains R(y).

Suppose h > t. Since h is unassigned after the loop, LIST(h)
is always empty. So y is assigned as a TO value, i.e., y ¢ TO(V(h)),
as desired.

Suppose h.= t. It suffices to show that when U(k), the set
currently containing R(y), gets merged into U(t), y ¢ LIST(k).

For then as above, y e TO(V(t)). (Note showing y ¢ LIST(k), for all
¥y, shows LIST(k) is actually empty.)

| Suppose on the cgntrary, y e LIST(k), Then SUB(t) gets
assigned a value so that R(SUB(t)) = R(y)f Although SUB(t) may sub-
sequently change, R(SUB(t)) only increases. So the inequality holds
at the end of the loop, and R(y) # V(t), a contradiction.

Now we show the opposite implication of the Lemma. Suppose

-2~

y ¢ TO(V(h)). It is clear from the loop that R(y) is in V(h) or above
it. The latter possibility is impossible, by the argument above. 3o

R(y) e V(h), as desired. 0

Lemma 3.5 is used to show J jumps at least as high as M.
Lemma 3.5: If M jumps from level k to a node y in level t, then

k < R(y).

Proof: Let p be a predecessor of y. M and J may execute p at two
different levels. However, after the iteration for level(p) in
Pass I, these two levels are in the same set U(h). This follows
from the inductive assertions applied to level(p).
Now consider Pass I immediately before the iteration for t.
By the above remark, the level £ of line 4 is in the same set as the
lowest level where M executes a predécessor p of y. Call this set
U(h). Clearly h = k. So if R{y) = h, the Lemma holds.
Otherwise if R(y) = h, it is easy to see the test of line 5 is
~ false, and R(y) = FIND(£-1). Since FIND(£) = FIND(£-1), £=h. So
for the test to be false, all free nodes of level £ precede y (since
TO(£) =0). The inductive assertion implies M jumps all non-free nodes
in Tevel £. Hence level £ cannot jump y in M. Thus k < FIND(Z-1)=R(y),
as desired. 0
Now we can show the desired result.
Lemma 3.6: J is a lexicographic maximum schedule.
Proof: As noted above, it suffices to prove (a) - (b), by double
induction. So take set V(f), where (a) - (b) hold for levels
t' > t, and for t' = t and setsV(f'), f' > f.

-23~

Consider the g-schedule G of Lemma 3.3. Its jump sequence is
no less than M's (by Lemma 3.3 and inductive assertion (b)). But M is
lexicographic maximum. We conclude M jumps from U(f) to t whenever J
does.

This argument shows (b) if f = t. It also starts the proof of
(a) (for any f). Now we complete the proof of (a), and then prove
(b) for f >t.

The nodes y of level t jumped from V(f) in J are those with
R(y) e V(f), by Lemma 3.4. Let g be the lowest level in V(f) that
jumps to t. By Lemma 3.5, if M jumps y from g or above, then R(y) = g.
By Lemma 3.4 and induction, J and M jump the nodes with R(y) above V(f)
from above V(f). So the only nodes M can jump from V(f) are those with
R(y) ¢ V(f). Since M does as many jumps as J, it jumps all nodes with
R(y) ¢ V(f), as desired.

Now (b), for f > t, follows easily: M cannot jump from f to t,
since this would imply an extra level R(y) e V(f). Thus f jumps
below t.

Now we consider the timing. We give some details needed for
efficiency. For line 4, each node y has a 1ist of predecessors.
Further, each node p indicates the level e (if any) that has p = To(e).
These data structures make the total time in line 4 O(m+n).

For the test of line 5, each level £ has a count of its free
nodes. The count is set after level £ is processed. It is easy to see
this requires linear time. Line 5 compares this count with the number
of free predecessors of y in level £. So the total time in the test of
line 5 is O(m+n).

For line 7, there is a list of levels f with LIST(f) # 4. For

~24-

line 10, the LISTs have end-pointers. It is easy to see the Toop of

lines 7-10, excluding set merging, uses a total of 0(n) time.

Lemma 3.7: LMS uses time O{(m+nao (n)) and space O(m+n).

Proof: There are at most n FINDs in line 5, and also in line 9.

Lines 9 and 11 do at most n UNIONs. So the time for set merging is

O(na(n)). The remaining processing is O(m+n), from the above dis-

cussion. | 0
Now we combine Theorem 2.1 and Lemmas 3.6-7.

Theorem 3.1: Procedure LMS finds an optimal schedule for two processors

and an arbitrary dag, in time O{mtno (n)) and space O(m+n). O

-25-

Appendix
This Appendix proves a fundamental result due to Fujii, Kasami,
and Ninomiya [FKN]. It also shows their scheduling algorithm is actually

O(n2'61)

Lemma 2.1: If C is a cover, there is a schedule with w = |[C|. Further,
any sequence of ready sets of C can be chosen to begin the schedule.
Proof: Construct the schedule as follows. First number the nodes
topologically, i.e., any node has a larger number than any of its
predecessars [Kn]. Then repeatedly schedule nodes using these two
rules: (Recall that a ready node is unscheduled, by definition.)

1. If possible, choose a ready set of C, and schedule it in
the next time slot.

2. Otherwise, choose {u,v} e.C where u is ready and v has the
smallest topological number possible. Let w be a ready predecessor of
v, with {w,x} ¢ C. In C, replace {u,v} and {w,x} with {u,w} and
{v,x}; schedule {u,w} in the next time slot.

In rule 2, note C has no ready singleton sets (by rule 1).
Hence {u,v} exists. Since v is not ready, it has a ready predecessor w.
(Note w # u, since u and v are compatible). Clearly there is a set
{w,x} ¢ C. {u,W} is ready and so can be scheduled. Further, v and
x are compatible: v does not precede x, since w and x are compatible;
x does not precede v, else {w,x} would be a better choice than {u,v}.
Thus C remains a cover after rule 2. Further, [C| never changes.

Continuing, we eventually get a cover with |C| time slots. The
second part of the Lemma follows from the choice allowed in rule 1. f

This construction easily leads to an O(ng) algorithm, improving
the 0(n3) procedure of [FKN]. This shows the algorithm of [FKN] is

actually O(n2'61).

-26-

References

LAGU]

[AHU]

LC]

(ca]

[FKN]

[6J]

[H]

[K]

[Kn]

(P]

[s]

[u]

Aho, A. V., Garey, M. R. and Ullman, J. D., "The transitive
reduction of a directed graph," SIAM J. Comput. 1, 1972, pp.
131-137.

Aho, A. V., Hopcroft, J. E. and Ullman, J. D. The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass.,
1974.

Coffman, E. G. Jr., Ed., Computer and Job-Shop Scheduling Theory,
Wiley & Sons, New York, 1976.

Coffman, E. G. Jr. and Graham, R. L., "Optimal scheduling for
two-processor systems," Acta Informatica 1, 3, 1972, pp. 200-213.

Fujii, M., Kasami, T., and Ninomiya, K., "Optimal sequencing of
two equivalent processors," SIAM J. Appl. Math. 17, 4, 1969,
pp. 784-789. Erratum, SIAM J. Appl. Math. 20, 1971, p. 141.

Garey, M. R. and Johnson, D. S., "Scheduling tasks with nonuniform
deadlines on two processors," J.ACM 23, 3,1976, pp. 461-467.

Hu, T. C., "Parallel sequencing and assembly Tline problems,"
Op. Res. 9, 6, 1961, pp. 841-848.

Kariv, 0. "An 0(n2.5) algorithm for finding a maximum matching in

a general graph," Ph.D. Diss., Weizmann Inst. Science, Rehovot,
Israel, 1976.

Knuth, D. E., The Art of Computer Programming, Vol. 1: Fundamental

Algorithms, Addison-Wesley, Reading, Mass., 1973.

Pan, V. Y., "Field extension and trilinear aggregating, uniting
and canceling for the acceleration of matrix multiplications,"
Proc. 20th Annual Symp. of Found. of Comp. Sci., 1979, pp. 28-38.

Sethi, R., "Scheduling graphs on two processors," SIAM J.
Comput. 5, 1, 1976, pp. 73-82.

Ullman, J. D., "NP-complete scheduling problems," J. Comput.
System Sci. 10, 1975, pp. 384-393.

—27 -

Figure 1.

Construction of Lemma 2,2
(Wavy Vines indicate a pair of 'S)

-28-

! *Y0
Yi-2¢ 2*i-1
X 251
\
!
§
l .Y-¥§ _0Xi+1
| f
yc-—lg ixc
!
Xer1 ® fyc

Figure 2. A chain

(Wavy lines indicate a pair of O,
and dotted lines a pair of M)

level

11
5
10 i
4

(a)
y 7% 8 f 514 1
Rly) {3323 |4 TO(f) {3 f{8l4l2]o0
(b) (c)

f 5] 4321
FROM(f) f1]10]|9}l4]1
TO(f) 3] 8]7]2]0

(d)

Figure 3.
a) Dag - all edges are directed downward.
b) Values for level 2 nodes during Pass I. * means 7 = SUB(2).
c) Values after Pass I.
d) Values after Pass II.

(
(
(
(

