Tools to Aid the Specification and Design of
‘ Flight Software *

Guy Bristow

CU-CS-168-80

N
)
[@?University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

* This work was supported by grant NSG 1638 from NASA Langley Research Center.



ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.



TOOLS TO AID THE SPECIFICATION AND DESIGN
OF FLIGHT SOFTWARE

by

Guy Bristow
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

CU-CS-168-80 ‘ January, 1980

This work was supported by grant NSG 1638
from NASA Langley Research Center

RSSM/97



INTRODUCTION

The development of flight software is recognized as an expensive
undertaking. Flight software will often have the following character-
istics:

1) It is real-time with potentially strict performance constraints

upon response times, etc.

2) There can be a large number of independent and very different
devices.

3) Likewise, there can be a large number of independent, con-
current activities.

4) The software may run on more than one processor, using more
than one language.

5) There must be a very high degree of reliability and
recoverability.
These characteristics, when combined, make the software development
task formidable and expensive. However, flight software often has a
very short lifespan, making the cost of its development disproportion-
ately high. This has prompted much research into ways to reduce this
cost given the current state-of-the-art in computer science.

One important way to reduce this cost is to provide a complete
software development environment, containing, among other things, auto-
mated tools to perform, or aid in the performance of, every task during
software development. Such tools would have a common, user-friendly
interface, and would operate so as to augment each other in any situa-
tions where overlap of tasks occurs. This paper considers the problem
of which such tools should be provided.

STAGES OF SOFTWARE DEVELOPMENT

We regard the development of software as roughly falling into
three main stages, each of which we further subdivide into two substages.

Definition

Requirements Definition. This is the very early stages of a
project in which the tasks that are to be performed by the system are
determined.

Specification. In this substage, the requirements are expanded



and rigorously defined, possibly introducing hardware considerations,
resulting in a document against which the final product can be tested
for correctness.

Design

Architecture Design. The high level organization of the final
product is delineated during this substage, involving the subdivision
of tasks among processes, the interaction between and among those
processes, the devices, and other software in the system, and the
organization of data shared by processes.

Algorithm Design. During this substage, the structure, data
organization, and data-flow paths of individual processes are deter-
mined, and the subdivision of those processes into small, rigorously
defined, programmable units is accomplished.

Implementation

Program Implementation. This‘substage encompasses the coding
and testing of individual programmable units.

System Implementation. This substage involves the integration
of programmable units to form successively larger units, to be tested
against successively higher level descriptions of the system, until the
completed final system is obtained and is tested against the specifica-
tion.

This is not a complete 1ist of all the activities that go on
during the development of a software system. There are many other
actfvities which occur in parallel with those we have delineated -
documentation, communication, project management, etc. There is also
the maintenance stage, occurring after all the above stages, but which
we regard as the repetition of some or all of the above activities on
(presumably) small sections of the system.

Our interest Ties primarily in the first two of the stages, namely
specification and design. In the Appendix, we have given tables of
tools, usable during each of the stages defined here, but the remaining



discussion focuses upon the first two stages.

AGENTS

In addition to identifying tasks and activities that are performed
during specification and design, we also identify the agents that per-
form such tasks and have organized the tables in the Appendix according
to the usefulness of various tools to these various agents. The agents
do not necessarily have a direct correspondence to people - one person
may play the role of several agents, while one agent may in fact consist
of a team of people.

SOME GENERAL OBSERVATIONS

A software development environment, as we envisage it, consists of
two main components. Firstly, there are languages to describe the sys-
tem during each of the various stages - speciffcation languages, design
languages, etc. Secondly, there are the software tools to support the
work performed during each stage, as well as the work that is done to
progress from one stage to the next. ‘

This report deals primarily with the second of these components;
namely software tools. Inevitably, however, the two components are
interrelated, and some language suggestions may appear as well.

Before entering a discussion of which tools should be present,
we first give some general considerations on the nature of the tools.

Methodologies. 1t is now well accepted that the smooth and
successful development of a large and complicated software system re-
quires the rigorous imposition of certain methodological principles,
practices and procedures. Some of these are so obvious that they go
without saying - modular programming, rigorous testing, full documenta-
tion, etc. Some are maybe not so obvious, and their effectiveness may
well depend on the particular application. We would 1ike, wherever
possible, to leave the choice of the methodological aspects of the
development environment up to the project managers and leaders. How-
ever, once such methodological aspects are chosen, we would like the
system to enforce them rigorously. Some examples of such methodological



aspects are: top-down design method, data abstraction, controlled
access and update of the system description during development, etc.

Consistency. During each stage of software development, the de-
scription can be thought of as going through several levels of refine-
ment. For instance, the first specification that is produced will be
necessarily at a high level, and subsequently this is refined and cor-
rected until the final, detailed specification is produced. There are
two forms of verification that need to be performed at each level. The
first of these is to verify that the description at this level is con-
sistent and unambiguous within itself. The second is to verify that
the description correctly and completely matches the description at
all levels above, i.e., is consistent with previous descriptions.
Throughout this report, these two types of consistency determination
are referred to as internal and external verification. For the first
(highest) 1evel of description at a particular stage, the external veri-
fication compares this description against the descriptions from the
previous stages.

Incompleteness. At each level, much work is performed with an
incomplete description of the system at that level. For instance, in
the early stages of architecture design the designer may wish to experi-
ment with several different overall designs before making the final
choice. Requiring complete descriptions for each such design would in-
volve a large amount of essentially unneccessary work. In this case,
it is desirable to provide tools that can work with partial descrip-
tions of the architectural design. At each stage, therefore, we would
like to see tools that operate on incomplete system descriptions where
possible.

Cross-referencing and Tracing. Two important facilities must
be provided throughout the entire development process to aid in modify-
ing and maintaining the system. The first of these is a powerful cross-
referencing facility that allows for the rapid determination of all the
effects of a proposed modification at a particular level on the rest of
the system at that level. The second is a powerful tracing tool, that
provides Tinks between the different components of the system at dif-
ferent levels. When there is a proposed modification at a previous



(higher) level than the current level, such a tool determines which
parts of the lower-level descriptions are affected by such a modifi-
cation.

Automatic Documentation. One area where much time can be saved
by the use of tools is in documentation. By providing tools to generate,
summarize and paraphrase the description at each level, not only can
the documentor's time be saved, but also the time of readers who may
otherwise have to wade through documents containing more information
than is needed.

Testing. While much internal and external verification can be
done "statically" by providing analysis tools, it is currently beyond
the state-of-the-art to have a complete set of static verification tools.
Accordingly, testing is still an important approach to error detection
and there are various ways that tools can be provided to aid in the
testing of software.

Firstly, we would Tike to see tools that "test" the specification
and design descriptions of the systems. Such testing requires simula-
tion systems that animate the description, and symbolic execution sys-
tems to detect the errors. Such testing tools would augment automatic
error detection and also hand-checking.

Secondly, we would like to see tools that automatically generate
test cases from the specification and design descriptions. Such test
cases would be used to test parts of the system during module integra-
tion/system implementation. Such test cases as are generated from the
specification would be used to test the final system. Those generated
from the architectural design would be used to test the processes of
the system, and so on.

Finally, we would like to see a complete testing environment,
providing automatic testing, simulators for the parts of the system
not under test, automatic analysis of the test results, and also the
storing of test cases and their results. (Such test cases and their re-
sults can be later used to check whether modifications to the final
system have affected any of its operations).



ACTIVITIES AND TOOLS

Requirements Definition

The definition of requirements may well be written, and will
almost certainly be read, by people with Timited computer or mathemat-
ical backgrounds. To be understood, therefore, it will have to be
written in English, presumably loosely structured (see [1]). This
rules out the use of analysis tools. Such tools as will be used at
this stage will largely consist of editing and report generating tools.
Some tools could be provided as aids to hand analysis, e.g., tools to
aid in cost estimation, etc.

Specification

The specification is more rigorous than the requirements defini-
tion, and will presumably be written in a specification language. This
allows for the use of automatic analysis tools. Some specification
languages have already been produced, see for example [2] and [3]. In-
evitably, some of the specification - relating to the processing per-
formed by the system - will be written as a prose description since no
specification language can have enough special operations to describe
all possible ways of processing input. Such prose descriptions can be
made more rigorous, and potentially analyzable, by the use of such tools
as the automatic specification formalizer and action sequencer [1].

The initial creation and updating of the specification will be performed
using various text editors, display tools, etc.

Currently, few tools exist that perform analysis on system spec-
ifications. This is a real problem, because analysis of program errors
reveals that typically a large number are introduced as a result of
errors in, or incompleteness of, the specification. We believe that
whatever analysis can be performed at each stage should be performed,
since the longer that an error remains undetected, the more costly it
is to correct.

Since specification tools are not currently available, we in-
stead identify tasks that need to be performed, in the hope that tools



can be developed to perform such tasks. In the Appendix we have shown
the relationships of these various tasks, indicated the agents con-
cerned with the task, and indicated which extent tool are of possible
utility.

One task is to test for completeness. A complete specification
defines exactly a range of legal inputs, such that all inputs outside
this range are erroneous. For each legal input, an action is defined.
Usually resulting in an output and/or a change of internal state.
Where this action depends on the internal state (as evidenced by pre-
vious inputs), all such states are accounted for.

Another task is to test for internal consistency. Each input and
internal state will usually result in only a single Tegal action. Should
ambiguity exist, this should be detected and reported.

An important task is to test for correctness (external verifica-
tion). Since the requirements definition will not be in machine under-
standable form, such testing cannot be by automatic analysis. Instead,
we anticipate it will be done with the aid of simulation and modelling.
This will provide information about behavior during unanticipated in-
put sequences, about reliability, useability, and the relationship of
the system with its environment.

Following the acceptance of the specification, information needs
to be extracted from it for various purposes. Some of these purposes
are as follows: feasibility studies, cost estimation, standards check-
ing, test data generation, etc. We can further identify various agents
who need part or all of the information - e.g., user guide writers,
trainers, system designers, project managers etc.

We also anticipate that there will be modifications that must
be made to the specification. Here, as in all phases of system develop-
ment, we suggest the use of a regulatory system to control how and by
whom such updates are made. The data base underlying this regulatory
system we feel, should, retain previous versions of the specification
to allow for the assessment of the impact of modifications.

Initial Architectural Design

Producing the initial architectural design requires the balancing



of several different factors. The way that the factors are balanced
will depend on the particular requirements and constraints imposed on
the system. Some factors that normally must be considered are as
follows:
1) Adccuracy. This is the degree to which the final system
obeys the specifications.

2) Reliability. This includes such concerns as the mean time
between failures, security features, recoverability, etc.

3) Cost of development. Many factors have been found to affect
the development cost. Ways to reduce this cost would include:

a) reducing the total amount of software (number of
instructions),

) keeping the programmable units simple to code and test,
) keeping the overall system simple to test,

) reducing the amount of shared data,
)

reducing the amount of information transferred among
system modules, and

f) producing programmable units that are independent, with
simple and uniform interfaces.

4) Maintainability. The ease with which the system can be main-
tained and modified can be increased in several ways, including:

a) producing functionally independent processes and program-
mable units,

b) wusing the concept of data abstraction,
¢) ensuring data independence, ,
d) having the system model the real-world, and
e) having uniform device access, and inter-process communi-
cation methods.
5) Speed of production.

6) Resource usage. This includes concerns such as usage of

main memory, disk space, etc.

We propose the development of a system to aid the architectural
designer in deciding between various different designs that he may be
considering, and also give him some early estimates of the factors
above. This system would allow the designer to specify configurations
of processes, the data and accessing paths between them, and the pro-
cessing that is done by each process. Wherever possible it would pro-
duce estimates of the factors above, and where the automatic generation



of such estimates is currently beyond the state-of-the-art, it would
allow the designer to insert his own estimates. Such estimates would
include reliability (hardware and software), size, complexity, test-
ability, time to program, resource usage, response times, etc. The
factors that it would need to consider would include amount of global
data, how it is accessed, amount of data sharing and data transfer,
functional independence, etc. The system would allow for rapid and
easy reconfigurability, and may also perform automatic reconfiguration
where possible.

Architecture Design

We anticipate that such a system as proposed above would be used
with brief, and possibly incomplete, descriptions of the architectural
design. When a design has been finalized and chosen, it will be ex-
panded and made more detailed. This will require the use of other
analysis tools to test for internal and external correctness. We now
present a list of those tasks we have identified that need to be per-
formed on the architectural design.

Internal Verification. The first task of the internal verifi-
cation is to check that interfaces are consistent. Where there is
communication between two processes, this should be indicated by some
form of "channel" in the architectural design model. Checking for con-
sistency reduces to checking that the data format is identical at
either end of the "channel."

It will be necessary to test for the absence of deadlock, con-
~tention, illegal execution sequences etc. This can be done by model-
1ing (e.g., with DREAM [4]) or by static analysis (e.g., by the tech-
niques given in Bristow [5] or Reif [6]). Such illegal execution se-
quences would include anomalies concerning shared or global data, thus
allowing a check that the data required by a process has been prede-
fined and is available to that process.

External Verification. Much can be done in the way of external
verification of the architectural design model. Firstly, the input
and output formats can be checked against the input and output formats
in the specification. This check could be extended to insure that all



-10-

of the inputs/outputs in the specification are included in the arch-
itectural design, and that no other (illegal) inputs are possible in
the design.

It should be possible to check that each input correctly leads
to its corresponding output, with the correct processing. This would
require a certain amount of hand checking. A 1ist could be produced
of the possible paths through the system for each input, including the
processing at each step. The hand checker would verify that only desir-
able paths are possible, and that the processing on such paths is
correct. This could be done with the aid of facilities such as de-
veloped for TOPD [7].

Other Tasks. Assuming a design is produced that is internally
and externally correct, other information will need to be obtained
from it. It may well have to satisfy some form of ‘quality control,'
and factors that may need to be considered are cost, maintainablilty,
resources required, time required for production, reliability, accuracy,
and whether it satisfies all preset standards. Estimates will need
to be made of these factors, possibly with machine aid.

In addition, we anticipate the automatic generation of tests
and test data from the architectural design. This would be part of
the same scheme as mentioned for the specification.

We identify a number of agents who would need to extract infor-
mation from the architectural design. Firstly, there are the algorithmic
designers and developers, who need to get a detailed view of a small
section of the system. There are the system testers who require to
know the overall functionality of the system and its processes. There
are maintainers, who need to know how particular sections of the sys-
tem interact with the rest of the system. There are project managers,
who require information about size, speed, cost, progress, etc. And
there are others such as documentors, trainers, operators, etc.

CONCLUSION

We have identified many of the tasks that are normally performed,
or that we would like to see performed, during the specification and
architecture design stages of software development. Wherever possible



-11-

we have identified ways that tools could perform, or aid the perfor-

mance, of such tasks. Much of the verification and analysis that we
have suggested is currently rarely performed during these early stages,
but is is our belief that this analysis should be done as early as
possible so as to detect errors as early as possible.

REFERENCES

1.

R. Balzer, N. Goldman and D. Wile. Informality in program specifica-
tions. IEEE Trans. on Software Engineering, SE-4, 2 (March 1978),
94-103.

D. T. Ross and K. E. Schoman. Structured analysis for requirements
definition. IEEE Trans. on Software Engineerin, SE-3, (January 1977),
6-15.

N. M. Goldman and D. S. Wile. A data base foundation for process
specification. Tech. Report, Info. Sci. Inst., Marina del Rey,
California (October 1979).

W. E. Riddle, J. C. Wileden, J. H. Sayler, A. R. Segal and
A. M. Stavely. Behavior modelling during software design. IEEE
Trans. on Software Engineering, SE-4, 2 (July 1978), 283-292.

G. Bristow, C. Drey, B. Edwards and W. Riddle. Anomaly detection in
concurrent programs. Proc. Fourth International Conf. on Software
Engineering, Munich, Germany, (September 1979), pp. 265-273.

J. H. Reif. Analysis of communicating processes. TR30, Comp. Sci.
Dept., Univ. of Rochester, New York, (May 1978).

P. Henderson. Finite state modelling in program development.
SIGPLAN Notices, 10, 6 (June 1975), 221-227.



-12-

APPENDIX
REQUIREMENTS
PHASE SUBPHASE (tasks) AGENT TOOLS
First Draft construction requirements definers text processors,

(insertion, retrieval, editors, graphical

modification) displayers/in-
serters, and lan-
guages

ret?ieva], correction, requirements definers (same as above)

, —
Acceptance

Subsequent
Modifications

—— i
Acceptance

addition

extraction (paraphrase) | customers

assessment (animation) customers

assessment (inference) customers
integrators

~

extraction (paraphrase) specification designers
users

userguide writers
trainers

proposal for a customers
modification users
integrators
designers, etc.

retrieval, correction (same as above)

extraction (paraphrase) | requirements definers

modification requirements definers
assessment (animation) customers
assessment (inference) customers

integrators

insertion requirements definers

./

standards checkers

modelling systems

completeness and
feasibility checkers

text processors,
editors, graphi-
cal displayers/in-
serters, languages
(same as above)

(same as above)

modelling systems

completeness
checkers, simulators



-13-

SPECIFICATIONS

PHASE

SUBPHASE (tasks)

AGENT

TOOLS

First Draft

Subsequent
Modifications

construction

retrieval, cor-
rection, addition

extraction
(paraphrase)

assessment
(animation)

extraction
(paraphrase)

identical to
REQUIREMENTS

specification definers

(same as above)

specification definers

managers
customers

specification definers

customers
integrators

designers

users

userguide writers
trainers

text processors,
language macros,
preprocessors,

- editors, and graph-

ical displayers/in-
serters

(same as above)

- editors, text

Processors

feasibility and
standards checker,
and cost assessors

simulators, model-
1ing systems, and
testers



~14-

ARCHITECTURE DESIGN

PHASE

SUBPHASE (task) AGENT

T00LS

First Draft

Acceptance

Subsequent
Modifications

i
Acceptance

construction designers
(insertion, retrieval,
modification)

retrieval, correction, designers
addition

extraction (paraphrase)| requirements definers

manaqers
assessment (animation) requirements definers
assessment (inference) requirements definers

~

extraction (paraphrase) | implementors

maintainers

managers

proposal for mod- requirements definers

ification integrators
implementors

extraction (paraphrase) | designers

modification designers

assessment (animation) requirements definers
proposal specifier

assessment (inference) requirements definers
proonosal specifier

. . manager

insertion

/

flowchart generators,
languages, text
processors, editors,
compilers, and
graphical display
interaction sys-

tems

(same as above)

feasibility and
standards checkers,
cost simulators,
modelling systems,
symbolic executors,
and testers

translators, con-
sistency checkers
(above, within),
completeness
checkers, and anomaly
detectors

translators, trans-
formers, and ex-
tractors

(same as above)

text processors, etc.

(same as above)

(same as above)

(same as above)

feasibility and
cost checkers



-15-

ALGORITHM DESIGN

PHASE SUBPHASE (tasks) AGENT TOOLS
First Draft construction designers languages, text in-
(insertion, retrieval, tegrators, editors,
modification) flowchart gener-
ators and dis-
players, and com-
/”:i pilers
retrieval, correction, designers debuggers
addition
extraction (paraphrase) | requirements definers feasibility

—
Acceptance

Subsequent
Modifications

assessment (animation)

assessment (inference)

/

extraction (paraphrase)

same as for
ARCHITECTURE DESIGN

managers

requirements definers

requirements definers

implementors
maintainers
managers

checkers, cost
assessors, and
standards checkers

simulators, model-
ling systems, testers,
and symbolic ex-
ecutors

translators, con-
sistency checkers
(above, within),
completeness
checkers, anomaly
detecter, symbol-
ic executors, and
cross-reference
generators



~16~

PROGRAM IMPLEMENTATION

PHASE

TOOLS

Module
Design

Coding

Debugging

Testing and
Verification

text editors
flowchart generators
etc.

text editors

language macroexpander
structured language preprocessor
text formatter
translator

Tink editor/loader
interpreter

subroutine Tibrary
file system

database system
operating system

syntax checker
anomaly checker
debug system

test conductor
simulator

test generator

monitor

decompiler

usage histogrammer
snapshot taker
assertion prover
symbolic executor

call sequence generator
execution sequence generator
osilloscope

standards checker

units checker
consistency checker
interface checker



-17-

PROGRAM TEXT
CHECKING

syntax checker
units checker

EXTERNAL
VERIFICATION ‘

TESTING

debug system
simulator

monitor
oscilloscope
test conductor

test generator

usage instogrammer
snapshot taker

ADDITIONAL
INTERNAL
VERIFICATION

Ttandards checker
consistency checker
interface checker

VERIFICATION

anomaly checker
symbolic executor

assertion prover

program prover

call sequence generator
execution sequence generator

decompiler

Relationships among tools supporting debugging, testing and

verification phases occurring during module development.




~-18-

SYSTEM IMPLEMENTATION

PHASE

SUBPHASE (tasks)

AGENT

TOOLS

Module
Integration

System
Testing

Verification

Maintenance

Documentation

integration

recursive module
redevelopment

developer

developer

developers

maintainers

documentors

debug system
(aimed at higher
Tevel)

as before

simulators
generators

data base analyzer
drivers

monitors

interrupt analyzer
linkage editor

MAP program
program flow ana -
lyzer

tracer

rest result pro-
cessor

(same as above)

editors



