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Abstract

A new operation on languages is introduced which is related to
the complete twin shuffle. Symmetric DGSM's are characterized in
terms of this operation and it is shown that:

1. It is decidable whether or not two DGSM mappings are

equivalent on a reqular set.

2. It is decidable whether or not an augmented DGSM mapping is

symmetric.






Let us begin by defining the mapping REDUCT, which plays a central

role in our results.
Definition: The mapping REDUCT, (ZuT)*>(zuZ)* is defined as the

input-output mapping of the following one-way two-headed transducer:

1. Given a word w = a ane:(ZLjf)*, head 1 is placed over

1
the first unbarred symbol and head 2 is placed over the first barred

symbol, reading from left to right. Let us call the symbol under head

1 S(H.) and the symbol under head 2 S(H

) ).

2. From this starting position proceed as follows: while both

heads are still on w and 3??;7 = S(HZ)’ repeat: erase S(H,) and S(H

1) 2)
and then move Hl to the next unbarred symbol to its right and H2 to the

next barred symbol to its right.

3. What is Teft when no further erasures or moves can be made is

REDUCTZ(W).

When the alphabet I is understood or irrelevant, we will abbre-
viate REDUCTZ as REDUCT. It will be convenient to define a mapping
TOUQ39 in a similar fashion, except moving from right to left. Both
mappings are extended to languages: for L c (ZuZI)* REDUCT(L) =
{REDUCT(w) : we L}. It should be noted that

REDUCT !

A) = TDUGBQ; () =L

23
where LZ is the complete twin shuffle over 1 defined in [2].

The operation REDUCT is a rather powerful one as is indicated by
the following result: for any recursively enumerable set KcT* there
exists an alphabet A > I and a regular set R = (AuA)* such that

K= REDUCTA(R)er*.



For the proof of this fact, the reader is referred to Theorem IV of
[3] and comments following. As a result REDUCT(R) is in general not
recursive for regular R. However, we will show that it is decidable
whether or not REDUCT(R) is finite for regular R.

We begin with a few definitions and lemmas.

Definition: Let A =<Q,%,68,q; ,F> be a finite automaton which

in
accepts a nonempty set R <Z*. For each ordered pair <p,q>eQxQ we

define the set qu = {w==a1...an:r121, a; el for 1 <i<n,d8(p,w) =q

and, for all 1 <1 < 3j <n, S(psal...ai) # é(p,alg..aj)}.

The core of A, denoted CA’ is defined by
C, = D .
A k") 954
gefF

The set of accessed states of A, denoted QO’ is defined by QO = {g:

w, and &(q

there exists a w € R, such that w = W,

in’wl) = qJ.
Definition: Let A and I be alphabets such that & < A. Then
PRES : A*x»32* is defined as

PRESY (a) =a foracet
PRESY (a) = A otherwise.
First we have a combinatorial Temma.

Lemma I: Given x,y,zeI* with x,y = x, let d = GCD(|x|,|y|) and
kl = |yl/d, k, = Ix|/d. Then zx” = y® if and only if there exists a
nonnegative integer k and words o, 8eZ* such that xk1 =cx6,yk2:=6u

and z = B(uB)k.



Proof:

The "if" part is obvious.

For the "only if" part, we observe that since kall = }ykzl, if zx%=yY
then y*2 is a prefix of zx<1 so that zxKl= ykzwo for some wy with
‘woi = |z|. But then since zx“=y", Wy is a prefix of vy, Thus Wy
equals z and we have z x“1=y*2;.  Now if |z] s[xkll, then i : 7z x<1 =
Z\uz==yk22 which implies <M = w2 and yk2 = zw. letk =0, z =8,

w = a. We have our result. Otherwise if |z]|> lxkll, then 37 7K1 =
.Ykzzo xkl::yk2 z which implies that z = sz'kl and thus zoxw:=yw.

"Since Izol < |z|, a simple inductive argument establishes our claim [J
Now we have our main lTemma.

Lemma II: Let A=<0,3ul, S P F> accept Re(ZuZ)*

Then the following are equivalent:

(i) REDUCT(R) is finite.

(ii) For all qs:QO, w,eD i and w,eD

1 940 2 4q

1. TE@ESZ(WZ)(.= |PRES=(w,) |

ww —
and 2. PRESZ(WI) (PRESZ(WZ)) = PRESZ(W

1) (PRES=(w,))°,

(ii1) REDUCT(R) = REDUCT(CA).



Proof:
(i) - (i1)

Assume 3 qg;QO, wle:Dq and wzz:qu such that i1.2 fails. Then 3 K such

e
in
that our reduction machine stops before either head has reached the end of

K . . n
WIWZK' Let x = REDUCT(wlw2 ). Since qs:QO,23w3.\fn,w1w2 Wy e R. But

then REDUCT({w, wznw3 tnel}) = {wa“WB :nelN} which is infinite. Thus

REDUCT(R) 1is infinite. Assume 3qc¢ Q> W2£:qu such that ii.1 fails.

If K = ”}PRESZ (wp)| - [PREST ()| then K>0. Since g Qg3 Y, q N
.

3l 2
[REDUCT(W1 wznw3)[ > nk - le{ - [w3] again REDUCT({wlwanS : nelN}) is

: n
Wy such that vy n W1W2nW3EiR. But since for all n Wy Wy w

infinite.
(ii) = (iii)
If 1.2 succeeds then either PRES;(wl) is a prefix of PRESZ(wl) or vice versa.

Assume the former, without loss of generality. Then REDUCT(w,) & n*.

1)
Let z = REDUCT(wl), X = PRESZ(WZ) and y = PRESE{WZ)m 17.2 then reduces to

V]

ZX =y Ifii.1succeedsthen |x| = |y| and by Lemma I, 3 o, 6:ix=08,
Y=F8a and z = g (a B)K for some K. We have then: REDUCT(WI\NZ) =
REDUCT(REDUCT () ) w,) = REDUCT(8(a 8) w,) = (s a)Xs = 7 = REDUCT(w;) as a

simple computation verifies.

We demonstrate now that REDUCT(R) = REDUCT(CA). For any word
W e R-CA, let q be the first state which occurs twice while A is accepting
wW. Thus w = Wy Wy Wy where WIE:innq and WZiSqu for some Wis Wos Wy We
have then REDUCT(wvaZw3) = REDUCT(REDUCT(wlwz)M%) = REDUCT(REDUCT(wl)w3) =

REDUCT(w) = REDUCT(WO). Thus REDUCT(R) = REDUCT(C

(iii) = (1)

REDUCT(W1W3). Continuing in this manner, we will find WOEZCA such that
) NE

Obvious since CA is finite.



Theorem I: Let I be a finite alphabet and Tet R-c (ZuZ)* be a reqular

set. Then it is decidable whether or not REDUCTZ(R) is finite. 0

Proof:

The result follows directly from Lemma II. Given A accepting R,

we need only check whether or not the conditions of part (ii) of Lemma II

are satisfied for each triple <q,w1,w >, where g ¢ Q_, WoE Dq. q and
in

WZEfqu' That this can be done effectively for each of the finitely many

such triples is given by Lemma I. 0

Definition: We now introduce the cross product of two DGSM's.

1
and A2 = <:Q2,§I,A, 62, qinz’ F

If Al = <Q1, T, A, §1q1nl, F,>

>

2

then A1XA2 = <Q1xQ2,Z,A,5,<qin1,q1n2>,leF2>
where

S{<ag.a570a) = (<60 (a5,a), 6, (ay,2) >, 6, (q;,2) 5, (q5a

J
where 63 gives the new state, e the output.

Definition: The output of DGSM A on w will be denoted A(w), similarly for
any language, A(L) = {A(w) :wel}. The set accepted by A we denote DOM(A) .

A(DOM(A)) will be called TR(A) for translation, following [1]. For

simplicity, we assume that A(w) is defined whether or not w is accepted.

Theorem II: It is decidable whether or not two DGSMs Al and A2 are

equivalent on a regular set R g Z*.

Proof

A1 and A2 are equivalent on R iff REDUCT ({A1><A2)(R)) = {3}. Since

R' = (A1 xAZ)(R) is regular, we can use Lemma II to check if REDUCTZ(R')

is finite. If so we can go on to check if REDUCT (R') = {a}. 0
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For our next theorem, recall from [1] that a DGSM mapping M is

symmetric iff there is a reversed DGSM AR which reads from right to left,

has the same domain as M, and such that M(w) = AR(W) for all we DOM(M).

Given a DGSM A realizing M, AR is called a symmetric partner for A and
< A,/J{> is called a symmetric pair. A prefix bound on </\,AR > is a

number s such that:

VW= vy v, eDOM(A),“A(Vl)] ~(IAR(v1 V)| - iAR(vz)l) <s,

It was shown in [1] that such a bound exists for each symmetric pair.

Also in [1] we have that given & mapping M : £*sa*, AUG(M) : $5*$ - $a*$
is defined as AUG(M) ($w$) = $A(w)$ where $£zuAa.

Any DGSM mapping M : $5*$ - $a*$ where $£ 2 un is considered here
to be an augmented DGSM mapping, even if the corresponding mapping from

2*>A* is not a DGSM mapping.as in the mapping defined:

(EOR§ IR
Augmenting essentially provides endmarkers to let machines reading in
either direction know when they are reading the final letter of the input.
We consider augmented DGSM mappings because they constitute a natural
extension of the important class of DIL mappings (see [1]) and are
themselves special cases of mappings induced by sweeping and two way
automata with output (see [ 4]). As was pointed out in [ 1], the augmented
symmetric mappings form an interesting class of Tanguages between the
classes of DIL mappings and augmented DGSM mappings.

We now give a characterization of augmented symmetric DGSM mappings

using REDUCT. First we have two definitions and two simple Temmas.
Definition: For any DGSM A with state g, Tet Aq be A started in state q.

Definition: Two DGSM mappings Ml and M2 are defined to be almost equivalent

from the right iff there exists an integer K such that for any



W e DOM(Ml) n DOM(M?) there exist words u, v, x such that

Ml(w) = ux
Mz(w) = VX
with |ul, |v| = K.

The Teast such K, if it exists, is called the prefix divergence bound

for M1 and MZ'

Lemma III: Let Al and A2 be DGSM's realizing mappings M1 and M2 respectively.
Then M1 and M2 are almost equivalent from the right iff TDUGEQ(TR(AleZ))

is finite.

Proof:

For the "if" part we may take K larger than the Tength of the longest word in
ToUa3A(TR(AxA,) ) .

For the "only if" part we note that card(TOUUIA(TR(A,XA,))) < [z]ZK if

172
|z] >1 (otherwise it is less than K+1). 0

Lemma IV: Let Ml""’Mn be DGSM mappings such that any two mappings Mi
and M\j l1<i,j<n are almost equivalent from the right. Then there exists
a K such that for any w ;iE]‘ DOM(Mi) there exist words fups--su ) and x
such that V i,1 < sn,Mi(w) = UX and Iuil < K.

Proof:

Let K be the largest prefix divergence bound for any of the pairs <Mi M1>'
For any fixed w find i such that [Mi(w)i is maximal among the Mj(w)’s; :
Then either lMi(w)|<:K, in which case the result trivially follows, or all

the Mj(w)'s share a common suffix with Mi(w) of Tength = IMi(W)1"1<+1’

from which the result also follows, since IMi(w)i was maximal. 0

We may call K the prefix divergence bound for the set of mappings

We are now rezady to state and prove our theorem.



Theorem III: An augmented DGSM mapping M is symmetric iff for any DGSM A
realizing M and any states q; > qj of A, reachable from the initial state.
REDUCTR(TR(Ainqu)) is finite, i.e., the mappings induced by Aqi and qu
are almost equivalent from the right.
Proof:
Let M be an augmented symetric DGSM mapping with domain R induced by the
DGSM A = <Q,Z,A,6,qin,F>. We will prove that for every pair of states
Gis qj of A, reachable from the initial state,
TOUGBQZ(TR(Aqiquj)) is finite. To this aim, assume to the contrary that
for reachable states q; and qz; TDUGHHZ(TR(Aqleqz)) is infinite.

Since M is symmetric, we can find a reversed DGSM AR such that
<A,AR> is a symmetric pair. Let s be a prefix bound for <A,AR> on R.

We have then for all w=uve R,

| 181 - Gt - 1a

H A ] - JACuv) ]+ AR (V)| H -

(1.1) [} AR )] - 1A () ).

<s where g = 6s(qin

For i e {1,2} let w, be the shortest word such that 6s(q1n’wi) = Q.

Let p = max{|A(w,)|,]A(w,)]}. Choose v e DOM(A_ xA ) such that
L 2 " 4y

(1.2) ]TDUGHQZ((AqleqZ)(v)){ >2(s+p) + 1.

Let A (v)

i
O
O

—t
o

o
o

where k, m, n = 0 and c, ¢ nofor 1 <1 <m, di e forl <1 <n

and bi e % for 1 < i < k.



By (1.2) either m > s +p and (C1 rdl or n=0)

or n>s+p and (c1 xdl or n = 0).

Without loss of generality, assume the former holds. From (1.1) it

follows that 111AR(V)I -1Aq1(v)! <'s. Since ]Aql(v)l > s+ptk,

this implies that ]AR(V)] > p+k. Let AR(V) = ap...8ps where £ > p+k

and ai e for1<i <. If ¢ % d1 then either 3,41 # cl or ak+1 # dl'

= Cy implies that A(wlv) # AR(wlv) which is impossible

since A and AR are equal on R. Similarly, Ak+1 # d1 implies that

A(wzv) # AR(WZV). Thus we must have n = 0. However in this case
X

However, ak+1

p+k <]AR(V)] < |A wzv)!==§A(w2v)l <p+k. This contradiction establishes

the only if part of our proof.

For the other direction, let M be an augmented mapping induced by
the DGSM A = {Q, 1, A, 6,q1n, F} where all states are accessable and for
any pair of states q; and qj the mappiﬁgs induced by Aqi and qu are
almost equivalent from the right. We can construct a reversed DGSM for
the mapping M in a manner analogous to the construction of a deterministic
finite automaton to recognize the reverse of a language recognized by

a given deterministic finite automaton. While reading the input backwards,

we will keep track of the set of states of A which would Tead to an
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accepting state of A from the present position, reading the reverse of
what we have just read. We will also keep track of the outputs A would
have had, started in any of the states in this set. Actually, we will
output the common suffix of this set of "pcssible" outputs, retaining
only the remaining initial prefixes. Using Lemma IV, it is apparent that
we need only keep initial prefixes of length up to the size of the
largest prefix divergence bound for any set of mappings {Aqii...,Aqi }

n
n} c Q. Thus a reversed simulation of the mapping M

for {qil, NLE

can be carried out using the standard "buffer" technique. a

This characterization gives us immediately:

Theorem IV: It is decidable whether or-.not an augmented DGSM mapping A
is symmetric. If A is symmetric then a symmetric partner for A can be

effectively constructed.
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