RSSM/95

THE STATIC DETECTION OF
SYNCHRONIZATION ANOMALIES
IN HAL/S PROGRAMST

by
Guy Bristow
Department of Computer Science

University of Colorado at Boulder
Boulder, Colorado 80309

CU-CS-165-79 August, 1979

+This work was supported by
grant NSG 1476 from NASA
Langley Research Center.

THE STATIC DETECTION OF
SYNCHRONIZATION ANOMALIES
IN HAL/S PROGRAMST

by

Guy Bristow
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

CU-CS-165-79 August, 1979

+This work was supported by
grant NSG 1476 from NASA
Langley Research Center.

RSSM/95

iii

Bristow, Guy Neil Rowland (M.S., Computer Science)
The Static Detection of Synchronisation Anomalies in HAL/S Progranms

Thesis directed by Associate Professor William E. Riddle.

The introduction of concurrent languages has produced new
classes of programming errors not found in purely sequential
languages. One concurrent language, HAL/S, contains a wide
variety of inter-process synchronisation features, with few
restrictions on their use. Errors and potential errors can occur
in particularly subtle and unusual ways, making them hard to
avoid and hard to detect.

One approach to error detection is called anomaly
detection. An anomaly is any situation in a program which, it is
felt, represents a deviation from the developer's intent. In
the anomaly detection system, therefore, the developer is
presented with a list of anomalies which must be examined to
determine which ones represent genuine errors,

This thesis defines a number of anomalies in HAL/S that
arise directly from the synchronisation features in the language.
Subsequently, the design of a system is presented that statically
detects all such anomalies that are presént in an arbitrary HAL/S

program.

This abstract is approved as to form and comtent.

o S CLLL

Faculty member in charge of thesTs

iv

TABLE OF CONTENTS

CHAPTER PAGE
I. INTRODUCTION . .« v v v v v v v v v v e e v e e e e 1
| What is an anomaly? « . « v . v v . 2
Requirements of our system 3
Thesis layout . . « « v v ¢« v « v v v v 4 0w 3
IT. THE HAL/S LANGUAGE « v v v v v v v v v v . 5
General observations 6
Synchronisation in HAL/S 6
Synchronisation anomalies 12
ITI. GENERAL RESTRICTIONS © v v v v v « v v W . 15
RTE~clock time and process priorities 16
Branches, loops, and cycles 18
Non synchronisation statements and variables . . 19
Restrictions o o o o0 0 0L, 21
Complexity of the remaining problem 22
Iv. EARLIER METHODS © v v v v v v v v v v v W 23
Methods involving resource dependency cycles . . 23
Petri mets . . . « . ¢« + v v 0 0 0 e e e e e 26
V. THE INTER PROCESS PRECEDENCE GRAPH 40
Further simplification of the problem 40
Process flow graphs 45
LOOPS v v ¢ v v v e e e e e e e e e e e e e 46

Inter process precedence edges 48

CHAPTER PAGE
VI. EXECUTION SEQUENCE SETS . .+ v v v v v v v v v v v . 52
Execution sequence SetS « v . . o4 o« . . . 52
Generation of the execution sequence sets . . ., . 54
Spurious IPPE elimination 57
Taking terminates into account, 60
Properties of the execution sequence sets 61
VII. SYNCHRONTISATION ANOMALY DETECTION . ., 66
Infinite waits « vo 0. L, 66
Rescheduling a live process 69

Terminating, cancelling, or updating the priority

of a dead process00 70

Terminating an independent process . . . , . . . 71

Premature termination, 71

VIII. HOW GOOD IS THE SYSTEM? v v v v v « o . 72
Safe situations falsely identified as anomalous . 72

IX. FUTURE WORK . o « v v v v v v v v e v e v e e e 78
Improvements to the system 78

Extensions to the system « 82

Similar systems for other concurrent languages . 83

X. CONCLUSIONS & v v v v v v v v v v v e e e e e e 84
APPENDICES C e . . 87

A, PROOF OF NP-COMPLETENESS R ¢

B. PSEUDO-CODE FOR THE SYSTEM 89

vi

ACKNOWLEDGEMENTS

I would like to thank the other members of the HAL/S team -
William Riddle, Carol Drey, Brian Edwards, Lloyd Fosdick and John
Humbrecht - for their good ideas and suggestions, In particular,
some of section 6.3 and appendix C.2 was written by Carol Drey, and
many of the other ideas presented here are due to her. I would also
like to thank Lee Osterweil and Paul Zeiger for their help, and any
other members of the Computer Science Dept. who deserve thanks, or
feel they deserve thanks. Finally, I would 1like to thank SPL
International, London, England, for their financial help.

The work presented in this thesis was supported by NASA

Langley Research Centre, under grant NSG 1476.

CHAPTER I

INTRODUCTION

i

Much of the cost of producing software goes into debugging,
testing, and verifying the correctness of that software. To reduce
this cost, and to aid in the production of more reliable software,
several systems have been developed to help detect errors and
potential errors not normally checked for by compilers, and to
(subsequently) verify the correctness of programs.

Our background and experience with the DAVE system [l] has
shown that static data-flow analysis can be a powerful tool in the
detection of certain classes of errors in FORTRAN programs. It was
therefore logical for us to try and use similar techniques when we
attempted to develop a system for error detection in HAL/S programs.,

The HAL/S programming language [2], however, contains many
éowerful multi-processing features which encourage the use of
concurrency in almost every non trivial program. This introduces a
whole new class of programming errors not found in languages without
such features, and which can occur anywhere that the concurrency
features of HAL/S are used.

This thesis presents the work we have performed to develop a
system for the static detection of anomalies arising directly from
concurrency and the synchronisation comstructs in HAL/S programs. It
is intended to be wused in conjunction with data-flow analysis

techniques of the types found in DAVE.

1.1 WHAT IS AN ANOMALY?

Clearly the 1ideal tool for wuse in debugging and testing a
program would uncover all of the errors in that program. Errors can
be caused by the programmer having misunderstood what the program
should achieve. To uncover these errors requires a total knowledge
of how the program is intended to perform, and is not attempted by
our system. Alternatively, errors can be caused by programmer
‘mistakes”. Such errors represent genuine deviations from the
programmer’s intent, and it is in the detection of these errors that
we aim our system,

Deciding what represents an anomaly is not as easy as defining
what 1s an error. The errors we would like to detect are deviations
from the programmer’s intent, but without a complete knowledge of
that intent we cannot guarantee to detect all such errors. What we
can do, however, is to make various assumptions about the
programmer’s intent and to define any situations which violate these
assumptions as anomalous.

The first assumption is that the programmer intends the
program to be safe and reliable, and hence to contain no situations
having the potential to cause run~time errors. We therefore define
any situation having the potential to cause a run-time error as
anomalous. The second assumption is that the programmer intended to
write a ‘normal” program that obeys ‘good’ programming principles.
Accordingly we further define any situation representing a deviation
from normal or good programming practices as anomalous. This type of

anomaly 1is somewhat vague, and hence there is a very broad spectrum

of situations which are potentially anomalous to a greater or lesser

extent.

1.2 REQUIREMENTS OF OUR SYSTEM

Before we started our work on the design of an anomaly
detection system we initially established a number of properties we
felt our system should possess. Firstly, it should be immediately
applicable to the program under analysis, and not require the
preliminary production of some parallel representation of that
program. Secondly, since our system is intended to save time for the
program developers, it should be simple and fast to use. It should
not ‘require the wuser to insert a large amount of additional
information along with the program text. Thirdly, to be useful as a
program verification aid, it should reliably detect all of the
anomalies of the specified types in the program being analysed.
Fourthly, it should have reasonable computational properties, which
we have initially taken to mean polynomial time and space bounds.
?inally, for it to be a useful time saving tool, we would like to

maximise the percentage of reported anomalies that represent actual

error situations in the program.

1.3 THESIS LAYOUT

The next chapter gives an introduction to the HAL/S language
and the synchronisation facilities available in it. Chapter three
contains restrictions and simplifications we have imposed on the
analysis we can perform. Chapter four contains a brief look at our

earlier approaches to the system. Chapters five, six, and seven

present the final system we have designed. Chapter eight discusses
the quality of the results that our system produces. Chapter nine
outlines some future improvements that could be made to the system,
and alsoc other areas in which similar systems could be used.

Our work has been closely related to that of Taylor and
Osterweil [3], who have designed a system that 1is very similar 1in
capabilities and approach to our own. In addition, work is being
done by Reif [4] on the analysis of concurrent processes that utilise
different synchronisation constructs to those available in HAL/S.

Many references to background work appear in our earlier report [5].

CHAPTER II

THE HAL/S LANGUAGE

The HAL/S programming language was developed by Intermetrics
Inc. specifically for the production of flight software on the NASA
space shuttle program. It is a real-time control language, having
blocks of code (called programs and-tasks) which can be scheduled for
execution in a variety of different ways. These programs and tasks,
collectively referred to as processes, can run logically or actually
in parallel, and can communicate using several different methods.

The language contains a large number of different data Lypes

and provides many operations for them. In addition, it allows for
multi-dimensional arrays and tree-like structures. For a complete
definition of the language see the HAL/S language definition [2].

Our interest in HAL/S lies in the static detection of errors
énd potential errors that are not checked for by the HAL/S compiler.
In particular, this thesis focuses on those anomalies that arise
specifically from concurrency and the synchronisation operations in
programs, For a descriétion of some other anomalies and static
methods for their detection see e.g. [3] and [5].

Before entering a discussion of these anomalies we first give
an introduction to the program structures and synchronisation
constructs available in HAL/S. The other facilities and operations
available in HAL/S are not strictly relevant to this report and are

not discussed here.

2.1 GENERAL OBSERVATIONS

As mentioned, HAL/S contains facilities for running processes
in parallel. The run-time counterpart of a program in a language
without concurrency is called a program complex in HAL/S. A program
complex consists of an arbitrary number of object modules combined
together, each object module being the result of running the compiler
with a single compilation unit.

There are four types of object modules, namely program,
procedure, function, and compool modules. A program module is
independently executable and comes from compiling a single program
block. A program block in turn consists of a program, its associated
tasks, and the data, procedures, and functions shared by the program
and its tasks. Procedure and function modules come from compiling
independent procedures and functions and can be called from any of
the program modules. Compool modules contain shared data that is
common to all the program, procedure, and function modules in the
program complex.

One important point to note is that the scope rules in HAL/S

are such as to prevent any recursion.

2.2 SYNCHRONISATION IN HAL/S

2.2.1 THE REAL-TIME EXECUTIVE

At run-time the job of controlling the execution of all the
processes is handled by the Real-Time Executive, or RTE. The actual
details as to how the RTE operates vary from implementation to

implementation, but conceptually all RTEs behave alike.

The RTE maintains a process queue containing the current state
of all processes that have been scheduled (see 2.2.3), but have not
yet completed execution. For our purposes we consider that such
processes are in one of three possible states:

i) A process is “active’ if it is currently being executed. In a
multi-processor environment it may be possible for processes to run
actually in parallel, in which case more than one process may be
active at a given time,

ii) A process is “suspended” if it is ready to execute iIn every
respect, but is waiting for the availability of a processor. A
process which is either active or suspended is said to be “ready’ .
iii) A process is ‘stalled” if it is waiting for some (as yet)
unsatisfied condition (see 2.2.3 and 2.2.4).

Each process has a priority associated with it. These
priorities operate in the normal way in that if two or more processes
are ready, the one with the highest priority will become active,

In addition, the RTE maintains a clock recording elapsed time
tRTE-clock time) measured in units bearing an implementation

dependent relationship to actual time.

2,2.2 EVENT EXPRESSIONS

Associated with each process is a boolean variable, called a
process event, which has the same name as the process. This process
event is maintained by the RTE, having the value true if the process

is currently on the process queue (i.e. 1is active, suspended, or

stalled) and false otherwise.

In addition, there is a type of boolean variable called an
event variable; along with three operations (SET, RESET, and SIGNAL)
that can be performed on it. Event variables come in two different
forms - latched and unlatched.

A latched event variable is initialised to true or false by
its declaration. The execution of a set statement on a latched event
variable results in it being assigned the value true, regardless of
its previous value. Similarly, the execution of a reset statement on
a latched event variable results in it being assigned the value
false. The execution of a signal statement on a latched event
variable can be regarded as momentarily, but not permanently,
reversing the value of the variable.

An unlatched event variable is always initialised to the value
false. The operations set and reset are killegal on an unlatched
event variable. The execution of a signal statement on an unlatched
event variable can be regarded as momentarily setting 1its value to
true, and then back to false.

An event expression is any logical expression containing

process events, event variables, and the operators AND, OR, and NOT

in the normal way,

2.2.3 THE SCHEDULE, CLOSE, AND RETURN STATEMENTS

Processes are placed on the process queue by means of the
SCHEDULE statement. Thé statement allows for five optional ways to
modify the conditions of execution of the scheduled process:
i) The process may be scheduled such that it is initially stalled

either for a specified RTE~-clock time interval, or until a specified

RTE-clock time is reached, or until a specified event expression is
true, If no such condition is specified, or the condition is true at
the time of scheduling, the process is immediately placed in the
ready state.

ii) The process can be given any specified priority. If no
priority is specified, the priority of the scheduling process is
assumed .,

iii) The process can be specified to be dependent on the scheduling
process (i.e. the process executing the schedule statement) . In
this case the scheduled process camnot remain on the process queue
after the scheduling process has been removed. Note that all
processes are ultimately dependent on their enclosing program.

iv) The process can be scheduled such that it will execute
cyclically (i.e. it will repeat its execution) until some halting
criterion is reached. It can be specified that the process will
start each cycle as soon as the previous cycle has finished; or it
can be specified that the process will enter the stalled state for a
éiven RTE-clock time between each cycle; or it can be specified that
the start of each cycle will occur at a given RTE-clock time
interval. If there is no repetition specified the process will be
executed at most once.

v) The process can be given a terminating criterion consisting of
the satisfying of a specified event expression or the reaching of a
specified RTE-clock time. If this criterion is satisfied at schedule
time the process is not executed at all. Otherwise, for a process
scheduled cyclically, the criterion is checked at the end of each

cycle, and the process is removed from the process queue 1if the

10

criterion is satisfied.

The main program is not initiated by a schedule statement and
must be added to the process queue in some other, implementation
dependent, way.,

A process ﬁormally completes a cycle by the exeéution of a
CLOSE statement. In addition, RETURN statements can appear anywhere
in the process, and are treated as branches to the close statement.
1f the process was not scheduled cyclically, or if its completion
criterion 1is satisfied, the process will complete its execution when
the close statement is executed. If the process has any dependent
sons on the process queue at this point the process is stalled until
all dependent sons have completed execution and been removed from the

process queue before it too is removed. Otherwise, the process is

immediately removed from the process queue.

2.2.4 OTHER SYNCHRONISATION STATEMENTS

A process can cancel either itself, or a specified list of
dependent processes, by executing a CANCEL statement. If a process
is cancelled before it has become active it is removed from the
process queue immediately (i.e. it does not execute at all),
Otherwise, a cancelled process that was scheduled cyclically will
complete execution at the end of its current cycle.

The TERMINATE statement is used to immediately remove from the
process queue either the process executing the statement or a
specified 1list of dependent processes. When a process is terminated
in this way, all of its dependent sons currently on the process queue

are also immediately terminated, and removed from the process queue

11

in the same way.

A process can, at any time, update its own or any other
process’s priority by executing an UPDATE PRIORITY statement.

A process may place itself in the stalled state by executing a
WAIT statement with a specified wait completion criterionm. This
criterion can be either the satisfying of a specified event
expression or the reaching of a specified RTE-clock time. As soon as
this criterion is satisfied the process is placed back in the ready
state.

One other synchronisation construct 1is available in HAL/S,
namely the UPDATE BLOCK. It is wused to provide a controlled
environment for accessing data shared by two or more processes. A
variable can be declared lockéd, in which case it can only be
accessed from within an update block. Should two or more processes
attempt to enter update blocks containing assignment statements on
the same locked variable, the first process to eanter its update block
completes execution of the block before the other process can enter
its own block. Update blocks containing only references to the same
shared locked variables can be executed in parallel. If one process
only requires to reference a locked variable while another may
attempt to assign to that variable, some safe overlapping may be
allowed depending on the particular implementation. The only
synchronisation statements allowed inside update blocks are signal,

set, and reset statements.

12

2.3 SYNCHRONISATION ANOMALIES

Deciding just which situations are anomalous 1is an open
question, We have possibly been somewhat cautious in our decisions
and have identified a list of nine situations, arising directly from
the synchronisation constructs in HAL/S, which we regard as
anomalous. We do not claim that this list is exhaustive, 1

Of these nine anomalous situations, eight would potentially
cause run-time errors. The ninth - premature termination of a
process - does not itself cause a run~-time error, but it may be

indicative of a programming error.

i) Potentially infinite wait.

A run-time error results if, at any time, every process on the
(non empty) process queue 1is stalled while waiting for conditions
other than RTE-clock time conditions, Clearly in this situation,
none of the processes can become active unless an event change occurs
(i.e. the wvalue of a process event or event variable changes), and
no event changes can occur because no processes can execute, We
extend this anomaly category further to include any situations in
which a process or processes can be stalled for a potentially
infinite amount of time, This anomaly category includes all
potential deadlocks, where two or more processes are cyclically
waiting for each other.

ii) Rescheduling a “live’ process,

It is illegal in HAL/S for a schedule statement to be executed

on a process that 1is still on the process queue from a previous

schedule.

13

iii) A process cycle time is too short.

A run-time error results if a process that 1is scheduled
cyclically is due to start a new cycle before the previous cycle has
completed. This can only occur if the process was scheduled such
that the starts of consecutive cycles are at specified RTE~-clock time
intervals.

iv) Cancelling a “dead” process.

A run-time error results if a cancel statement is executed on
a process that is not on the process queue. This, and the next two
anomalies, are not serious, and the actiom of the RTE may be to
ignore errors of this type.

v) Updating the priority of a “dead’ process.

A run-time error results if an update priority statement 1is
executed on a process not on the process queue.

vi) Terminating a “dead’ process.

A run-time error results if a terminate statement is executed
on a process not on the process queue.

vii) Illegal priority.

A run~time error results if the priority of a process is given
as, or updated to, a value that is inconsistent with the priority
numbering scheme established for the particular implementation.

viii) Terminating an independent process,

It is illegal in HAL/S to terminate a process unless that
process is a dependent son of the terminating process (the process

executing the terminate statement).

L4

ix) Premature termination.

Although it does not violate the rules of HAL/S, we regard the
termination of a process prior to its normal completion as an anomaly
and a potential programming error. For instance, if a process that
updates a database is terminated prematurely, the database may be

left in an inconsistent state.

15

CHAPTER III

GENERAL RESTRICTIONS

We believe that in the generél case the problem of determining
whether a given FAL/S program contains errors of the types specified
in 2.3 1is wundecidable, although we have not proved thisLHCiven ‘a
knowledge of thé particular system on which the program will run the
pr&blem becomes decidable, because of the finite (but large) number
of states in the system, but it is for all practical purposes
computationally infeasible. Furthermore, to perform a strict
analysis of a particular program requires a complete knowledge of the
implementation and enviromment in which that program will run.
Reasons for this will become apparent in the next section.

As stated, our aim has been to produce a system which is
simple to use, has ‘reasonable’ computational time and space bounds,
énd will reliably detect the anomalies in a program., The first two
of these requirements have forced us to accept, in the light of the
complexity of the problem, that our system can only find an
approximation to the actual set of the specified anomalies in a
particular program. The final requirement implies that the anomalies
we identify will include all of the actual anomalies, but must also
inevitably include some situations we identify as anomalous which are

in fact perfectly safe.

16

Accordingly, we decided to apply our algorithms to a
simplification of the HAL/S program under analysis. The

simplificatious are as follows.

3.1 RTE-CLOCK TIME AND PROCESS PRIORITIES

To accurately take account of the relative order of execution
of the statements in different processes requires a total knowledge
of all factors that can affect that order. These factors would
include:

The system configuration,

One would need to know how many processors are available to the
program, the relative execution speeds and system overheads of these
processors, other independent processes which may be sharing the
processors, relative speed of data transfer between and among
processors and devices etc.

Implementation details,

e.g., which processes will run on which processors, the range of
iegal priorities, methods of storing and accessing shared data,
relative speed of each RTE operation, correspondence of RTE-clock
time to relative execution speeds etc.

Outside effects.

e.g., expected time that inputs will arrive from independently
running devices, anticipated value ranges for key 1input variables
(where, for instance, an assigned priority or the number of cycles

around a loop depend on an input value) etc.

L7

One of the consequences of our decision to make the system
simple to use is that we cannot ask the user to provide such a large
amount of information. Therefore, we have decided to ignore process
priorities and RTE-clock times for the purposes of the analysis.

Since we ignore process priorities, we assume that, at any
given time, any of the ready processes could be active, and we check
for anomalies in all the resulting execution sequences. We define an
execution sequence as the ordered set of statements that would be
executed during a run of the program. It 1is assumed that where
sections of two or more processes execute concurrently, there will
still be an order in time that can be applied to the execution of the
individual statements; i.e., at some (possibly atomic) level no two
actions can occur simultaneously. Clearly, among the execution
sequences that we check for anomalies are all these that could
actually occur when the program is run, so we detect, among others,
the anomalies present in those sequences.

As we ignore RTE-clock time, we must ignore all situations in
thch a process is stalled while waiting for an RTE~clock time
condition. In such situations we assume the process never leaves the
ready state. The effect of such a wait is to force the continuing
execution of other concurrent processes to occur between the
statement preceding the wait and the statement following the wait.
Since we check for anomalies in all execution sequences, clearly we
check all sequences in which other concurrent processes would execute
for arbitrary amounts of time between those two statements anyway.

Therefore we find all anomalies that would be caused by the wait.

18

One effect of ignoring RTE-clock time is that we cannot detect
anomalies of the type where a process is due to start a new cycle
before the previocus cycle has been completed. However, we feel that
all such situations have the potential for error anyway (see 8.1),
and we therefore give a warning message wherever such a situation
appears.

In summary, the only forced execution ordering that we take
account of in our analysis is where such an ordering is forced by the
synchronisation statements, other than those involving RTE-clock time

and process priorities.

3.2 BRANCHES, LOOPS, AND CYCLES

In many cases the choice of which path is taken at a
conditional branch can depend upon input values, RTE-clock times, the
execution sequence to date, etc. We have already accepted that this
information will not in general be available, and so there will be
situations where it 1is not possible to tell which branches can be
taken.

Accordingly, we have decided to assume that, where a branch
occurs 1in a process, any of the paths can be taken at that branch.
We check for anomalies in all combinations of paths through all the
processes in the progfam under analysis.

For the same reasons it is not possible, in general, to
calculate how many times a particular loop in a process will be
executed. We therefore assume that each loop can be executed any
arbitrary number of times (greater than or equal to one for a loop

that must be executed at least once, and greater than or equal to

19

zero otherwise).

Similarly, for a process that is scheduled with a repeat
clause it 1is not possible, in general, to determine how many times
that process will be executed. Again, we agsume that any such
process scheduled cyclically can be executed any arbitrary number of
times greater than or equal to zero.

In summary, we assume that any path through each process 1is
possible, where a path consists of making an arbitrary choice at each
conditional branch, combined with an arbitrary finite (but unbounded)
choice, at each loop encountered in that path, for the number of
cycles around that loop. We must check for anomalies in all possible
combinations of paths through the processes in the program under
analyéis. Clearly, some of these combinations are those that could
oceur when the program runs, so we detect anomalies in those

combinations.

3.3 NON SYNCHRONISATION STATEMENTS AND VARIABLES

In general, it 1is not possible to determine the value of an
arbitrary expression, since this may depend on input values etc. We
therefore have to accept that we cannot always determine whether the
priority assigned to a process 1is valid in a particular HAL/S
implementation. We cannot therefore detect anomalies of the type
where a priority is given as, or updated to, an illegal value.

The remaining anomalies that we are interested in arise
directly from the synchronisation statements in the program being
considered. The‘only effect that the other statements in the program

can have on our analysis is in determining which paths can be taken

20

through each process (and hence which synchronisation statements can
be executed) and when each point in the paths can be reached (and
hence the possible orders that those statements can be executed).

However, we have already assumed that all paths through a
process, and all execution sequences of the statements in concurrent
processes, are possible. The non synchronisation statements do not
therefore affect the analysis except in determining where branches
and loops occur, and where paths can join, within processes. We
therefore ignore all non synchronisation statements and variables and
only retain this necessary information.

Extending this still further, we can 1ignore much of the
information in the synchronisation statements themselves. For the
schedule statement, we ignore any priority clause, any RTE-clock time
conditions, and any terminating condition for a process scheduled
cyclically (since we assume the process can execute any arbitrary
number of times). The only information that needs to be retained 1is:

- the satisfying condition for a process scheduled such that it
immediately enters the stalled state waiting for a specified event
expression to become true.

- whether or not the scheduled process 1is dependent on the
scheduling process.

- whether the process will cycle or not.

- whether the process has a terminating criterion specified. If
so, it 1is assumed that the criterion can be true at the time the
schedule statement is executed, and hence that the process may not

execute even once,

21

Similarly, we can ignore any waits for RTE-clock time
conditions, any update blocks, any cancel statements, and any update
priority statements. In the latter two cases, it is necessary to
remember where the statements occur, to check for the possibility of

cancelling or updating the priority of a dead process.

3.4 RESTRICTIONS

There are two language features present in HAL/S which our
analysis system cannot satisfactorily deal with., Such features cause
similar problems in all static data~flow analysis systems for
languages containing them, These features are arrays (and for our
analysis, this implies arrays of event variables) and name variables.

The problem with arrays stems from the fact it 1is not
possible, 1in general, to determine the value of an arbitrary
expression. An array subscript in HAL/S can be any expression
evaluating to an integer, and hence it is not always possible to
determine, at an array reference, which element of the array is being
referenced.

The problem is very similar with name variables. A name
variable has a particular type associated with it and can be made
equivalent to any variable of that particular type. A reference to a
name variable implies a reference to the wvariable it 1is currently
equivalent to. In addition to the normal data types in HAL/S, name
variables can also be of types PROGRAM, TASK, PROCEDURE or FUNCTION.
It is not always possible to determine, at a particular statement

containing a reference to a name variable, which wvariable, (or

program, task, procedure or function) that name variable is

22

equivalent to at that point.

This thesis does not address the issue of name variables and
event variable arrays. The current analysis ignores all occurences
of such features in the program under analysis. The system therefore
does not guarantee to find all anomalies of the specified types in
programs containing arrays of event variables or name variables of

types event variable, program, task, procedure, and function.

3.5 COMPLEXITY OF THE REMAINING PROBLEM

Given the restrictions and simplifications presented earlier
in this chapter, the remaining problem we are tackling is at least
well defined.

However, the problem is still far from simple. Appendix A
contains a proof that the decidability of whether a particular
program (containing only a small subset of the language features
possible in the general remaining problem) contains an anomaly of the
type where a process can be rescheduled while still on the process
dueu;, is at least as hard as an NP-complete problem. The general
remaining problem, containing as it does the potential for loops
within processes in an unspecified environment, may well prove to be

undecidable. We can still only hope to be able to find an

approximation even to the anomalies present 1in the simplified

problem.

23

CHAPTER 1V

EARLIER METHODS

In our quest for a satisfactory method for the detection of
synchronisation anomalies (and in particular, potential deadlocks) in
HAL/S programs, we considered several methods already in existance,.
These were ultimately rejected for various reasons, but it is useful
to discuss a couple of them briefly at this point. This may help to
save time for anyone following up on the work presented here. It
will serve as a useful introduction to the problems involved in
analysing HAL/S programs, even when they are simplified as in chapter
three. Finally, other concurrent languages may perform
synchronisation in different, more restrictive, ways that bypass
these problems, and a variation of one of the methods presented here

may be ideally suited to performing analysis on such a languages.

4.1 METHODS INVOLVING RESOURCE DEPENDENCY CYCLES

There have been several papers presenting methods for
detecting potential deadlocks 1involving system resources. Cne
example of such a deadlock would be if process Pl holds resource RI
while attempting to acquire resource R2, and at the same time process
P2 holds resource R2 while attempting to acquire resource Rl.

Clearly neither process can ever progress.

24

Our early efforts to develop a HAL/S analyser using available
methods for the detection of this type of deadlock were based on the
paper by Saxena [6]. The basic principle behind his algorithms is to
produce a graphical representation of possible resource dependencies.
The representation contains a node for each system resource, with a
directed edge from one node to another if any process can hold the
first resource while attempting to acquire the second. The directed
edges are inserted by an examination of each process to determine the
possible orders of acquires and releases within that process.
Potential deadlocks show up as particular kinds of cycles in the
graph, (Note: the above 1is a considerable simplification of the
actual method).

In this system, a process will be stalled only when it
attempts to acquire a resource currently held by another process. To
apply it to HAL/S, therefore, requires somehow equating waits with
acquires, which also involves equating schedules, closes, sets, and
resets with acquires and releases, and equating process events and
event variables with system resources.

We found that we could satisfactorily produce such an equation
to deal with process events and their corresponding operations -
schedules, closes, and waits involving process events only. Each
process event is simulated by two system resources, one corresponding
to the process event having the value true, and one corresponding to
it having the value false. A schedule results in the resource
corresponding to the process event having the value true being
released, and the resource corresponding to the process event having

the value false being acquired. A close or return results in the

25

reverse operations, A wait for (NOT) a process event results in an
acquire followed immediately by a release on the resource
corresponding to a value of true (false) for the process event. By
introducing some extra resources we could satisfactorily treat wait
expressions involving ANDs and ORs, and take account of the fact that
a process will not start executing until after it has been scheduled.
However, we could not satisfactorily take account of
terminates in this simulation, and we found insurmountable problems
when we attempted to extend it to take account of event variables and
the operations on them. The main problems were as follows:
i) Event variables cannot conveniently be equated to static
resources. For a static resource, the number of releases on that
resource must ultimately equal the number of acquires, and there can
never have been more releases than acquires. In HAL/S, however,
there is no restriction on the relative numbers of sets and resets
that can be performed on a particular event variable.
ii) One of the restrictions for the use of Saxena’s algorithms is
£hat a process that acquires a resource must be the omne to release
that resource. In HAL/S, any process can perform a reset on an event
variable after there has been a set on that variable.
iii) A further restriction with Saxena’s algorithms is that, where
a loop exists in a process, the resources held by the process at the
end of each iteration of the loop must be the same as those held by
the process when the loop was first entered. This cannot be applied
to event variables in HAL/S.

iv) Detecting other types of anomalies is not possible.

26

However, the speed of the algorithms is high and the amount of
processing is low, which should make them a definite consideration

for other languages.
4.2 PETRI NETS

A Petri net is a model of information flow particularly useful
for modeling computer systems having actual or logical concurrency.
It is usually represented pictorially in the form of a graph, as
here. The graph itself models the static properties of the system,
and contains two types of nodes -~ circles (called places) and bars
(called transitions). These places and transitions are connected by
directed arcs, each arc going either from a place to a transition, or
from a transition to a place.

In addition to the static properties resulting from the
topology of the graph, Petri nets have dynamic properties resulting
from “executing’ the graph. For this purpose, the Petri net has a
number of markers (called tokens) which reside in places, and which
are created and destroyed during the execution of the net according
to a fixed set of rules. These rules are as follows:

i) If all the input places at a transition (i.e. places having
an arc going into the tramsition) have at least one token, that
transition is ‘enabled’, and can fire.

ii) When a transition fires, one token is removed from each input
place, and one token is added to each output place (i.e. a place
with an arc coming from the transition).

iii) The firing of a transition is instantaneous; i.e. there is an

order to the firings, and no two firings can occur simultaneously.

27

iv) 1f, at any time, more than one transition is enabled, an
arbitrary choice is made as to which of the enabled transitions
fires,.

v) The Petri net will usually have an initial configuration of
markers. An execution of the net consists of repeatedly firing
enabled transitions until there are no remaining enabled transitions.

The above represents a considerable simplification. For more
information see e.g. Peterson [7].

We found that we could conveniently simulate all the
synchronisation statements in HAL/S with Petri net structures.

Each process has a structure somewhat resembling a flowgraph,
with a transition (or transitions) for each statement, and a place
before each statement representing flow of control. At any given
time, a process which is on the process queue has a token in exactly
one of its flow of control places corresponding to the current
position of the flow of comtrol. A process which is not on the
process queue has no such token. A transition is enabled when a
token appears in the place before it, and when a transition fires
(representing the execution of a statement) a token appears in the
place before the transition representing the next statement that
would ‘be executed.

Each process event and event variable is represented by two
places, corresponding to the two possible values (true and false) for
the variable. At any given time, there is a token in one of the two
places for each variable giving the current value of the variable.
Initially tokens are inserted in the place representing a value of

true for the process event of the main program, 1in the place

28

representing a value of false for all other process events, and in
one of the two places for each event variable representing the
initial value of that event variable.

The termination of a process results in the token for the
corresponding process event being moved to the place representing a
value of false. Should this occur before the normal completion of
the process, the process does not execute any more instructions and
1s immediately removed from the process queue. To account for this,
each transition (or transitions) representing a statement in the
process can only fire as long as there 1is a token 1in the place
representing a value of true for the process event of that process,
Otherwise the flow of control token is removed. An example of this
appears in figure 1. Such a construct is present at each statement,
but has been left out of figures 2-12 for ease of understanding. The
termination of a process is thus simulated by moving the marker
representing the value of the process event from the place
representing the value true to the place representing the value
false. (see figure 2).

A branch in a process is represented by a branch construct, as
in figure 3. A join of paths is simply represented by having more
than one arc coming into the place before the statement where the
join occurs. A loop is represented by a branch and join, the exact
form of which depends on whether the loop must be executed at least
once or not (see figures 4 and S).

The different synchronisation statements each have different
constructs, as shown in figures 6-12. For wvarious of these

statements, there are places in the constructs representing errors in

29

place before
the statement

places representing
the two possible

» values for the
process event
for the process
executing the
statement

transition
representing
the statement

place after
the statement

PETRI NET MODEL OF THE STRUCTURE THAT APPEARS AT FACH HAL/S

STATEMENT TO TAKE ACCOUNT OF PREMATURE TERMINATIONS

A. Process has not been terminated, and statement is executed
as normal.

B. Process has been terminated, so flow~of-control marker is
removed.

Figure 1.

30

places giving
the two
possible values
for the process
event of the
process being
terminated

error

PETRI NET MODEL OF THE TERMINATE STATEMENT,

A. Process being terminated is active.

B. Process being terminated is not active.

Figure 2.

left path

PETRI NET MODEL OF A TWO WAY BRANCH.

place before
the branch

<%> right path

|
|
o O

A. Left hand path is taken.

B. Right hand path is taken.

Figure 3.

31

// | \
first place {
in loop |

- e aen we
.

last placg/”
in loop

J::) first place

after loop

PETRI NET MODEL OF A LOOP THAT NEED NOT BE EXECUTED EVEN ONCF

Figure 4.

32

first place <TL

in loop

last place
in loop

first place
after loop

PETRI NET MODEL OF A LOOP THAT MUST BE EXECUTED AT LEAST ONCE

figure 5.

33

P

ERROR / /Q

3_/ >

<::f////////// place before the next
statement in the

first place in the scheduling process
scheduled process

PETRI NET MODEL OF THE SCHEDULE STATEMENT

A,

34

places
representing

the two

possible values
for the process
event of the
scheduled process

B. The scheduled process was already active at the time of scheduling

Figure 6 .

35

places representing
the two possible
values for the
event variable
being set (reset)

PETRI NET MODEL OF THE SET (RESET) STATEMENT,

A. Event variable was “true’ (“false’) prior to the set (reset).

B. Event variable was “false” (“true’) prior to the set (reset).

Figure 7.

true

N

PETRI NET MODEL OF THE CLOSE STATEMENT

Figure 8.

36

places representing
the two possible
values for the

process event of
the closing
process,

37

- I e N =
’ //// e E ‘) true (Mj places representing

>
T the two possible
3 S o values for the
event variables or

“*-—--~*“"’x/////ﬂ) false <:> process events.

PETRI NET MODEL OF THE STATEMENT “WAIT FOR A AND B’

Figure 9.

th%m““‘“%wumeﬁwm
true /;O
\/A______,{///

\ ~
/ O faze O

PETRI NET MODEL OF THE STATEMENT “WAIT FOR A OR B’

Figure 10.

38

values for
the process
event of the
cancelled
process

error

PETRI NET MODEL OF THE CANCEL STATEMENT

Figure 11.

values for
the process
event for
the process
having its
priority
updated

PETRI NET MODEL OF THE UPDATE PRIORITY STATEMENT

Figure 12.

the program. When a token appears in such a place, this signifies
that a run-time error would have occured in the HAL/S program. For
anomalies other than deadlock, therefore, determining whether the
program contains éuch anomalies reduces to determining whether the
corresponding error places are reachable, Deadlock 1is more
complicated.

One important point to note about the Petri net model of a
HAL/S program is that such a net is l-bounded; i.e. never more than
one token can reside in a single place at a time. This is important
from complexity considerations. Initially a token is placed in the
first flow of control place for the main program, corresponding to
the main program being placed on the process queue by some means
other than the execution of a schedule statement.

The reasons why this line of investigation was subsequently
rejected are two-fold. Firstly, the algorithms for detecting the
anomalies we are interested in are at least exponential in their
time~bounds, (Reachability for a l-bounded net is exponential, and
aeadlock may be even worse). Secondly, to the best of our knowledge,
efficient approximation algorithms are not currently available for
deadlock and reachability, which would guarantee to find a small
superset of all such instances,

However, analysis of HAL/S programs by modeling with Petri
nets should provide useful information when more is known about the
properties of Petri nets. This line of investigation may prove

useful in the future.

40

CHAPTER V

THE INTER PROCESS PRECEDENCE GRAPH

The system that we finally developed for anomaly detection
uses a graphical representation of HAL/S programs that seems more
amenable to analysis than‘ the Petri net representation. Our
representation, which we <call an Inter Process Precedence Graph
(IPPG), contains information about the possible paths through each
process, in addition to information about forced and possible

orderings of the individual statements in different processes.

5.1 . FURTHER SIMPLIFICATION OF THE PROBLEM

The system performs its analysis on a further simplification
of HAL/S containing only five types of synchronisation statements.
These are SCHEDULE (with no conditions on the execution of the
écheduled process), CLOSE (without the need to wait for the
completion of dependent processes), SET, RESET, and WAILT. In
addition, it allows for statements which cause run-time errors if
executed at the wrong time, but which otherwise do not affect the
analysis. These are CANCEL, UPDATE PRIORITY, and TERMINATE (see viii
below).

We have therefore produced approximate encodings for the other
synchronisation constructs and facilities, which preserve the
anomaiies in the program under analysis, and which utilise only

branches and the five remaining types of statements. Note that in

41

order to prove that the anomalies in the original program are
preserved by the encoding, it is only necessary to prove that the
encoding allows for execution sequences that have the same effect as
the execution sequences in the unencoded program.

i) Re turn.

A return statement in a process is treated as a branch to the
close statement, Clearly, among the possible resulting execution
sequences are all those where the close 1is executed immediately
following the execution of the return statement, as actually occurs
when the program is executed. Thus anomalies are preserved.

ii) Signal on an unlatched event variable.

This is encoded as a set followed immediately by a reset on an
latched event variable having the same name as the unlatched event
variable. Clearly, among the possible execution sequences that
result from this are all those where the reset occurs immediately
following the completion of any outstanding waits for a value of true
for the event wvariable, as would actually occur during normal
éxecution of the signal statement. Thus anomalies are preserved in
this encoding. Note that a wait for a value of false for the event
variable is redundant, since the value will be false at all times
except for the (infinitessimally short) time that the varaiable will
be true during the execution of a signal statement on it.
Accordingly, any such\ terms that appear in a wait expression are

ignored.

42

iii) Signal on a latched event variable.

0

This is also encoded using a set and a reset, with the order
of the two operations depending upon the current value of the event

variable. The encoding of “SIGNAL EV’ is therefore as follows:

IF EV
THEN DO
RESET EV;
SET EV;
END;
ELSE DO
SET EV;
RESET EV;
END;

Among the possible execution sequences are all those where the
correct path is taken. The discussion for 1ii above applies here
also, to 1imply that on those execution sequences where the correct
path is taken, anomalies are preserved.

To avoid the addition of anomalies not present in the actual
HAL/S program under analysis, an additional step is taken for signal
statements during the construction of the inter process precedence
graph (see 5.4 and 8.1).

iv) Scheduling a process to immediately enter the stalled state.

Where such a situation occurs, with the criterion for the
removal of the scheduled process from the stalled state being the
satisfying of a specified event expression, the scheduled process has
a wait for that event expression inserted as its first statement.
Among the possible resulting execution sequences are all those where
the wait 1is reached, and hence the process is stalled, immediately
following the execution of the schedule statement, as would actually
occur during execution of the program. Therefore, anomalies are

preserved.

43

V) Scheduling a process to execute cyclically.

Where a process can be scheduled to execute cyclically, that
process has a conditionmal branch inserted immediately before its
close statement, going to the first statement in the process
(excluding any wait inserted for iv above). With the insertion of
this branch, the body of the process can be - executed any arbitrary
number of times following the completion of any initial stall
condition, and prior to the removal of the process from the process
queue. This is exactly what occurs during execution of the program,
so anomalies are preserved. An important point to note is that the
final graphical representation of the HAL/S program contains a
difﬁerent representation of a process for each instance of that
process being scheduled. Each such representation is individually
tailored to reflect the particular scheduling conditions for the
instance of the process that it represents. This also applies for iv
above,

vi) A process scheduled with a terminating criterion.

In such situations we assume that the termination criterion
may be satisfiedkat the time of scheduling, and hence that the
process may not be executed at all. We therefore insert a
conditional branch around the schedule statement in the scheduling
process, to reflect that the sphedule\statement may have no effect at
all. Clearly, this will preserve anomalies.

vii) Close.
The closing of a process involves two distinct operatiouns,

namely waiting for the completion of any dependent sons still on the

process queue, followed by the removal of the closing process itself

"-

44

from the process queue. A close statement is therefore encoded as a
wait for the completion of all dependents followed by a simple close
involving no dependents. Among the possible execution sequences are
all those where the simple close is reached, and hence the process is
removed from the process queue, immediately following the completion
of the last remaining dependent son. This is exactly what happens
during execution of the program, and so anomalies are preserved.
viii) Terminate.

There are two aspects to a terminate statement that are taken
into consideration by the analysis system. The first of these 1is
that a process which is prematurely terminated is immediately removed
from the process queue, along with all dependent sons, grandsons,
etc. These terminated processes do not complete execution, and hence
contain statements which are normally executed, but in this case are
not executed. Accordingly, during the building of the IPPG, wherever
a terminate statement is encountered, all processes that can be
terminated by that statement are considered, and the earliest point
in the execution of each such process at which the termination could
occur is determined. From this point onwards within the process, a
conditional branch is inserted before each statement in the process
going to the close statement. This indicates that the process may be
terminated at any time following this earliest point, and that at
such a time the process is immediately removed from the process queue
without executing any further statements. Among the resulting
execution sequences are all those where each process which is
prematurely terminated reaches an arbitrary point in its execution

following the earliest point at which the termination can occur,

45

branches to the close statement, and is immediately removed from the
process queue. This simulates exactly what happens during execution
of the terminate statement, and so anomalies are preserved.

The second aspect that the analysis takes account of is the
time at thch the terminate statement can execute, 1f the
process(es) being terminated has(have) already completed execution,
this represents a run-time error, and hence an anomaly. If not, this
represents a premature termination, which 1is also an anomaly.
Accordingly, the terminate statement is left in the process but its

only effect on the analysis 1is in the determination of such

anomalies.

5.2 PROCESS FLOW GRAPHS

The information about possible execution paths through each of
the processes is stored graphically in the form of proéess
flowgraphs, one flowgraph for each process. A flowgraph is a
directed graph, whose nodes represent statements in the process, and
whose edges (called Flow Of Control Edges, or FOCEs) represent direct
flow of control paths from one statement to another.

Each process flowgraph has a single entry node (a node with no
incoming FOCEs) and a single exit node (a node with no outgoing
FOCEs) . The entry node represents the first action the process
performs when scheduled, and the exit node represents the last action
performed before completion. Since return statements are encoded as
branches to the close statement, the only exit from the process can
be through the execution of the close statement, and hence this 1is

N

the exit node, In a process flowgraph, there are paths from the

46

entry node to all other nodes, and paths to the exit node from all
other nodes (unless the process contains an infinite loop).

The flowgraph for a particular process is derived from the
parse tree and symbol table for that process. It is then simplified
to contain only those nodes representing synchronisation statements
in the simplified encoding of that process*. An edge from one node
to another indicates that a flow of control path exists in which the
latter node is the first synchronisation statement in the process to
be executed after the former node. The information about how a
process is scheduled is not available when its flowgraph is built, so
insertion of any initial wait node, and any conditional branch
indicating that the process was scheduled cyclically, is left until
later (see 5.4).

The building of the original flowgraph for a process follows
standard procedures and is not discussed here. For details see e.g
(5} and ([8]. The reduction of the flowgraph to contain only
synchronisation statements uses a breadth-first search. At the same
ﬁime as this is happening, subroutines are inserted in-line, and

loops are transformed (see 5.3). The algorithms for this appear in

appendix B.l.

5.3 LOOPS

r———————

Loops in a process appear as strongly connected components in

the process’s flowgraph. Loops containing synchronisation statements

Note:From now on, the terms ‘node’ and ‘statement’ are used more or
less interchangably, avoiding repetition of phrases such as "the node

representing statement...." and '"the statement represented by....".

47

do currently present problems for our analysis. The problems stem
from the fact that situations can exist in which an error will only
occur 1f a particular loop (or set of loops) executes a particular
number (or combination of numbers) of times. To guarantee to find
all potential errors, therefore, requires checking all possible
combinations of cycles around all the loops in all the processes.

Currently, we do not have a satisfactory method for doing
this. Instead, we compromise by setting a limit on the maximum
number of cycles around each loop, and we check for anomalies in all
possible combinations of cycles (up to this maximum) around all the
loops in all the processes,

The time and space requirements of the analysis increase
rapidly as this limit increases. Accordingly, we have set this limit
at two, We maintain that even given this low limit we shall still
find by far the majority of anomalies in a ‘normal’ program. For
instance, we will find all anomalies resulting from a particular loop
not executing at all, or from a particular loop executing less than,
ﬁore than, or an equal number of times as any other particular loop.
At the same time, we do hope to be able to rectify this problem (see
9.1).

It has also been necessary . to place a restriction on the use
of loops contaiﬁing synchronisation statements, In terms of the
process flowgraphs, the restriction is that each strongly connected
component can only have a single entry node (a node with incoming
FOCEs from nodes outside the strongly connected component). In terms
of the HAL/S program, this implies that every loop containing

synchronisation statements must be entered at the top (i.e. it 1is

48

not allowable to jump into a loop), and each path at a conditional
statement can only be entered via the conditional statement (i.e. it
is not allowable to jump into the THEN or ELSE path at a branch).

However, good programming practice normally dictates that this is the

case anyway.

5.4 INTER PROCESS PRECEDENCE EDGES

The process flowgraphs contain information about the orders of
execution of the synchronisation statements within processes, The
information about possible and forced orders of execution among the
individual statements in different processes 1s contained in the
Inter Process Precedence Graph (IPPG). This consists of one or more
copies of each process flowgraph, along with a number of Inter
Process Precedence edges (IPPEs - represented pictorially as wavy
lines) each of which connects a pair of nodes in different
flowgraphs.

The presence of an IPPE in the IPPG should indicate that in at
least one execution sequence it is the execution of the predecessor
node of the IPPE that allows for the process containing the successor
node to enter the ready state from having been in some other state.
There are two different situations in which this occurs:

The execution of a schedule statement places the scheduled
process in the ready state on the process queue. The process was not
previously on the process queue. Hence there is an IPPE going from
each schedule node to the first node in a copy of the scheduled
process’s flowgraph. There is a new copy of that flowgraph for each

different schedule on that process in the IPPG. The IPPG remains

49

finite and bounded in size, however, since recursion of any sort is
not possible in HAL/S.

The execution of a set, reset, schedule, or close statement
may satisfy a particular wait expression, thus placing a process in
the ready state from having been in the stalled state. Hence there
is an IPPE going from each set, reset, schedule, and close to each
wait node whose wait expression can be satisfied by the execution of
the set, reset, schedule, or close.

The building of the IPPG is a four stage process, The first
stage consists of inserting all the required copies of process
flowgraphs, along with a pair of IPPEs for each copy (except the main
program) so inserted. The first IPPE of each pair goes from the
schedule node in the scheduling process to the entry node of the
scheduled process. The second goes from the exit node of the
scheduled process to either the wait for dependents before the close
of the scheduling process (if the scheduled process is a dependent
son) or to the wait for dependents before the close of the enclosing
érogram (otherwise). The two IPPEs effectively determine the maximum
amount of time, relative to all other processes, that this
instantiation of the process can be on the process queue.

,The algorithm for this first stage consists of initially
inserting the flowgraph for the main program into the IPPG. This is
inspected, and wherever a schedule exists, a copy of the scheduled
process’s flowgraph is inserted, along with its pair of IPPEs. As
each copy of a process flowgraph is inserted, that copy 1is
recursively inspected for any schedules that it may contain, and

copies of these scheduled process’s flowgraphs are also inserted etc.

50

The second stage consists of inserting all 1IPPEs that could
possibly be required. Each wait node in the graph is considered in
turn. The wait expression is first translated in conjunctive normal
form. Subsequently, each term 1in the expression is considered in
turn. IPPEs are added going to the wait node from all nodes in ’the
graph whose execution would set that term to true, and also from the
first node of the main program if the term is true initially. 1If the
term is for a process event to be true, the nodes whose execution set
the term to true are all schedules on that process. Likewise, the
nodes setting a process event to false are all close nodes for copies
of that process. For an event variable, the nodes setting it to true
are all sets on the variable, and those setting it to false are all
resets on the variable. There is one exception to this rule however,
concerning signal statements on unlatched event variables. Where
there is a wait for a value of true for a latched event variable, and
there is a signal on that variable, only one IPPE is added coming
from the signal although in the encoding of a signal there are
éctually two sets on the variable (see 5.1). The IPPE is added from
the set that appears on the path that is taken if the event variable
were false when the signal is executed, since if the event variable
were true the signal would have no effect on the completion of the
wait. Similarly, 1if there 1is a wait for a value of false for the
evént variable, the only IPPE added from the signal construct is from
the reset on the path that is taken if the event variable is true

when the signal is executed.

51

The incoming IPPEs at a wait node are grouped into conjunctive
normal form such that the predecessor node of only one IPPE in a
conjunct group has to execute for the corresponding conjunct in the
wait expression to be true.

The third and fourth stages of building the IPPG are discussed
in sections 6.3 and 6.4,

The algorithms for building the IPPG appear in appendix B.2.

52

CHAPTER VI

EXECUTION SEQUENCE SETS

The inter process precedence graph is used in the generation
of a number of sets of nodes, collectively known as the execution
sequence sets, at each node in the graph. These execution sequence
sets give information about the possible and forced orders of

execution of the nodes in the graph.

6.1 EXECUTION SEQUENCE SETS

Before we discuss the contents of the individual sets, we
first explain how we use the term ‘execution path’ in relation to
concurrent programs.,

An execution path can be regarded as the set of all possible
execution sequences for the particular set of statements that are
‘executed during an execution of the program. 1In other words, given
that a particular set of statements will be executed in one
particular run of the program, the execution path for that set of
statements contains all possible sequences in which those statements
could be executed. It is therefore a set of paths through each
individual process, together with the partial orderings that are
enforced by the synchronisation statements in those paths. For a
program with no potential concurrency, the set of execution sequences
in an execution path contains only one element, i.e. the two terms

refer to the same thing. For a program with concurrency, an

53

execution path contains no information concerning the actual order of
execution of the 1individual statements in sections of two or more
processes running in parallel.

At a node n, the following execution sequence sets are
generated:

ALWAYS(N) contains all nodes which must execute if N is to
execute; i.e. those nodes that are always present in every execution
sequence containing N.

NEVER(N) contains all nodes which cannot execute if N 1is to
execute; 1i.e, those nodes that do unot appear in any execution
sequences containing N.

BEFORE(N) contains ;ll nodes which, if they execute at all,
will execute~ before N; i.e. those nodes that appear before N in at
least one execution sequence containing N, but do not appear after N

in any execution sequences containing N.

ALWAYS BEFORE(N) 1is the subset of BEFORE(N) that contains

those nodes that always execute before N in all execution sequences
containing N.

POSSIBLY BEFORE(N) 1is the superset of BEFORE(N) containing

those nodes which, for at least one execution path containing N, will
execute before N in all execution sequences in that execution path.
AFTER(N) contains those nodes which, if they execute at all,
will execute after N; i.e. those nodes that occur after N in at
least one execution sequence containing N, but do not occur before N

in any execution sequences containing N.

54

ALWAYS AFTER(N) is the subset of AFTER(N) containing those

nodes that always occur after N in all execution sequences containing

N.

POSSIBLY AFTER(N) is the superset of AFTER(N) containing those

nodes which, for at least one execution path containing N, will
execute after N in all execution sequences in that execution path.
There 1is a certain amount of symmetry implied by the above
definitions of the execution sequence sets. Firstly if node A is in
the NEVER set of node B then node B will be in the NEVER set of node
A. 1f node A is in the BEFORE set of node B then node B will be in
the AFTER set of node A, and vice versa, Similarly, if node A is in
thg POSSIBLY BEFORE set of node B then node B will be in the

POSSIBLXMAFTER set of node A, and vice versa,

6.2 GENERATION OF THE EXECUTION SEQUENCE SETS

To generate the execution sequence sets, it is first necessary
to generate some intermediate sets. BEFORE WITHIN PROCESS(N)
‘contains those nodes within the same process as N which belong to
BEFORE(N) . Similarly for AFTER WITHIN PROCESS(N). ALWAYS BEFORE
WITHIN_PROCESS(N) contains those nodes within the same process as N
‘that belong to ALWAYS BEFORE(N). Similarly for ALWAYSﬁAFTER_WITHIN_
PROCESS(N). The algorithms to generate these sets use a breadth=-
first search, and take advantage of the fact that the process
flowgraphs do not contain any loops at this stage.

From these sets are generated the ALWAYS SUBPROCESS and
SUBPROCESS sets for each process. For a process P, SUBPROCESS(P)

contains all processes which are scheduled from within P, or from

55

withiﬁ a process itself scheduled from within P, etc. ALWAYS
SUBPROCESS(P) 1is the subset of SUBPROCESS(P) containing those
processes scheduled (possibly indirectly) by P which always execute
if P executes.

The next step in the generation of the ALWAYS sets is the
generation of the ALWAYS set for the first node of the main program,
This contains those nodes that must always execute, within the main
program and within any other processes, whenever the program is run.
For all other processes, the ALWAYS set of the entry node is equal to
the ALWAYS set of the schedule node for that process.

For a general node N, ALWAYS(N) contains the following nodes:
i) The ALWAYS set of the entry neode of the process containing N;
ii) Other nodes within the same process as N, but not contained in
i above, that must always execute if N executes;

iii) If ii above contains any schedules, then any nodes in those
scheduled processes, and processes in their ALWAYS SUBPROCESS sets,
which must always execute if the process containing them executes.

To generate the NEVER sets, it is first necessary to geﬁerate
NEVER WITHIN PROCESS sets. NEVER WITHIN PROCESS(N) contains those
nodes within the same process as N that cannot execute if N executes.
It consists of those nodes within the same process as N not contained
in BEFORE WITHIN PROCESS(N) or AFTER WITHIN PROCESS(N).

For each process, except the main program, the NEVER set of
the entry node 1is equal to the NEVER set of the schedule node fof

that process. For a general node N, NEVER(N) contains the following

nodes:

56

i) the NEVER set of the entry node of the process containing N;
1i) NEVER WITHIN PROCESS(N);

iid) If 1i contains any schedules, then all nodes in those
scheduled processes, and all nodes in any processes belonging to the
SUBPROCESS sets of those processes.

CALCULATE BEFORE(N,P) is a recursive function which returns as
its wvalue the BEFORE set of a node N in a process P. Nodes in
BEFORE WITHIN PROCESS(N) are members of BEFORE(N). Nodes in the
intersection of the BEFORE and NEVER sets of nodes within P that have
edges to N are placed in BEFORE(N) as well as nodes within other
processes which are the tails of IPPEs in a single conjunct group
going to N.

Because of the possibility of loops in the graph involving
IPPEs, a stack, SAVE, is kept containing an entry (N,P) each time
CALCULATE BEFORE is called. In the event that the recursive process
leads to the determination of the BEFORE set of a node N which occurs
within the same process as a node M on SAVE, and N is a descendent of
M or an element of NEVER(M), then the identity is returned as the
result of the call. Also, all entries on SAVE from the one after
(M,P) to the top are placed in REDO, indicating that their BEFORE set
calculations are valid only from the standpoint of node M, and their
true BEFORE sets need to be calculated separately.

CALCULATE AFTER(N,P) employs the BEFORE sets, reasoning that
if M belongs to BEFORE(N) then N belongs to AFTER(M).

The POSSIBLY BEFORE set of each node N contains each entry
node E to N, plus BEFORE(E). The POSSIBLY AFTER sets are generated

from the POSSIBLY BEFORE sets in the same manner as above.

57

The algorithms for execution sequence set generation appear in

appendix B.3.

6.3 SPURIOUS IPPE ELIMINATION

The third step in the construction of the inter process
precedence graph is the removal of IPPEs which reflect impossible
execution sequences,

The presence of each IPPE in the graph should indicate that
three conditions have been satisfied:

i) The predecessor node causes a term in the wait expression of
the successor node to become true.

ii) The predecessor node will execute before the successor node in
at least one execution sequence.

1ii) In at least one of those execution sequences in ii above, the
term does not become false again before the wait has completed.

During the second stage of the graph building, however, all
IPPEs are inserted that satisfy only condition i above, and it is
'possible for some of these to violate conditions ii or iii above.
Those that do are spurious, and for more accurate results should be
removed prior to performing any analysis.

Figure 13a contains an example of spurious IPPEs. It shows a
section of an inter process precedence graph as it would appear
immediately following IPPE insertion. The section corresponds to
parts of two parallel processes synchronising themselves using one
event variable, ep. Originally, ev has the value false, and no other
processes use it. The node numbering is chosen arbitrarily. The

presence of an IPPE from node 3 to node 4 should indicate that in at

58

WAIT FOR EV

RESET EV

«

L
*
®

WAIT FOR EV

Figure 13a
A section of an inter process precedence graph prior to the removal of

spurious IPPEs.

L[]

LI

SET EV WAIT FOR EV
WAIT FOR NOT EV RESET EV
SET EV

WAIT FOR EV

@

s e

Figure 13b

The same section as it would appear following spurious IPPE elimination.

59

least one execution sequence, 1t 1is the execution of node 3 that
allows for the completion of the wait at node 4. However, inspection
of the code reveals that node 5 must execute before the wait at node
2 can complete, preventing node 3 from executing until after the wait
at node 4 has completed. The IPPE therefore violates condition ii,
and should be removed. In addition, the IPPE from node 1 to node 6
should indicate that the wait at node 6 can be completed as soon as
node 1 executes. However, node 1 must always execute before the wait
at node 4 can complete, and hence its effect will always be negated
by the execution of node 5 before node 6 can be reached. This IPPE
violates condition iii, and should be removed. Figure 13b contains
the section of the inter process precedence graph as it should
appear, and inspection of the code will reveal that the execution
ordering enforced by the remaining IPPEs is genuine.

Spurious 1IPPEs can be removed by a consideration of the
execution sequence sets for the nodes in the graph. 1f, for any
IPPE, the predecessor node 1is in the AFTER or NEVER sets of the
Vsuccessor node, condition ii is violated and the IPPE is removed.
I1f, for any IPPE, a node negating the effect of the predecessor node
occurs in the intersection of the ALWAYS AFTER set of the predecessor
node and the BEFORE set of the successor node, the IPPE violates
condition iii and is removed. The removal of an IPPE may alter the
generated execution sequence sets, and so these must be regenerated
after an IPPE 1is removed. The process iterates until no more

spurious IPPEs can be found.

60

I1f, at any time during spurious IPPE elimination, a node 1is
found to be in its own BEFORE or AFTER set, this indicates the
presence of a guaranteed deadlock in the code. The effect of the
deadlock may permeate throughout the entire graph in an unpredictable

manner, potentially causing much “cascading’ of errors.

6.4 TAKING TERMINATES INTO ACCOUNT

The final stage in the construction of the graph is the
revision to the graph that is necessary to take account of any
potential premature terminations. As specified in section 5.1, such
revisions take the form of the addition of conditional branches into
processes that can potentially be prematurely terminated. Such
branches go from immediately before any nodes after the earliest
point that termination can occur in the process, and go to the close
node of the process.

Each terminate statement and each process that can be
prematurely terminated by that statement (i.e. each process
~specified in the statement along with each dependent son, grandson
etc. of such processes) 1is considered in turn. A breadth-first
search is performed from the entry node of the process that can be
terminated to determine the earliest point on each path in that
process at whiéh the termination can occur. The earliest point is
the first node that 1is encountered on the path for which the
terminate statement does not belong to the AFTER set. Subsequently,
branches are inserted before each node after (and including) that

earliest point, going to the close node.

61

The insertion of these branches may affect the generated
execution sequence sets, so these musﬁ be regenerated after all
terminates havé been considered. However, the regeneration of the
execution sequence sets may, in turn, affect the earliest points at
which termination can occur on some paths in some processes, so this
must be rechecked. These two steps alternate until there are no more

conditional branches that need to be inserted.

6.5 PROPERTIES OF THE EXECUTION SEQUENCE SETS

The algorithms for execution sequence set generation, spurious
IPPE elimination, and taking account of potential premature
terminations, imply certain properties that the execution sequence
sets will have. This in turn implies certain things about the IPPEs
that will be removed, and also about the extra conditiomal branches
that will be inserted.

The simplifications we have applied to the problem (e.g.

ignoring RTE-clock time, branch and loop conditions etc.) have all

acted to increase the number of possible paths through each process,
and also the number of possible execution sequences where processes
are running 1in parallel. Were 1t somehow possible to take all
factors into consideration and do a strictly accurate analysis, the
number of execution sequences would be smaller and the execution
sequence sets would, in many cases, contain different nodes to those
that are actually generated by the algorithms in section 6.2. These

sets would instead be the genuine execution sequence sets according

to the rules in section 6.1.

62

In a graph containing no spurious IPPEs, the generated NEVER,
BEFORE, AFTER, ALWAYS BEFORE, and ALWAYS AFTER sets will be subsets
of the corresponding genuine execution sequence sets. The NEVER and
ALWAYS sets are generated simply from the structure of the graph,
assuming all combinations of paths are possible. Taking all factors
into consideration reduces the number of such paths, and hence can

\

only increase the size of those sets. The BEFORE sets are generated
using the assumption that, at a particular wait node, for the wait to
be satisfied requires only one term in each conjunct to be true, and
hence for only one statement to have executed setting a term in the
conjunct to true. The BEFORE set of the wait node contains only
those nodes that can be guaranteed to execute before any of the nodes
whose execution would set a term to true; i.e. before any of the
nodes which are tails of IPPEs in a conjunct group at the wait node.

Taking all factors into consideration would reduce the number
of possible‘ execution sequences, thereby implying more forced
orderings and larger BEFORE and AFTER sets. The ALWAYS BEFORE and
ALWAYS_AFTER sets are generated by taking the intersections of the
ALWAYS sets with the BEFORE or AFTER sets; since these are subsets of
the corresponding genuine execution sequence sets, the resulting
ALWAYS BEFORE and ALWAYS AFTER sets must also be subsets of the
corresponding genuine execution sequence sets.

The generated POSSIBLY BEFORE and POSSIBLY AFTER sets, on the
other hand, are supersets of the corresponding genuine execution
sequence sets. This can be seen more easily by a consideration of
the generation algorithms themselves than by any other way. The

POSSIBLY BEFORE set at a wait node is generated by taking the union

63

of the POSSIBLY BEFORE sets of all nodes whose execution can satisfy
the wait expression - i.e. all nodes which are tails of IPPEs going
to the wait node. The genuine POSSIBLY BEFORE sets at the wait node
would consist of a subset of the union of the POSSIBLY BEFORE sets of
only those nodes that may have to execute before the wait is
completed. Clearly, even those nodes will be a subset of the ones
that can satisfy the wait expression.

During IPPE elimination, the graph contains sPuriﬁus IPPEs;
i.e. IPPEs representing impossible execution sequences. At a wait
node, the effect of a spurious IPPE directed towards that node is
such as to further reduce the generated BEFORE set of the node, by
adding one more set to be intersected with. Thus, spurious IPPEs
reduce the size of the generated BEFORE sets (and hence the generated
AFTER sets), although there is no effect on the generated ALWAYS and
NEVER sets. Spurious 1IPPEs therefore reduce the size of the
generated ALWAYS BEFORE and ALWAYS AFTER sets. Note that the
generated BEFORE, AFTER, ALWAYS BEFORE, and ALWAYS AFTER sets are
still subsets of the genuine execution sequence sets.

The effect of a spurious IPPE directed towards a wait node is
such as to increase the size of that node’s generated POSSIBLY BEFORE
set, by adding one more set to be unioned with. Hence the generated
POSSIBLX*BEFORE and POSSIBLY AFTER .sets are still supersets of the
corresponding genuine execution sequence sets, even with the presence
of spurious IPPEs in the graph.

The algorithm for removing spurious IPPEs uses the generated
execution sequence sets in such a way as to guarantee that only

spurious IPPEs can be removed. There is, however, no guarantee that

64

all spurious IPPEs will be removed in this manner.

As far as the modifications to the graph that are necessary to
account for potential premature terminations are concerned, the point
that is calculated to be the earliest, on a path in a process at
which termination canm occur, is at least as early as the genuine
earliest such point. This can be seen by the fact that the generated
AFTER sets are subsets of the genuine AFTER sets, and since the node
before the earliest termination point has the terminate statement in
its AFTER set, the termination cannot possibly occur until after this
point. It is assumed that termination can occur at any time after
this calculated earliest point has been reached, which will clearly
include all the points at which termination can actually occur.

The effect of introducing extra conditional branches into the

IPPG is such as to reduce the size of the BEFORE, AFTER, and ALWAYS

sets, by introducing extra execution paths and sequences. During the
modification/execution-sequence-set-regeneration cycle, therefore,
the earliest points at which termination can occur can only become
earlier 1in a particular process, and consideratiom of the number of
nodes in the processes being terminated will show that the number of
times around this cycle will be finite and bounded.

The method of treating potentially premature terminations can
be seen to preserve the property that the execution sequences
apparently possible from a consideration of the graph are a superset
of the genuinely possible execution sequences. This still implies,
therefore, that the generated NEVER, ALWAYS, BEFORE, AFTER,
ALWAYS BEFORE, and ALWAYS AFTER sets will be subsets of the

corresponding genuine execution sequence sets, while the generated

65

POSSIBLY BEFORE and POSSIBLY AFTER sets will be supersets of the

corresponding genuine execution sequence sets.

66

CHAPTER VII

SYNCHRONISATION ANOMALY DETECTION

The final execution sequence sets contain a large amount of
information concerning the possible and forced orders of execution of
the individual statements in the program under analysis. Aé such,
they prove useful in the detection of data-flow anomalies concerning
shared variables; see [5]. 1In this thesis, however, we are concerned
with the detection of synchronisation anomalies. These also prove to

be readily detectable from the execution sequence sets.

7.1 INFINITE WAITS

A process will wait indefinitely at a wait statement if the
wait expression 1is false when the wait is reached, and one of two
situations occurs. Either no combination of statements such as to
set the expression to true remain to be executed in other processes,
or all such combinations will be prevented from executing because the
process under consideration is stalled. The latter case represents
what is usually called a deadlock.

The detection method involves considering each wait statement
in turn for the possibility of such a situation. The wait expression
will already have been tramslated into conjunctive normal form during
the building of the IPPG. For a potentially infinite wait, there
must be at least one conjunct that can be false after all the

statements have executed that occur before or concurrently with the

67

wait. (This 1is a necessary condition, but anot a sufficient one -
hence the situations for which this is true will include a superset
of the actual potentially infinite waits in the program). This in
turn requires that all the terms in that conjunct can be false, The
algorithm takes a simplification of this by assuming that the
conjunct must be true only if at least one particular term in the
conjunct must be true; i.e. it does not take account of situations
in which at least one term must be true, but there is no guarantee as

to which one it will be. (see figure 14).

Process ONE. Process TWO.

then

SET B

SET A Q WAIT FOR A OR B

Figure 14,

The check proceeds term by term through each conjunct wuntil
either a term is reached which must become true in finite time
despite the wait - 1in which case the conjunct cannot remain
indefinitely false and the next conjunct is checked - or until the
end of the conjunct is reached without finding such a term - in which
case it is assumed that the conjunct does not necessarily have to
become true, and hence that there is an anomaly.

The worst case 1is assumed while checking a term. It is
assumed that, for all nodes setting the term to true that can be

prevented from executing until after the wait has completed (i.e.

68

those belonging to the POSSIBLY AFTER set at the wait node), an
execution sequence exists in which all such nodes will be so
prevented. Further, of the remaining nodes setting the term to true
(i.e. those that must execute before or in parallel with the wait),
an execution path exists in which only those belonging to the ALWAYS
set of the wait node will execute. Finally, it is assumed that all
nodes setting the term to false not belonging to the AFTER or NEVER
sets of the wait node can execute before the wait is reached. Given
these assumptions, the term can be indefinitely false if either:

- no nodes remain setting the term to true that can execute
before the wait has completed, or:

-~ each such node can be followed by a node setting the term to
false, that is not itself always followed by a node setting the term
to true.

Thus the wait at wait node W is potentially infinite if there
exists a conjunct C in the wait expression such that:
For each term T in C and

For each node N, setting T to true

Nt belonging to {ALWAYS(W) POSSIBLY AFTER(W)}
There exists a node Ny setting T to false

Nf belonging to {all nodes

{NEVER(N;) union BEFORE(N¢))}

intersection {all nodes

{NEVER(W) wunion AFTER(W)}}
And such that no node N exists setting T to true
Nt belonging to {ALWAYS AFTER(Nf)} intersection
{all nodes -~ {NEVER(W) union POSSIBLY AFTER(W)}}
The algorithm itself is a direct implementation of the above

expression

69

By a consideration of the results in 6.5, 1t can be seen that
{ALWAYS(W) - POSSIBLY"AFTER(W)} is a subset of those nodes setting a
term to true that must actually execute before, or concurrently with,
the wait, Also, <{all nodes =~ {NEVER(NE) union BEFORE(Nt)}}
intersection {all nodes - {NEVER(W) union AFTER(W)}} is a superset of
those nodes setting a term to false that can execute after N, and
before the wait is completed, Finally, {ALWAYS_AFTER(Nf)}
intersection {all nodes - {(NEVER(W) union POSSIBLY AFTER(W)}} is a
subset of those nodes setting the term to true that would actually
execute after N¢ and before the wait is completed.

Given these results, it can readily be seen that the algorithm
identifies a superset of those terms that can be false for the

duration of the wait. Hence the algorithm identifies a superset of

the actual potentially infinite waits in the program under analysis.

7.2 RESCHEDULING A LIVE PROCESS

The method for detecting potential situations where a process
ﬁay be rescheduled while still on the process queue from some
previous schedule involves considering the execution sequence sets at
each close and schedule node.

For a process P, if a schedule or close for one instantiation
of P 1is in a set other than the NEVER, BEFORE, or AFTER sets at the
schedule or close node for a different instantiation of P, there is
an anomaly. Clearly, in such situations, the schedule/close of one
instantiation of P can occur in parallel with the schedule/close of
the other instantiation, and hence possibly in the wrong order.

Since the BEFORE, AFTER, and NEVER sets are subsets of the

70

corresponding genuine execution sequence sets, the detected anomalies
of this type are a superset of the actual anomalies present in the
program.

One other possibility exists for an anomaly of this type,
where there is no possible parallelism of the schedule and/or close
nodes but the processes may still overlap. This is allowed for by
checking, at each schedule node, that if a schedule for a different
instantiation of the same process belongs to the BEFORE set, then the
close node for that instantiation must also belong to the BEFORE set.
If not, there is an anomaly. Due to the symmetry in the BEFORE and
AFTER sets, the possibility that a different instantiation of the
process will start after the schedule but before Ehe close of this
instantiation, 1is checked for when considering the schedule node fcr
that instantiation itself, All such anomalies of this type are

therefore found.

7.3 TERMINATING, CANCELLING, OR UPDATING THE PRIORITY OF

A DEAD PROCESS

The possibilty of these anomalies is discovered by considering
the execution sequence sets at each terminate, cancel, and update
priority node (collectively referred to as T nodes). To guarantee
that a process referred to at a T node is on the process queue, there
must be a schedule for that process belonging to the ALWAYS BEFORE
set of the T node, such that the corresponding close node of the
process 1is in the AFTERbset of the T node. 1If this is not the case,
there is an anomaly. Since the ALWAYS BEFORE and AFTER sets are

subsets of the corresponding genuine execution sequence sets, we find

71

a superset of the anomalies of this type.

7.4 TERMINATING AN INDEPENDENT PROCESS

This possibility is checked for at the same time as the
anomalies in 7.3. 1If the T node is a terminate node, then the
instantiation of the terminated process that is on the process queue
at the time of termination must be a dependent of the terminating

process, If not, there is an anomaly.

7.5 PREMATURE TERMINATION

Checking for this anomaly is carried out at the same time as
for those anomalies in 7.3 and 7.4. If, at a terminate node, the
close node of the process being terminated is not in the BEFORE set,
the process can be prematurely terminated. Since the BEFORE sets are
subsets of the genuine BEFORE sets, we find a superset of the
anomalies of this type.

The algorithms for detecting synchronisation anomalies appear

in appendix B.4.

72

CHAPTER VIII

HOW GOOD IS THE SYSTEM?

Throughout this paper, there have been 1informal proofs that
the proposed anomaly detection system finds a superset of the actual
anomalies in the program under analysis. (The one exception 1is the
problem with loops, which we hope to be able to correct).

Currently, it 1is wup to the wuser to identify which of the
reported anomalies actually represent possible errors in the progranm.
Clearly, the higher the proportion of reported anomalies that
represent errors and possible errors, the ‘better’ the system. If
the proportion is low, the time taken to check out all of the
anomalies will be high compared to the benefits to be gained, and the
system may end up costing more time than it saves.

So far this report has not addressed the issue of just how
high the percentage of possible errors to reported ;nomalies might
be. This 1is because the only practical way to get this information

would be to produce a working system, and to gather informationm from

it. However, a fairly good way is to consider just where the system

produces wrong results.

8.1 SAFE SITUATIONS FALSELY IDENTIFIED AS ANOMALOUS

Perhaps the easiest way to identify where such situations can
arise 1is to discuss each simplification we made, and also each step

in the algorithms, in turn.

73

Our first simplification was to ignore process priorities and
RTE-clock time. We feel, however, that for a developer to rely on
processes of high priority running ahead of processes with lower
priority, or to rely on sections of code completing (or not
completing) in specific RTE-clock time intervals, is both poor
programming praétice and potentially dangerous. Examples of where
such a reliance might cause errors are:

i) In a muitiprocessor environment, a process with a high
priority may be suspended on its own 'processor while a process with a
lower priority is executing on a different processor.

ii) A process normally taking a small amount of time to execute
may be suspended for an external interrupt or for a process with a
higher priority.

We therefore feel that, even were it possible to accurately
take account of RTE-clock time, process priorities, and the resulting
reduction in the number of possible execution sequences, we would
still like to warn the user of situations relying on them to avoid
errors, in the event, say, that the program is transferred to a
different environment.

Our next simplification was to ignore the <conditional
expressions governing branches and loops, and hence to assume that
all paths generated by the flowgraph are executable. This is a real
problem which plagues other static anomaly detection systems relying
on data-flow analysis. In a study of the DAVE system it was
discovered that about fifteen percent of the anomalies detected were
on unexecutable paths ([3]. Algorithms are being developed for

detecting some classes of unexecutable paths [g], [9], and may prove

74

useful additions to this system in the future,

Our next simplification was to ignore all non synchronisation
statements and variables. However, since these only affect the
synchronisation anomalies by determining which paths c¢an be taken
through each process, and which resulting execution sequences are
possible, they do not cause additional anomalies other than those
already mentioned.

The following encodings do not appear to introduce additional

anomalies, although we have not yet attempted to prove this:

- the encoding of a close statement as a wait for dependents
followed by a simple close,

- the encoding of a process scheduled such that it immediately
enters the stalled state as having the process execute a wait as its
first instruction.

- the encoding of a process scheduled to execute cyclically as a
loop within that process.

- the encoding of a return as a branch to the close statement,

- the encoding of a signal on an unlatched event variable as a
set followed by a reset.

The method of dealing with signals on latched event variables
can cause the addition of spurious anomalies. These occur because of
the possibility of synchronisation statements 1in other processes
executing between the set and the reset in our encoding, which cannot
occur in practice, and also because of the possibility of taking the
wrong branch in the encoding since we assume that either path can be
taken. However, we have discovered that a signal statement cannot

cause a wait that is potentially infinite without the presence of the

75

signal to be guaranteed finite as a result of the signal, given the
assumptions we have already made. This is because the signal must
either be executed after the wait has completed, in which case it
cannot affect thé wailt, or it can potentially be executed before the
wait has been reached, and hence would also not affect the wait. As
far as the other anomalies are concerned, the signal statements do
not affect the detection of such anomalies except in the
determination of the execution sequence sets. Accordingly all
anomalies introduced by the encodings of signal statements can be
avoided by removing all nodes resulting from the encodings from Dboth
the execution sequence sets and the IPPG immediately following the
generation of the final execution sequence sets, During generation
of the execution sequence sets, the method of dealing with signal
statements does accurately reflect their behaviour, and does not
cause any additional deviations from the genuine execution sequence
sets.

The method of dealing with potential premature terminations,
particularly of processes containing synchronisation statements
affecting non dependent processes, can introduce a potentially large
number of spurious anomalies. However, we feel that such situations
are very dangerous anyway, and would strongly caution developers
against including such situations in their programs. As far as the
analysis is concerned, we can only say that we anticipate such
situations will be extremely rare in the type of environment we

intend our system for use in,

76

Additional anomalies can appear because of the approximations
necessary to have reasonable time bounds on the algorithms to remove
spurious IPPEs, to generate the execution sequence sets, and to
detect potentially infinite waits.

In all three of these stages, the additional anomalies appear
primarily in two different situations. Firstly, synchronisation
errors and anomalies can cause a large amount of error cascading,
producing many spurious anomalies. This is an aspect we have not
considered 1in any detail, but which should be examined in the future
for methods to reduce the phenomenon.

The second situation is where sets and resets on the same
event variable can potentially occur in parallel. In such situations
the complexity of the problem is high, and our algorithms produce
results that deviate further from the correct results.

However, in such situations even a wrong result by our system
(i.e. indicating that there 1is an anomaly when the program is
perfectly safe) can be useful in that it uncovers an area of the
program where the synchronisation is complex, and careful hand
checking is necessary to ensure the absence of potential errors.
Furthermore, it indicates a situation where possibly an attempt
should be made to simplify the synchronisation, to facilitate greater
ease of maintainability of the program.

An additional consideration at this point 1is the type of
programming environment the tool is intended for use in. The system
has been developed specifically for NASA, to be integrated into the
MUST system ([11]. The aim of the MUST system is to provide an

environment that allows for the rapid development of reliable,

77

maintainable code. We anticipate that in such an environment the
synchronisation in the programs will be kept as simple as possible,
and our system will be used more to detect genuine errors and to
validate programs than to aid in' debugging programs containing a
large complex interweaving of synchronisation statements. Clearly it
is wuseful in the former «case and possibly not so useful in -the
latter.

The one additional area where anomalies can appear is from the
system’s failure to satisfactorily take account of sets and/or resets
occuring on mutually exclusive paths at a branch (see figure 14).
The next chapter contains some ideas as to how the system may be
modified to reduce such false anomalies, but for the time being we
can only reiterate that we expect such situations will be infrequent

in the type of programming environment that our system is aimed at.

78

CHAPTER 1IX

FUTURE WORK

There are three main areas where we anticipate work could
usefully be done in the future, The first such area is the
incorporation of the improvements already mentioned in this thesis,
along with improving time and space bounds, and enforcing less
restrictions on Ehe programs that can be handled. The second area is
the expansion of the system to detect more anomalies, and also to

provide other wuseful information. The third area is the production

of similar systems for other concurrent languages.

9.1 IMPROVEMENTS TO THE SYSTEM

The most important improvement appears to be the correction of
the current problem concerning synchronisation statements in loops
yithin processes. One way this might be achieved would involve
treating a loop as a single composite node in the early stages of the
analysis, and generating execution sequence sets that imply forced or
possible execution orderings involving complete loops (e.g. that a
particular loop will have completed execution before a particular
node in another process; or that two loops can execute concurrently
etc.). Clearly a rigorously accurate analysis of this type is not
possible, but it may be possible to make approximations that allow
for the detection of a small superset of the actual anomalies in

polynomial time.

79

Another approach might be to proceed exactly as has been
specified, but to insert an additional step that would search for the
remaining anomalies. Again, this additional step would find a
superset of the actual anomalies. If it could be determined how such
additional anomalies can occur, it should be possible to produce a
polynomial time-bounded algorithm to do this.

Assuming that a suitable method can be found to analyse loops
containing synéhronisation statements, and hence to remove the
current restrictions concerning loops, there would remain only two
restrictions on the programs that can be successfully analysed.
These are the restrictions concerning event variable arrays and name
variables.

Methods do exist for handling arrays in static data-flow
analysis systems, although they are not entirely satisfactory. One
such method involves treating the entire array as a single composite
variable whose value in general cannot be determined. Such a method
could readily be incorporated into our system by assuming that
Qherever there is a reference in a wait statement to an
undeterminable element of an event variable array, or to an element
of the array whose value cannot be determined, the value of the
variable is such that the term in the wait expression is false. This
would still guarantee to find all potential errors, although there
would potentially be a large number of false anomaly reports
generated.

A similar assumption could alse be made to allow for the
incorporation of a method to handie name variables of type event

variable and event variable array. Unfortunately, we cannot

80

currently envisage a suitable system to handle name variables of
_ types program, function, procedure, and task.

There are several ways in which the current system could be
modified to reduce the number of anomalies reported that are not
potential errors. One such method might be the inclusion of
algorithms for the detection of unexecutable paths. (see chapter 8).

Another such modification we envisage would allow us to take
account of sets and/or resets that occur on mﬁtually exclusive paths
at a branch in a process. It should prove possible to collapse such
paths into a single node such that the ‘statement” represented by
that node would be the setting to true of an event expression. To
return to figure 14 (page 67), the single node to replace the section
of process ONE would be, in effect, a “SET A OR B’. Following
execution of this node, the expression A OR B” must be true, and
hence the wait in process TWO can be determined to be finite. Taking
this a step further, it should prove possible to collapse whole
sections of processes, containing sets and/or resets, into single
hodes, such that the “statement’s represented by those nodes would be
the setting to true of an event expression containing both ANDs and
ORs. This would also save time and space in addition to providing
better results.

Another such modification would be to improve the handling of
processes scheduled with a cancellation criterion. We currently
assume that any process that 1is scheduled with a cancellation
criterion can be cancelled before it has executed even once.
However, it is possible that the process may at least have to start

its execution before it can be cancelled, and hence that it must

81

execute at least once. It should be possible to take account of this
by determining the earliest point at which the cancellation can occur
in the execution of that process. If that point proves to be before
the process has started execution, then our assumption is valid.
Otherwise we would know that the process must execute at least once.
It should also prove possible to take account of the fact that the
process remains on the process queue at least until after the
cancellation criterion is satisfied, by inserting a wait for the
cancellation criterion immediately before the close node in that
process.

At no stage during the development of this system has much
thought been given to improving its time and space bounds. Several
methods immediately come to mind as to how this may be achieved.

Firstly, during IPPE elimination, and the insertion of
additional branches to allow for premature terminations, the
execution sequence sets are regenerated many times, although for the
majority of nodes they do not change at each such regeneration. If
it could be determined which sets at which nodes can have changed at
each regeneration, these sets alone would have to be regenerated.

Secondly, it is possible to have redundent IPPEs in the graph;
i.e. IPPEs which are not spurious, but whose presence does not carry
any additional information, If these IPPEs can be removed, execution
Sequence set generation would be speeded up.

Thirdly, it 1is possible that the IPPG will contain processes
that do not contain any synchronisation statements other than the
close statement, and cannot be terminated, cancelled, or have their

priorities updated. Such processes cannot cause any anomalies, and

82

do not affect the execution sequence sets in other processes, so they
can be removed from the graph. Furthermore, their initial pair of
IPPEs are removed, along with their schedules, and any terms in wait

expressions involving their process events,

9.2 EXTENSIONS TO THE SYSTEM

There are several additiomal features that the system might
include. Some such features might be:

Distinguishing between possible errors and guaranteed errors.
This requires the generation of other execution sequence sets as
discussed in our ealier report [5].

Allowing the wuser of the system to pass in additional
information .that can be used by the system to reduce the number of
apparent execution sequences, and the number of safe situations which
are falsely reported as anomalous. Such information might include
known input value ranges (to aid in the determination of unexecutable
paths), known inter-process orderings not evident from the code
itself etc.

Allowing for an anomaly definition capability. For instance,
it may be desirable that, in a given program, say, two particular
processes should never run concurrently. Such information is readily
available from the execution sequence sets. This capability could
either be implemented with assertions placed in the code, or by using
the system interactively,

Continuing this still further, there is much potentially

useful information contained in the IPPG and the execution sequence

sets. A wuseful additional feature would be to allow the user, on

83

request, to obtain some or all of this information.

9.3 SIMILAR SYSTEMS FOR OTHER CONCURRENT LANGUAGES

The techniques presented in this thesis have been applied
specifically to the HAL/S programming language. HAL/S has proved to
be a fortunate choice, since it contains a very wide range of
synchronisation constructs, With the“exception of name variables,
all such constructs can be dealt with by our system.

Some other concurrent languages contain only a subset of the
concurrent features available in HAL/S. Our system should prove to
be immediately applicable to such languages, by performing

modifications to the front end.

84

CHAPTER X
CONCLUSION

We have presented the design of a system for the static
analysis of HAL/S programs to detect various synchronisation
anomalies. We intend such a system to be used alongside data-flow
analysis techniques of the types found in DAVE [1], for the detection
of data usage anomalies.

The constraints we initially imposed on such a system have
necessarily implied that the results it produces can only be
approximations to the actual anomalies present in the program.
However, at each stage we have given much thought to reducing the
number of spurious anomalies that will be introduced while at the
same time retaining all original anomalies in the ﬁrogram.

The inter process precedence graph representation seems
'ideally suited to its needs, as 1t captures all the relevant
information in the program in a simple and accessible way. The
execution sequence sets, too, are a practical and simple way to store
the sequencing information which must necessarily be obtained from
the program. Once this information is available, the algorithms

themselves are reasonably straightforward.

85

We have met our original aims, although we realise that the
work presented here is preliminary, and much additional work still
remains to be done. We have identified a number of areas where such
work could usefully be performed, and no doubt more such areas will
appear.

It remains to be seen how accurate and useful the final system

proves to be.

1]

(2]

(4]

(8]

(9]

86

BIBLIOGRAPHY

Fosdick, L.D., and Osterweil, L.J., 'Data Flow Analysis in
Software Reliability'", Computing Surveys, vol. 8, no. 3, pp
305-330 (September 1976).

"The HAL/S Language Specification, Intermetrics, Inc.,
Cambridge, Massachusetts (June 1976).

Taylor, R.N., and Osterweil, L.J., "Anomaly Detection 1in
Concurrent Software by Data Flow Analysis', University of
Colorado Technical Report CU-CS-152-79 (April 1979).

Reif, J.H., "Analysisbaf Communicating Processes", TR30,
University of Rochester, Dept. of Computer Science, New York,
(May 1978).

Bristow, G., Drey, C., Edwards, B., and Riddle, W., "Design
of a System for Anomaly Detection in HAL/S", University of
Colorado Technical Report CU=-CS-151-~79 (March 1979).

Saxena, A., "Static Detection of Deadlocks", University of
Colorado Technical Report CU~CS-122-77 (November 1977).

Peterson, J.L., "Petri MNets', Computing Surveys, vol. 9,
no. 3, pp 223-252 (September 1977).

Bollacker, L.A., "Detecting Unexecutable Paths Through
Program Flowgraphs'", (Master’s Thesis), University of
Colorado, Dept. of Computer Science (August 1979).

Osterweil, L.J., "The Detection of Unexecutablé Program Paths
Through Static Data Flow Analysis", University of Colorado
Technical Report CU-CS~110-77 (May 1977).

87

APPENDIX A

TO _PROVE:

That to determine whether an arbitrary HAL/S program contains
a situation where a process may be rescheduled while still active is

at least as hard as an NP-complete problem.
PROOF:

By a reduction of satisfiability, which is known to be an NP-
complete problem. Satisfiability is as follows:

Given a set S of boolean variables, S .Sq, and an expression

K
E over the variables in S, does a combination of true or false values

exist for the variables in $ such as would have the expression E true?

REDUCTION: ’

i) produce a set of event variables Evl"'Evn’ corresponding to

the boolean variables Sl"'sn in satisfiability

ii) produce a.program MAIN and a task T as follows:

MAIN: PROGRAM; T: TASK

IF ‘e

THEN SET EV};
ELSE RESET EVy;

IF
THEN SET EVp; .

ELSE RESET EV9; .

IF ... :
THEN SET EV,; .
ELSE RESET EV_; :

SCHEDULE T;
WAIT FOR EE OR NOT T; '

SCHEDULE T; .
CLOSE: CLOSE:

88

where EE is the expression formed by substituting EV for § in E.

At each branch in MAIN either path can be taken, and hence
each event variable can be either true of false. Since we assume
that all combinations of paths are possible, clearly all combinations
of values for the event variables are possible. This corresponds to
being able to make any choices for the values of the variables in §
in the satisfiability problem. The only way that the WAIT can be
completed before T has completed its first execution is if the
expression EE is true. EE can only be true, however, if the
expression E is satisfiable. The only way that T can be rescheduled
while it is still active, therefore, is if the expression E 1is
satisfiable. Determining whether E is satisfiable is an NP-complete
problem, and hence determining whether this HAL/S program contains an

anomaly is an NP-complete problem.

89

APPENDIX B

PSEUDO-CODE FOR THE SYSTEM

The pseudo-code in this appendix uses the syntax defined in
Caine and Gordon, "PDL -~ A tool for software design', PROC 1975

National Computer Conference, June 1975 pp. 271-276.

90

SEGMENT build IPPG

Focus page 91
Insert MAIN 95
inject 97
remove spurious IPPEs 109
calculate execution sequence sets 98
find potentially infinite waits 110
find instances of processes being rescheduled while still active
find other anomalies ~ii§

91

SEGMENT Focus

FRERKKARRARA AR R AAAXAA A A AR LA R A hdrhhhhhhdrhdhhhhhdrhhdhhrhhihhhbhhhdhhkd

*

* This segment inserts subprograms in-line, removes non *
* synchronisation statements, and transforms synchronisation *
* statements as in 5.1. *
% *
*

KREAKAAKRKRAXARRARAARARR KRR AR AR Ak hhdhhhhhhhhhhhhhhhdhhhhkhhhhihhhhihhidk

DO for each subprogram S in leafs-up order, and subsequently
each program and task

hhkkhhkhhhhhhhrhhhkhihhrhhhhhhhhhrhrhrhhrhhhhhhrbhhhkhhrhhhhd

* %
* Insert subroutines in~line where necessary *
* %*

khkhkhkhhhhkhhdrhhhhrhhhhhbhdhbhhhbhhhfhhhihhhhhhhhhhhhhhhihn

DO for each node n in S
IF n is a call to a subprogram P

IF flowgraph for P is empty

DO for each FOCE (ni,n)

e

DO for each FOCE (n,nj)
create FOCE (ni,nj)
ENDDO
delete (ni,n)

ENDDO

DO for each FOCE (n,nj)
delete (n,nj)

ENDDO

delete n

92

ELSE create new copy C of flowgraph for P

ENDIF

Do for each FOCE (ny,n)
create FOCE (ni,Ce)
LR L L L T E L L Lt L L L iy
% %
* Co 1s the entry node of C *
% *
hkkkkhkhrAhhkhhhhhhhhkhhhhhhhkhhhihhikst
delete (ni,n)

ENDDO

DO for each FOCE (n,nj)
create FOCE (Ce,nj)
Fokdkkkhkdkdhihkhh Rk ki ki hhhh ik khdh ki ks
% *
* Ce is the exit node of C ®
* *
R L R A T T T
delete (n,nj)

ENDDO

delete n

ENDIF

ENDDO

93

KRR AAK AR AT AAK A A AAR AR AR KA AA AT AR AR AR AR AR AR N AR ARk hhhhhhhhhk

* *
* Remove all non-synchronisation statements *
% *

AR ARRRA AR RARAARRRRRR KA AR AR A A RA AR A A R AR AR AR AR A A kAR Ak LRk kk
DO for each node n in S

IF n is a synchronisation statement, or the entry
node S

DO for the first synchronisation node or
exit node, n_., that is encountered on
each path in a breadth-first search

from n
IF there does not exist an FOCE (n,nf)
create an FOCE (n,nf)
ENDIF
ENDDO
ENDIF
ENDDO

Do for each node n in S that is not a synchronisation
node or the entry or exit node

delete all FOCEs into n
delete all FOCEs leaving n
delete n

ENDDO

94

IF the flowgraph for S contains only 5, and S,
set the flowgraph for S to nulf

khkdhhkhhhhhhhkhhrhrdhhhhhRhhhhhhhhhhhhhhhhhrhhdhhhrkhkhhhhhk

* *
* otherwise, remove all loops and transform *
* synchronisation statements as in 5.1. *
* *

hhkkdhkhhhdhkhhhkhhhhhhhhhhhthkhhhhhhhkhkhhhhhhhhrhhkhhrhkhdhk

ELSE build a breadth-first search tree of the subprogram

DO for each back edge (n,,n.) in reverse order of

e 1

the length (no. of levelg) of the back edge

create new copy of the portion of the flowgraph
consisting of nodes Ny, 0, and all nodes on
forward paths from n, to

DO for each edge (nk,n)} going from a node in
the section that ha& been duplicated to a
node outside that section

add FOCE from new n, to n

k 1

ENDDO

add FOCE from n, to new ny
delete foce fro ny to nj

ENDDO

transform synchronisation statements (except schedule
statements) as specified in 5.1.

ENDIF

ENDDO

END

96

IF the schedule specifies P to be dependent

create IPPE (Cx’Qw) where Q is the wait for dependents
immediagely before the close of Q

ELSE create I1PPE (CX,RW) where R is the wait for dependents
immediately before the close of the

enclosing program

ENDIF

the schedule has a stalled clause until expression E is true

=

create node k of type WAIT FOR E
bo fpr each FOCE (Ce,l)

create FOCE (k,l)
delete FOCE (Ce,l)

ENDDO

create FOCE (Ce,k)
ENDIF
DO for each schedule node S in C, on process A
INSERT (A) at (S) im (C)
ENDDO

END

97

SEGMENT Inject

hhkhkhkrhhhrAARrARAh Ak hAARARAAR AR AR R AR A AR AR A AR A hArhA kbR bhhhthhhikkhk

* %*
* This segment inserts all IPPEs that could be needed *
* *

FhhhRRIARA LA A IAFRARKR AR A AR R A bk hhhhhhhhhhbhhhhbhhhhhhhhhhbhrdhhrdhkhhhk

DO for every wait node w in the graph
translate the wait expression into conjunctive normal form
DO for each term t in the wait expression
Do for every node n whose execution would set t true
create IPPE (n,w)
ENDDO
ENDDO

ENDDO

END

98

SEGMENT calculate executlon sequence sets

END

calculate ALWAYS sets
calculate NEVER sets

DO for all nodes in the flow graph
BEFORE(n) = @

ENDDO

DO for all nodes n in the graph in breadth-first search order

BEFORE(n) = CALCULATE BEFORE(n,p)
ENDDO
calculate AFTER sets

calculate ALWAYS BEFORE and ALWAYS_AFTER sets
calculate POSSIBLY BEFORE and POSSIBLY AFTER sets

SEGMENT calculate ALWAYS sets

END

calculate ALWAYS_BEFORQ_WITHIN"PROCESS and BEFORE_WITHIN“PROCESS
sets

calculate ALWAYS_AFTER_WITHIN”EROCESS and AFTER_WITHIN“PROCESS
sets

calculate ALWAYS SUBPROCESS and SUBPROCESS sets

calculate final ALWAYS sets

SEGMENT calculate NEVER sets

END

calculate NEVER_WITHIN_PROCESS sets
calculate final NEVER sets

SEGMENT

99

calculate ALWAYS BEFORE WITHIN PROCESS and
T BEFORE WITHIN PROCESS sets

for all processes p in the flow graph
DO for all nodes n in p in breadth-first search order

RS,

ABWP = ALWAYS BEFORE WITHIN PROCESS(e) for any node e
such that there exists an FOCE (e,n)

BWP = BEFORE WITHIN PROCESS(e)

DO for all nodés f # e such that there exists an
FOCE (f,n)

ABWP

4

ABWP intersection ALWAYS_BEFORE_WITHIN_
PROCESS(f)

BWP BWP intersection BEFORE WITHIN PROCESS(f)

W

ENDDO

ALWAYS BEFORE WITHIN PROCESS(n) = ABWP
BEFORE WITHIN PROCESS(n) = BWP

ENDDO

ENDDO

END

100

SEGMENT calculate ALWAYS AFTER WITHIN PROCESS and
AFTER WITHIN PROCESS

Do for all processes p in the flowgraph

DO for all nodes n in p in bottom-up breadth-first
search order

AAWP = ALWAYS AFTER WITHIN PROCESS(e) for any node e
. such that there exists an FOCE (n,e)

AWP = AFTER WITHIN PROCESS(e)

Do for all nodes f # e such that there exists an
FOCE (n,f)

AAWP = AAWP intersection ALWAYS AFTER WITHIN
PROCESS(f)

AWP + AWP union AFTER WITHIN PROCESS(f)
ENDDO

ALWAYS AFTER WITHIN PROCESS(n) = AAWP
AFTER WITHIN PROCESS(n) = AWP

ENDDO

'ENDDO

END

101

SEGMENT calculate ALWAYS SUBPROCESS and SUBPROCESS sets

DO for each process p in the flowgraph in leafs-up order

ASS = ¢

DO for all processes q such that SCHEDULE (q) belongs to
ALWAYS‘AFTER_WITHIN_PROCESS(pe)

ASS
ASS

ASS union ALWAYS SUBPROCESS(q)
ASS union g

[}

ENDDO

ALWAYS SUBPROCESS(p) = ASS
SS = ¢

Do for all processes q such that SCHEDULE (q) belgngs to
AFTER_WITHIN*PROCESS(pe)

SS
5SS

SS union SUBPROCESS(q)
SS union g

]

]

ENDDO

SUBPROCESS(p) = SS
ENDDO

END

102

SEGMENT calculate final ALWAYS sets
DO for each process p in the flowgraph in breadth-first order
IF p is the main program
A =
pe
A = A union ALWAYS_AFTER_WITHIN“PROCESS(p)

bo for all processes q belonging to ALWAYS SUBPROCESS
set of p

A = A union (qe)
A = A unlon ALWAYS _AFTER_WITHIN_PROCESS(q)
ENDDO
ALWAYS(p) = A
ELSE ALWAYS(pe) = ALWAYS(SCHEDULE p node)

ENDIF

DO for all nodes n in p excluding Py

= n

= A union ALWAYS AFTER WITHIN _PROCESS(n)
A union ALWAYS BhFORE WITHIN | _PROCESS(n)
= A union ALWAYS(p)

> e
#

for each process q such that SCHEDULE (q) belongs
to A minus ALWAYS(p)

I8

DO for each process r belonging to ALWAYS
SUBPROCESS(q)

A = A union (re)
A = A union ALWAYS_AFTER_WITHIN_PROCESS(re)

ENDDO

A = A union (qe)
A = A union ALWAYS_AFTER_WITHIN PROCESS(q)

ENDDO

ALWAYS(n) = A
ENDDO
ENDDO

END

SEGMENT

END

calculate N
for all pro

DO for al

NWP =
NWP
NWP =
NWP =
NEVER

L]

ENDDO

ENDDO

EVER WITHIN PROCESS sets
cesses p in the flowgraph
1l nodes n in p

all nodes in p

NWP minus BEFORE WITHIN PROCESS(n)
NWP minus AFTER WITHIN PROCESS(n)
NWP minus n

WITHIN PROCESS(n) = NWP

103

104

SEGMENT calculate final NEVER sets
Do for each process p in the flowgraph in breadth-first order
IF p is not the main program
NEVER(pe) = NEVER(SCHEDULE (p) node)
ENDIF
DO for each node n # P, in p
N = NEVER(pe)
N = N union NEVER WITHIN PROCESS(n)
Do for each process q such that SCHEDULE (q) belongé
NEVER WITHIN PROCESS(n)
N = N union all nodes in q
DO for each process r belonging to SUBPROCESS(q)
N = N union all nodes in r
ENDDO
ENDDO
NEVER(n) = y
ENDDO
ENDDO

END

105

SEGMENT CALCULATE BEFORE(m,p)

khhhkkhkdhhkhhhhhhhhhhhhhrhhhhrirhhhhhhirk

* *
* m is a node in process p *
* *

kkkkkkhdkhhkkdkkkkhhhhhhhkhkhhkhhihkkkhkhkkik
N = {all nodes} = identity

IF there exists (n,p) on SAVE such that n belongs to NEVER(m)
union {ancestors of m}

REDO = all entries on SAVE from (n,p) to the top
CALCULATE_BEFORE = N

RETURN

ENDIF
IF BEFORE(m) = ¢

CALCULATE BEFORE = BEFORE(m)
RETURN

ENDIF

push (m,p) onto SAVE
BEFORE SET = BEFORE WITHIN PROCESS(m)
E = the union of all nodes e in p such that there exists a flow
graph edge (e,n)
IF E# ¢
TEMP = N
Do for all nodes e belonging to E

TEMP = TEMP intersection {CALCULATE BEFORE(e,p) union
NEVER(e) }

ENDDO

I = the union of all nodes k in process q such that there
exists an IPPE (k,m)

IF 144
TEMPX = N
DO for all nodes k belonging to I

TEMPX = TEMPX intersection {CALCULATE BEFORE(k,q)
union k union NEVER(k)?}

106

ENDDO

ENDIF
ENDIF
BEFORE_SET = BEFORE _SET union TEMP union TEMPX
IF m belongs to REDO
BEFORE(m) = BEFORE_SET
ELSE remove m from REDO
ENDIF |
pop SAVE

END

107

SEGMENT calculate AFTER sets

DO for all nodes n in the flowgraph
Do for all nodes m belonging to BEFORE(n)
AFTER(m) = AFTER(m) union n

ENDDO

ENDDO

END

SEGMENT calculate ALWAYS BEFORE and ALVAYS AFTER sets
DO for all nodes n in the flowgraph
ALWAYS BEFORE(n) = ALWAYS(n) intersection BEFORE(n)
ALWAYS AFTER(n) = ALWAYS(n) intersection AFTER(n)
ENDDO

END

108

SEGMENT ~ calculate POSSIBLY BEFORE and POSSIBLY AFTER sets
DO for all nodes n in the flowgraph

POSSIBLY BEFORE(n) = BEFORE(n)
POSSIBLY AFTER(n) = ¢

ENDDO

DO for all nodes n in the flowgraph in breadth~first search
order

DO for all nodes e such that there exists an edge (e,n)

POSSIBLY BEFORE(n) = POSSIBLY BEFORE(n) union e union
POSSIBLY BEFORE(e)

ENDDO

ENDDO

DO for all nodes n in the flowgraph

DO for all nodes m belonging to POSSIBLY BEFORE(n)
POSSIBLY AFTER(m) = POSSIBLY AFTER(m) union n
ENDDO

ENDDO

SEGMENT

END

109

remove spurious IPPEs

until no more spurious IPPEs can be removed

calculate BEFORE sets

calculate AFTER sets

calculate ALWAYS AFTER sets

calculate NEVER sets

Do

for e

IF

OR
OR

ach IPPE in the flowgraph

predecessor node belongs to AFTER(successor node)
predecessor node belongs to NEVER(successor node)
there exists a node negating the predecessor node
belonging to ALWAYS AFTER(predecessor node) union
BEFORE(successor node)

remove IPPE from the flowgraph

110

SEGMENT find potentially infinite waits

DO for each wait nodé w in the graph

POSSIBLY INFINITE = FALSE

DO for each conjunct ¢ in w

CONJUNCT POSSIBLY INFINITE = TRUE

Do for each term t in c
TERM POSSIBLY INFINITE = TRUE

DO for each node nt setting t to true belonging

to ALWAYS(w) minus POSSIBLY AFTER(w)

NODE POSSIBLY NEGATED « FALSE

DO for each node nf setting t to false
belonging to {all nodes minus BEFORE(nt)
union NEVER(nt)} intersection {all nodes

minus {NEVER(w) union AFTER(w)}}

IF there does not exist a node nt
setting t to true belonging to
{ALWAYS AFTER(w) intersection
{all nodes minus {NEVER(w) union

POSSIBLY AFTER(w)}}}
NODE_POSSIBLY NEGATED = TRUE
ENDIF

ENDDO

IF NODE POSSIBLY NEGATED = FALSE
TERM_POSSIBLY INFINITE = FALSE

ENDIF

IF TERM_POSSIBLY_INFINITE = FALSE

CONJUNCI~POSSIBLY«INFINITE = FALSE

ENDIF

ENDDO

IF CONJUNCT POSSIBLY INFINITE = TRUE

POSSIBLY INFINITE = TRUE

ENDIF

ENDDO

I POSSIBLY INFINITE = TRUE

write error message

ENDIF

ENDDO

END

111

112

SEGMENT find instances of processes being rescheduled while still
active

DO for each SCHEDULE (p) in the flowgraph
IF there exists a different SCHEDULE (p) or CLOSE (p)
belonging to {all nodes minus {BEFORE union AFTER
union NEVER sets for this SCHEDULE (p)}}

write error message

ENDIF

IF there exists a different SCHEDULE (p) belonging to
BEFORE (this SCHEDULE (p))

AND the corresponding CLOSE (p) does not belong to
BEFORE (this SCHEDULE (p))

write error message

ENDIF

ENDDO

END

113

SEGMENT find other anomalies

DO for each T node in the flowgraph

DO for each process p that may be affected by the T node
IF SCHEDULE (p) does not belong to ALWAYS BEFORE(T)
OR CLOSE (p) does not belong to AFTER(T)
write error message
ENDIF
IF the T node is a terminate node
IF T does not belong to AFTER (CLOSE (p))
write error message
ENDTF
IF p i1s not dependent on the process containing T
write error message
ENDIF
ENDIF
ENDDO

