THE MULTIGRID ITERATION APPLIED
TO THE COLLOCATION METHOD
by
John Gary
Computer Science Department

~ University of Colorado
Boulder, Colorado 80309

CU-CS-164-79 October, 1979

This material is based upon work supported by
the National Science Foundation under Grant
No. ENG77-26893.

THE MULTIGRID ITERATION APPLIED
TO THE COLLOCATION METHOD
by
John Gary
Computer Science Department

~ University of Colorado
Boulder, Colorado 80309

CU-CS-164-79 October, 1979

This material is based upon work supported by
the National Science Foundation under Grant
No. ENG77-26893.

THE MULTIGRID ITERATION APPLIED
TO THE COLLOCATION METHOD

by

John Gary
Computer Science Department
University of Colorado
Boulder, Colorado 80309

This material is based upon work supported by
the National Science Foundation under Grant
No. ENG77-26893.

Abstract

We describe an application of the multigrid iteration to the
collocation approximation for elliptic equations. A block relaxation
and a projection operator specific to the collocation approximation
were required to obtain convergence. We illustrate the method with
the two point boundary problem. Results are also given for an elliptic
problem in two dimensions. Comments on computational efficiency are

given along with operational counts.

1. Introduction

We are concerned here with the solution of collocation approxima-
tions to linear boundary value problems, either two point boundary value
problems or elliptic problems in two dimensions. Our objective is to
demonstrate that the multigrid iteration can be applied to these approx-
imations in much the same way as it is applied to finite difference
approximations with two minor changes. The multiqrid iteration is
taken from the work of Brandt [2]. A block Gauss Seidel smoothing is
used since pﬁint relaxation does not converge for the collocation
approximation. Parter has also used a block relaxation for the colloca-
tion approximation and provides a proof of convergence for the one-
dimensional case [1]. The second difference lies in projection of the
residue from the fine to the course mesh. The convergence rate of the
multigrid for collocation is faster than for finite differences. However,
the coﬁputationa] work required to set up the collocation equations
is very great. Unless the collocation coefficients can be stored, the
method is probably not competitive with finite difference methods.

Our work will be based on the cubic Hermite basis in one dimension and
the bicubic Hermite basis in two dimensions [4].

2. Application to a two point boundary value problem

In this section we will illustrate the multigrid iteration as

it applies to the following boundary problem.

a(x) u__ + b(x) u, +c(x)u= f(x) (2-1)

XX X
The boundary conditions are the following.

u(0) = A u(l) = B
The multigrid method is of little value for such one dimensional prob-

lems since a direct solution is quite efficient. We use the one

dimensional problem as a simple "test bed" for the method, and also
to simplify this presentation. The collocation method is based on an
approximation of the solution u(x) by a linear combination of basis
functions. The differential equation and the boundary conditions are
then used to determine the coefficients in this representation.

We use the Hermite cubic functions as the basis. These are
piecewise cubic polynomials on each mesh subinterval [xi—l’xij‘ There
are two such polynomials associated with each mesh point which are non
zero only in\the single interval to each side of the mesh point. These
polynomials are pieced together so that the composite basis function
has a continuous first derivative. We denote the Hermite basis func-
tions on the interval [-1,1] by w(x) and x(x). These functions have
the following properties.

p(0) =1 w(0) =0 x(0) =0 x'(0) =1
Tﬁe basis functions associated with each grid point x; are denoted
by xéi?‘(X)
x) = w({xx)/h) 8500 = y((x=x;)/h) h
We use an equally spaced mesh X; = i/N where 1 <1 <N. The collocation

approximation of the solution u(x) is denoted by U(x) where
N 2 2

U(x) =z ci 8 x) + ¢S g5(x) (2-2)
The unknown coefficients {c?} are determined by the requirement that
the differential equation or boundary conditions be satisfied at the
collocation points.

These collocation points will be denoted by z? for 0 <1 <N and

1 <5 <2 where

2= %, - dh z§=x1.+dh fFor T<i<N-1 (2-3)

M 0

The parameter d is determined so that these collocation points are the
Gaussian quadrature points on the mesh interval [xin13x1] and thus has

the value d = (J§-~‘1}/(2J§). At the boundary the collocation

points are 1 _ - 1 2 _
zZ, 0 Z, d h zy = 1-d h zy = 1

We require that U(x) satisfy the differential equation at each interior
collocation point. At the interior point z% which Ties to the left of

the mesh point X; this substitution yields the following equation

i ' 1 S 1 1 g 1 1 S S
% alzy) ocofz:) +b(z:) o2 (z2) +c(z)) 63(2) > = 1 -
S e [a(zi) o5udz) +b(z5) o5, (25) +elzg) 45(2)1C5 = f(z]) (2-4)

We also require that U(x) satisfy the boundary conditions at the points

z% and zﬁ. Therefore we have 2N+2 equations for the same number of

unknowns {ci}. To determine the coefficients {ci} we must solve the
following linear system of equations

Me = f | (2-5)
where ¢ and f are vectors
= (cé,cg,...ci)
(

= (f(z)), £(z)

e

L f(22)

and the matrix M can be written in block form as

where the blocks Ai’ Bi’ and Ci are 2x2 matrices. Note that the matrix
M is neither symmetric or diagonally dominant. Therefore standard itera-
tive methods may not be successful with this problem. Boley and Parter

have obtained convergence results for block SOR applied to (2-5) [1].

The blocks are the 2x2 matrices used to define M in (2-5). The
multigrid method which we use is also based on a block Gauss-Seidel
iteration. This insures that the relaxation method used as

a part of the multigrid iteration is a smoothing operator in the sense
used by Achi Brandt [2]. A distributed relaxation method might be
devised for this problem, however, it would probably be no more
efficient than the block method provided the inverse of the 2x2
matrices needed in the Gauss-Seidel iteration can be computed once

and then savéd.

3. The multigrid iteration

We will assume that the reader is familiar with the multigrid
method. The basic idea is to use a sequence of mesh refinements, in
most cases each refinement has half the mesh spacing of the preceding
refinement. A smoothing iteration such as Gauss-Seidel is used to
reduce error in the higher frequencies. After a few iterations, the
higher frequency error will be largely eliminated, and then the error
reduction rate of the Gauss-Seidel will drop, since the iteration is
not very efficient in eliminating low frequency error. At this point a
projection to the next mesh is made and the process continues on the
course mesh. The Tow frequency errors will project into higher fre-
quency errors on the courser meshes so that there is hope for a more
rapid convergence. We write the equation to be solved on the mesh

with spacing h as follows (i.e., we rewrite (2-5)).

We also change to use of Uh to denote the collocation coefficients on

the h mesh. To denote the projection from the fine h mesh

to the course 2h mesh we use Iﬁh. The injection from the course mesh

. h
is denoted by IZh’

We use a block Gauss-Seidel iteration to smooth the errors on

each mesh. In terms of the block matrices this iteration is defined by

vl _ vtl
Bi Us = Fi Ai Ui

c.uY
1

1 (3-2)

Here UM1

denotes the successive iterates and U: is used for the two
coefficients at the point X; e We use the "full approximation storage"
algorithm (FAS) as described by Brandt [2]. The "cycle C" algorithm
would also work and is likely to be more efficient for linear problems,
however, the FAS algorithm is more general, so we tested it. In the

FAS case the residue Fy- Mhlih is projected from the fine to the course
mesh according to the following equation

= My (IE1(U,0) + T3 (F - My (U) (3.3)

Fon

The iteration on the course 2h mesh is applied to

M, U F

ondon = Loy (3.4)

A
The definition of the projection operator Iﬁh

for the residue requires a
longer explanation which we give below. The projection of the solution
simply involves taking the course mesh value to be equal to the fine
mesh value at the same mesh point, that is take the values at every
other fine mesh point down to the course mesh. To move the solution
from the course to the fine mesh Brandt suggests the formula

) h 2h, 0
U = Up# 15, (Upy = 100) (3.5)

The operator Igh is defined by linear interpolation, that is the values
on the fine mesh midpoints are obtained by average of the values at the

two course mesh points on either side.

The proper definition of the projection of the residue from the
fine to course mesh gave us some difficulty. The use of simple linear
interpolation from the fine to course mesh seemed to yield a divergent
iteration. Following a suggestion of Brandt, we regard ?ﬁh as dis-
tributing residue from each fine mesh point to the surrounding course
mesh points [5]. This yields a type of linear interpolation with
positive weights, but provides a rational for choosing the weights.

In Figure 1 we show the fine and course mesh with the fine mesh shown
above the course in order to clarify the figure. The residue on the
fine mesh points a, b, ¢, d is distributed to the course mesh points
A,”B, C as indicated by the arrows. Each fine mesh point gives residue
to the two closest course mesh points. The residue contributed to

the course mesh point is proportional to the distance to the point
divided by the sum of the distances to the two course mesh points.

We denote the residue contributed by the point a to A and B by ra,A

and vr_ .. The residue at a is given by " and that at A by rp- The

a,B
distance between points a and A is denoted by Da A and between a and B

by Da B The residue contributed by a to A and B is then given by the
relations
5D r
. ‘T 7a,B a
r = 2 = ,5(1-a) r a =D / (D_ 4D)
a,A Da,A~FDa,B a a,A a,A "a,B
.5D. r
Ya,B ~ {f’A+% = .5ary
’ a,A “a,B (3-6)
0, , = 1-38 e = (f3-172/3
Da,B =1-8

Since there are twice as many fine mesh points as course points, each

fine mesh point gives half of its residue to the course mesh. Note that

if the mesh spacing h is unity, then the distance between the collocation
points and the nearest mesh point is B = (J§~1)/ 2/5. The total residue
projected from the fine mesh to the course mesh point B is given by

rg = .5cxra + .5(1~u)rb'k.375rc4-.125rd (3-7)

At the boundary the projection is as indicated in Figure 2. The residue
projected to the course points A and B are

r, =r
A a

i

Sr, + . 5(1-a) rot.5ary (3-8)

"B b
The weights for each course mesh point sum to one, therefore a

~ constant residue projects into the same constant. If the weights did

not sum to the same value at all the course mesh points, then there would
be a distortion of the low frequencies which would probably have a bad
effect on the multigrid iteration. The boundary points are an exception.
Since the boundary condition is satisified exactly at all the mesh
levels, the residue is zero at these boundary points. Note that the sum
of the residue over the mesh is preserved by the projection to the

course mesh.

4. The results for the two point boundary value problem.

We next display the results for the multigrid iteration applied
to the following problem.

t !

a(x)u +a'(x)u = f(x) (4-1)
In this case we use a(x) = e™* and we choose f(x) so that u(x) = sin mx
is the solution of the differential equation. We use a Dirichlet boundary
condition at the left and a Neumann condition at the right, that is
u(0) = 0 u' (1) = -« (4-2)

The mesh used for this experiment contained 33 points, that is N = 33.

-10-

There are 5 successive grid refinements containing 3, 5, 9, 17 and
33 points. We used a fixed iteration scheme, each cycle of which involved
one Gauss-Seidel iteration on mesh Tevels 5, 4, and 3, two iterations
on level 2 and three iterations on level 1 (level 5 is the finest level).
One cycle starts with the iteration on level 4, drops down to level 1
and proceeds back thru level 5. One work unit is defined to be the
work required for one Gauss-Seidel iteration on the finest mesh, there-
fore an iteration on level 4 requires .5 work units, and an iteration
on level one requires 1/16 units. One cycle requires 3.19 units. For
a two dimensional problem the work units are more heavily dominated by
the work required on the finest mesh.

The results are displayed in Table I. The norm used to measure

vt]

the difference between iterates [[U” ~-U"|| involves both the function

values and the derivaties at each mesh point. The LZ norm is used,

that is
. 1/2
1] = (U240 (x)?) (4-3)
i
The errors shown are the L2 norm for the function values
1/2 _
e(u) = (2 (Ulx;) - u(x;))?) (4-4)
i
and the L2 norm for the derivatives.
. , . 5 1/2
e(u') = (5 (U (x;) -u (x;))9) (4-5)

1 1

Note that the coefficients c? in the collocation representation of the
solution are just the values of the solution and its derivative at

each mesh point, that is

-14-

The average convergence rate per cycle, for the difference in
iterates averaged over 5 cycles is 0.28. It is possible to obtain an
estimate for this convergence rate for a constant coefficient problem
(a(x) =1) having periodic boundary conditions. The problem can then be
solved by Fourier analysis as described by Brandt [2]. 1In our case
this requires computation of the eigenvalues of a 2x2 matrix because
of the block nature of the iteration. The Fourier analysis involves
a finite number of frequencies equal to the number of mesh points. The
smoothing rate defined by Brandt is the convergence rate for the upper
half of these Fourier modes, that is the higher frequency modes. This
smoothing rate has the value y = 0.43. The convergence rate per work
unit is then given by H?WZMd where d is the dimension (d=1). This
value is 0.26 which is in good agreement with the observed value

of 0.28.

5. Application to an elliptic equation in two dimensions

In this section we will extend the collocation-multigrid
approximation to the following elliptic equation in two dimensions.

al(x,y)uxx'+a2(x,y)u +a3(x,y)ux'*a4(x,y)uy~+a5(x,y) = f(x,y) (5-1)

Yy

for 0<x, y=<1

The boundary conditions have the form
Al(x,y)ux-*AZ(x,y)uy-FAa(x,y)u = g(x,y)

We use the bi-cubic Hermite functions as the basis. These are tensor

products of the basis functions described in Section 2, namely

05306Y) = of(x)e3(y) (5-2)
where the functions ¢:(x) are defined in Section 2. The approximate

solution has the representation

n 2
Ulx,y) = 2. et TS (x,y) (5-3)
i,j=0 rg=1

-12-

We have assumed a square NxN mesh only for simplicity of exposition.
Note that there are now four basis functions associated with each mesh
point. The coefficientS-c:§ are related to the function U(x,y) by

the following

1 21 _
i U(x].,yj) ij Ux(xi’yj) (5-4)
12 22 =

The collocation points are the tensor products of the points used in

one dimension, that is 213 = (x?,y?). The Tocation of these collocation
points is illustrated in Figure 3. Each mesh point is associated in a
‘natural way with its four nearest collocation points. The block
Gauss-Seidel iteration then relaxes the four basis coefficients at a
given mesh point simulaneously by the requirement that the equations

on the four associated collocation points besatisfied. This requires

the solution of a 4x4 system of equations at each mesh point. The
collocation equations can again be written in the matrix form of (2-5)
except that the structure of the matrix is now more complex. We again
modify our notation and represent the basis coefficients c?? by U?j.

An assembly process similar to that used in the finite element method

can be used to construct the collocationmatrix M. Given the collocation
rs

point Zij

containing the collocation point contribute to the equation at that

only the basis functions at the corners of the grid cell

point. Therefore we need assemble only over those four corner points.

The collocation equation at the point z?? can be written as follows.

2
Pq +
(ket) prg=1 20253000 xx * 2202550800y
s 3 (5—5)
Dq =
ag(233)ehg] Vg = £(23)

The indices (k,£) range over the four corner points of the cell con-
taining z??. In terms of the matrix M of the collocation equations

this is written

z Z m(isjsras;kyzspsq) UE? = f(s

- (5-6)
(k,£) p,q i)

As mentioned above, the block relaxation requires the solution of a
4x4 system of equations which involves the four collocation points
associated with the grid point where the solution is updated.

The pfojection operator used to map the residue from the h mesh
to the course 2h mesh is the tensor’product of the one dimensional
projection. In one dimension we denote the residue at the xi colloca-
tion point by ri. Note that p (1 <p <2) selects the two collocation

P th

points X associated with the k= grid point. We also use subscripts

¢ and f to denote course and fine mesh values, so that rg K and r? K
: , ,

denote residue on the course and fine mesh. Then the projection

operator in one dimension can be written
- bop -
Peai T ki 9k TF Lk (5-7)

Here the indices k and q determine the four collocation points xi

on the fine mesh that are closest to the point x? on the course mesh.

The evaluation of the coefficients di is illustrated in (3-7) and

A
(3-8). The projection mapping for the residue in two dimensions Iﬁh is

defined by the relation

st

- P .9 pqg
c. i3 I dt d, r

kéf;Paq R

6. Results of a two dimensional computation

We applied the multigrid-collocation method to the following

problen

~14-

+ 4 = < -
au, ., auyy-faxux Byl f 0 <x,ysl (6-1)

The coefficient function was defined by a(x,y) = e "™ and the right
side f(x,y) was choosen so that the solution was u(x,y) = sin n(x+y).
Dirichlet boundary conditions were imposed on all sides of the unit
square. We tested mesh resolutions of MN=5, 9, and 17. The results
displayed below are for N=17. A fixed mesh refinement was used with
one iteration at level 4 (N=17), 2 iterations at the remaining levels
3,2, and 1. The cost for this scheme is 2.3 work units per cycle. The
norm used to measure the difference between iterates involved all four

values at the grid points, that is

} 1/2
[T N (H R SOk (6-2)
i,d s,t
The error is measured by {lUv-u][D and also by |[UY-u||. The former
involves the derivatives, that is
. 1/2
v r 11 2 21 2 2
“U “uHD - [.(12\] (UTJ-_U'I\]) + (U73 uij,x) + -~*)/4(N+1)] (6"‘3)
The Tatter involves only the values of the function
' A 1/2
-l = [(U35 - uy)7 0017 (6-4)

J
Note that the error is measured relative to the solution u(x,y) of the
differential equation and not relative to the solution of the colloca-
tion equations. Therefore this error will not approach zero as the
number of iterations grows. However, we do not seem to have reached
the Timiting error after 12 cycles. The results are shown in Table II
below. The average convergence rate per work unit over 12 cycles for the

difference between iterates is 0.65, and 0.64 for the error based on

the full norm HUv-uHD. The convergence rate for the function

values alone [[UY-ul| is 0.71. The convergence rate measured over

cycles 6 to 9 and 12 ranges from 0.68 to 0.72.

A model analysis based on Fourier series similar to the one
dimensional case yields a theoretical convergence rate of 0.41. This
value is based on the spectral radius of the 4x4 matrix defined by the
block iteration scheme. These eigenvalues were computed numerically
by an IMSL Tibrary routine. The discrepency between estimated and ob-
served convergence rates is too large. We are currently attempting to
discover an explanation. The computations described in Tables I and
IT were runton a DEC-10 computer with a 36 bit word Tength.

7. Computational efficiency.

In this section we will provide an approximate operational count
for the multigrid-collocation method. An estimate of storage require-
ments will also be given. The evaluation of the collocation matrix
(5-6) requires an evaluation of the basis functions (5-2). Our code
did not take advantage of the tensor product form of the basis functions,
which made the computation far more costiy than it should have been. The
evaluation of the basis functions at each mesh point requires computa-
tion at four collocation points, four neighbors of each collocation
point, five derivatives (¢xx’¢yy” ¢x’¢y’ ¢), for each of four basis
functions. Each basis function requires about two floating operations
and two function calls which we assume require the equivalent of eight
floating operations each. Therefore the evaluation requires
4x4x5x4x18 = 5760 operations per mesh point or 5760 (N+1)2 operations
for one sweep thru the mesh. If we had used the tensor product formula-
tion this would have been reduced to 198 (N+1) + 640 (N+1)2 opera-
tions. These counts include additions as well as multiplications. To

compute the matrix (5-6) given the basis functions requires five

multiplications and additions for the five derivatives, four collocation
points, four neighbors, and four basis functions at each mesh point.
This totals to 64O(N+1)2 operations. Within the Gauss-Seidel
iteration, the computation of the right side of the system of four
equations requires a sum of products over four collocation points,
three neighbors, and four basis functions for a total of 96(N+1)2
operations. The forward substitution requires 36(N+1)2 operations
and the back substitution 28(N+1)2 operations. Note that the pro-
jection from the fine to the course mesh requires the computation of
the collocation matrix (5-6) on both the fine and course mesh and the
evaluation of the projection coefficients (5-7) on the course mesh.
To store a variable over all the mesh refinements requires about
1.5x4(N+1)% Tocations, since 1 + (1/2)% + (1/4)° + ... = 1.5. There-
fore to store the collocation matrix (5-6) would require 1.5x64(N+1)
Tocations and to store the reduction coefficients (5-7) would require
.5x64(N+1) Tocations. This is likely to be more storage than most
applications can afford unless the collocation approximation permits
a much smaller number of mesh points than a fourth order finite
difference scheme would require.

To check out these operational counts we timed the code on the
CDC6400 at the University of Colorado. We used the MNF coﬁpi]er for
the timing runs. On simple loops involving efficient subscripts for
two and three dimensional arrays this compiler will usually require
around 6-12 microseconds per floating point operation. This time in-
cludes the overhead for loops, subscripts, etc. However, the loops

should contain no complex subscript computations or branches if this

time is to be achieved. The FTN compiler will usually .

Y

run about 5 microseconds per floating point operation on such loops.
The total operations required for computation and forward substitution
for the matrix (5-5) is

(5760+640+36) (N+1)2
If we use 10 microseconds per floating point operation, this gives a
time of 64 m.s. per mesh point. If we had coded a tensor product
formulation of the basis functions this would have been 13.2 m.s. To per-
form the Gauss-Seidel iteration requires an additional 1.2 m.s./point.
The clock times for N=16 were 57 m.s. for the matrix and 5.5 m.s. for
the relaxation. The poor agreement for the relaxation portion of the
code is probably due to subscript computation. The inner ﬁortion of
the Gauss-Seidel loop contains two floating point operations, but 10
arithmetic operations and two array references associated with sub-
scripts. Also a call to a 1inear/equation solver is made at each mesh
point to solve a 4x4 matrix and this must have a very high overhead.
The use of simultaneous relaxation instead of Gauss-Seidel would per-
mit the relaxation to be written in an efficient vector form free from
subroutine calls and slow subscript calculation. The remainder of the
code with the exception of pivoting in the linear equation solver
is written in vector form and should run efficiently on the CRAYI.

In conclusion, the multigrid iteration seems to converge fairly
rapidly for the collocation matrix, at least for the few cases we have
run. Also, the computation is not too expensive, provided the relax-
ation loop is written more efficiently than we have, and provided
the computation of the collocation matrix is done once and can then
be amortized over many relaxation iterations. This imposes a very

large storage requirement which may be too much for most problems.

-18-

Houstis, et.al [3] found the collocation method to be most efficient
for elliptic problems when the matrix is solved by a direct solver.
This conclusion may not hold when the matrix is solved by iteration.
An iterative method may be best when the elliptic equation must be
solved at each time step of a "marching problem." Such problems
arise in fluid mechanics when a stream function must be computed
during the solution of a time dependent marching problem. The
solution of the incompressible Navier Stokes equations is such a
problem. In some cases the coefficients of the elliptic equation
are time dependent which causes most direct methods to become
inefficient for these problems. It would also cause this iter-
ative method to be inefficient since the matrix would have to be

recomputed on each time step.

References

1. D. Boley and S. Parter, "Block relaxation techniques for finite-
element elliptic equations: an example," Los Alamos Report,
LA-7870, Los Alamos Scientific Laboratory (1979).

2. A. Brandt, Math. Comp., Vol. 31, No. 138, pp. 333-391.

3. E. N. Houstis, R. Lynch, J. Rice, Jour. Comp. Phys. Vol. 27, No. 3,
pp. 323-350, (1978).

4. ?. Schultz, "Spline Analysis," Prentice Hall, Englewood Cliffs,
1973).

5. A. Brandt, personal communication.

Cycle Work U -y error e(u) error e(u')

0 1.0 0.39 0.69 2.2

1 4.2 - 0.27 4.7(-2) 0.20

2 7.4 9.1(-2) 3.6(-3) 2.9(-2)

3 10.6 1.1(-2) 4.2(-4) 7.6(-3)
' 13.8 2.7(-3) 5.3(-5) 2.1(-3)
5 16.9 7.3(-4) 1.2(-5) 6.1(-4)

TABLE 1I.

Convergence rate for two

point boundary value problem equation (4-1).

vt]

Cycle Work v wUVHD !IUV~LM{D HUV~uH
0 1.0 178. 178. 0.58
3 7.8 5.7 1.4 4.4(-2)
6 14.7 0.14 6.9(-2) 3.9(-3)
9 21.5 9.6(-3) 5.4(-3) 3.4(—4)
12 28.4 7.4(-4) 5.3(-4) 3.0(-5)
TABLE I1I

Convergence for the problem (6-1).

Figure 1. Projection operator Igh
, . . 2h
Figure 2. Projection Ih at the boundary.

Figure 3. The collocation points on a 3x3 mesh.

Figure 1

Figure 2

¥ ¥ % a3
X X X X
X) 4 X X
X X X X
X X X X
¥ K # >

Figure 3.

