CONTINUOUS GRAMMARS
by

A, Ehrenfeucht*

* &
H. Maurer
Kk ke
G. Rozenberg

CU-CS-162-79 August, 1979

*A. Ehrenfeucht, Dept. of Computer Science, University of Colorado,
Boulder, Colorado 80309 USA
**H. Maurer, Institut fur Informationsverarbeitung, Technische
Universitdt Graz, A-8010 Graz, AUSTRIA
*kk
* G. Rozenberg, Institute of Applied Mathematics and Computer
Science, University of Leiden, 2300 RA Leiden, Holland

A1l correspondence to G. Rozenberg.

CONTINUOUS GRAMMARS

by

A. Ehrenfeucht

Department of Computer Science
University of Colorado-Boulder
Boulder, Colorado 80309 USA

H. Maurer

Institut fur Informationsverarbeitung
Technische Universitat Graz
A-8010 Graz
Austria

G. Rozenberg
Institute of Applied Mathematics and Computer Science
University of Leiden
2300 RA Leiden
Holland

ATl correspondence to G. Rozenberg.

CONTINUOUS GRAMMARS

by

A. Ehrenfeucht

Department of Computer Science
University of Colorado-Boulder
Boulder, Colorado 80309 USA

H. Maurer

Institut fur Informationsverarbeitung
Technische Universitat Graz
A-8010 Graz
Austria

G. Rozenberg
Institute of Applied Mathematics and Computer Science
University of Leiden
2300 RA Leiden
Holland

All correspondence to G. Rozenberg.

ABSTRACT

o

In this paper we continue the study of selective substitution
grammars which form a framework for most of the rewriting systems
studied in the literature. The continuous grammars we study in this
paper generalize the basic rewriting principle of context-free
grammars and EOL systems. The paper studies the language generating

power of continuous grammars.

INTRODUCTION

Selective substitution grammars were introduced in [R] and
further studied in [RW]. They form a framework for most of the
rewriting systems studied in the Titerature. A selective substitution

grammar is of the form G = (I,h,w,K,A) where (I,h,w,A) is an EOL
(1)

system and K is a selector set, K c (I u‘f)* where T = {a : a z}.
To rewrite a word o from I in G one looks in K for a word o that
differs from o only in that some occurrences of letters in a "get
barred" (that is they become elements of £) and then one rewrites

all occurrences from a that are barred in &. Hence G becomes a
context-free grammar if K = X*(§§ZS Z* and it becomes an EOL system
if K= 3. It is demonstrated in [R] how by a simple choice of the
selector set one can characterize a multitude of rewriting systems.

In this way one gets a unifying framework for studying rewriting
systems.

This paper continues the study of selective substitution grammars
by concentrating on a particular kind of selector set; we require that
K = \\f,/ Xi*7}+2i* where X., Y., Z, ¢z for 1 <1 <n. In this way
eachjt;mé a word o is rewritten it is really divided into three parts
a = xyz where for some 1 <1 <n, X ¢ Xi*’ Y € Yi+ and z « Zi* and then
the subword y is rewritten according to productions from h. In other
words each time a word a is rewritten its continuous setment is
rewritten. Context-free grammars are 1ike this with the restriction

that such a segment consists of one occurrence of one letter only;

EOL systems are like this with the restriction that such a segment is

the whole word. Hence context-free grammars and EOL systems form two

extreme cases of continuous rewriting. In this way continuous grammars
form a natural generalization of both context-free grammars and EOL
systems.

The paper is organized as follows.

In Section I continuous grammars are introduced and illustrated
by examples.

In Section II two important normal form theorems for continuous
grammars are established.

In Section III we depart to study the structure of ETOL
languages. The results of this section, interesting on its own, are
used in Section IV.

In Section IV we compare the language generating power of ETOL
syétems and continuous grammars.

In Section V we consider a variation of continuous grammars. The
language generating power of those grammars is considered.

We assume the reader to be familiar with rudiments of formal
language theory (see, e.g., [S]) including the theory of L systems
(see, eqg., [RS] - our notation concerning EOL and ETOL systems is
from there).

We use mostly standard Tanguage - theoretic notation and
terminology. Perhaps only the following requires an additional
explanation.

(1). For a word a and a letter b, #ba denotes the number of ~~
occurrences of b in aj|a| denotes the length of a and A denotes the
empty word.

(2). For a class W of rewriting systems, L(W) denotes the class of

languages generated by systems from W.

-3-

(3). Throughout the paper, given an alphabet %, © = {a : a ¢ I}.

ey k>1, Bpseeesd) € I, a0 =a RN

Then A = A and for o = a 1

1

-4-

I. CONTINUOUS GRAMMARS AND LANGUAGES

In this section continuous grammars are introduced and
illustrated by examples.
Definition. Let n be a positive integer.

(1). An n-continuous grammar (nC grammar, for short) is a construct

G = (,h,w,K,A) where (Z,h,w,A) is an EOL system (called an underlying

k. 4k *_ 4k
EOL system of G and denoted U(G)) and K = X1 Y1 Z1 Uewo U Xn Yn Zn

with X., Y., Z, <X for 1 < i < n; K is called the selector set and

Lokl K
each Xi Yi Zi s referred to as a selector.

*
(2). Let o e 5* and B e . We say that o directly derives B in G,

written as a §> g, if there exists an i, 1 < i < n, such that a = xyz

* + * . B
for some X « Xi , Y € Yi , Z € Zi with y = CPRRRLEPR >1, qaee B €)
and B = Xy ¥p- .Y Z where y; € h(aj) for 1 < j <m.

*
- (3). The relation & is the transitive and the reflexive closure of

*
the §> relation; if x E> y then we say that x derives y in G.

(4). The language of G, written as L(G), is defined by
* .
L(G) = {a e A : @ %> a}; L{G) is referred to as a nC language.

ERARISE Sntiuen Sw

(5). A grammar G(language L) is continuous if it is n-continuous for

some n = 1; we say that G is a C grammar (L is a C language). [

Thus to rewrite a word a in G one has to choose a selector

*_

Xi Y1+Zi* such that o can be written in the form o = xyz and the

chosen selector contains the word xyz, then one rewrites all letters
from y according to productions in U(G), while x and z remain intact.
Definition. Let G = (Z,h,w,K,A) be a n-continuous grammar

¢ N *__ *
where K = &\,// Xi Y1+Zi .
i=1

(1). We say that G is n-left-continuous (nLC for short) if Zi = @

for al1 1 < i < n. We also say that G is a left-continuous grammar,

written as LC grammar.
(2). We say that G is n-right-continuous (nRC for short) if Xi =0

for all 1 < i < n. We also say that Gisaright-continuous grammar,

written as RC grammar. 0O
We give now several examples of continuous grammars and languages.
Example 1. Let G = ({A,a,b}, h, A, K, {a,b}) where h(A) = {Az,a};

h(a) = {a,ab,ba}, h(b) = {b} and K = X. V.7 *

3 »l'k.Y,.+;_~k
1 14 LJXé 2 ZZ where
X1 = Z1 =0, Y1 = {A} and X2 = Y2 = Z2 = {a,b}. G is a 2-continuous

grammar. It is easy to see that L(G) = {a ¢ {a,b}’ : #au = 2" for some n = 0}.

Note that G is neither Teft-continuous nor right-continuous grammar. [

Example 2. Let G = ({a,b}, h, bab, K, {a,b}) where
h(a) = {babab}, h(b) 7.t

* *__
{A,b,bz} and K = X Y1 Z1 U X2 Y2+ZZ*’ where

f

1
X1 =1, =9, Y1 = X5 = Ly = {a,b} and Yo = {b}. G is a 2-continuous

grammar. It is easy to see that L(G) = {a < {a,b}’ : #o = 2" for some 'z 0},
hence we get the language from Example 1. However, this time our

grammar does not have nonterminals (that is 3 = A). Note that G is

neither a Teft-continuous nor a right-continuous grammar. [J

Example 3. Let G = (Z,h,w,K,A) be the 3C grammar where

Z = {S,l,yﬁ,%,a,b,*}, w = Ss A= {a,bs*}a h(S) = {a51$,*}, h(*) = {¢},

h(1) = {a}, h(a) = {a,b}, h(#) = {#£,x}, h(g) = {A) and h(b) = {b},
3 k. bk _ B B B B

K =1K;)1 T2 with X = = (), Xy = 8, Yy = (Sh Y = el

Yy = {a,b,#,8) and Z, = Zy = Zy = {1,8}. It is very instructive for

the reader to check that L(G) = {(abM" s m=n = 1},

W

Note that G is neither a left-continuous nor a right-continuous grammar. 0O

Example 4. Let G = ({a,b,c}, h, cba, K, {a,b,c}) be the right-

*-—-——w——-—-
continuous grammar where K = {a,b,c} fa.b,c}" and the finite substitution

is defined by h(a) = (a2}, h(b) = (b2} and h(c) = {c°}.

difficult to see that L(G) = (MMt n s, spt(n) and spt(m) < £},

It is not

where spt(x) is the smallest positive integer y of the form 2! for

some i = 0 such that y =2 x. [

IT. NORMAL FORM THEOREMS

In this section we establish two normal form theorems for
continuous grammars: one says that it sufficies to consider Teft-
and right-continuous grammars only, the second one says that it suffices
to consider continuous grammars with two selectors only.

Theorem 1. For every continuous grammar there exists an
equivalent Teft-continuous and an equivalent right-continuous grammar.

Proof.

We will demonstrate the existence of an equivalent Teft-continuous
grammar; the existence of an equivalent right-continuous grammar 1is
shown analogously.

Let G = (&,h,w,K,A) be a continuous grammar with K = Kpv...uk
where K, = X V. 7% for 1 <4 < n.

i i i
Let, for x e {£,r,2L,2r}, I, = {[a,x] : aex}

and Zﬁﬂ,l = {[a,2L,1] : aex}.

A
let § = \\sjj I U Ty, UL,

X e {L,r,2L,Lr}

Let h be the finite substitution on I* defined by:
for a € 1,
h(a) = {[a,2], [a,rl,
h([a,2]) = ([a,ee], [a,er]},
h([a,ee]) = {[a,ee,17,
h([a.e2,17) = h([a,r]) = ta}, and
h([a,er]) = (ata € h(a)l.
Let, for 1

IA

i <n,

0, = {[a,0L,1] : a ¢ Xi} u {[a,&r] : a « Yi} v {[a,r] : a e Zi}‘

-8-

+ —t _* *

— _ :“+
Let Mb =75, Mﬁ = I, zp, M@K z (ZKYU Zr)

n
n, Moo= B Then let K= My um, uMy, o\ _J M.
A A i=1
, hy, w, K, a).

and, for 1 < i

M> A

Let H = (

M simulates G as follows.

Given a string o over T (the axiom w is such a string) every
letter a in it gets rewritten as [a,£] or [a,r] using selector M.
Since Mﬂ is the only selector that can be used next, all [a,2]-Tetters
must appear to the left of all [é,r]—]etters. Selector M, rewrites
every letter [a,£] into [a,£L] or into [a,&r]. Since Mﬂﬂ is the only
selector that can be used next, all [a,l]-Tetters must appear to the
left of all [a,fr]-letters. Then if we want to simulate the application
of selector Ki to o in G, 1 < i < n, we apply selector Mi in H.

Based on the above description one can easily construct a formal
proof that indeed L(H) = L(G). Since H is left-continuous the theorem
holds. O

Theorem 2. For every continuous grammar G there exists an
equivalent 2-continuous grammar H. Moreover, if G is left-continuous
or right-continuous then so is H.

Proof.

Let G = (%, h,w, K, A) be a continuous grammar with
K= Ky ... UK where Ki = X(V.Z) for 1< 4 <nwith X;,Y,.2; = 5.
(If @ ¢ £, then o) ~ {a(i) :ae 0} and if a e I then (1) denotes
the word resulting from o by replacing every letter a in a by
()5 My T M

Let, for 1< i <n, 54y = {agyy tac £}, i(i) = {é(i) ta e 1}

A n no..
and ¥ = 3 UUZ(1) UUZ(1)°
i=1

i=1

Ak
Let Q be the finite substitution on & defined by:

forae s and 1 <1 < n-1,
A

h(a(.‘)) (1’*‘1), é(?+1)’ a}> h(a(n)) = {a(l)s é(l), a}’ and
}/’)\(é('l)) () Lo € h(a)}. e
Let M= (M, My, where M (kw))) and
+
n %/ N . n‘ *
= | Do 1D,)(H(zgm)

Then let H = (g ﬁ B(1) M, o). Clearly if G is a left-continuous
or a right-continuous grammar then so is H. It is not difficult to see
that indeed L(G) = L(H). The key observation here is that the selector
M1 rotates subscripts (i) in a word in a cyclic way so as to make it
possible to simulate an arbitrary Ki' This is actually done by MZ;
moreover if any letter from § \'Z in a word o is replaced by a terminal
letter (from A) then all letter from g \' Z in o must be replaced by
elements from Ao (and this is done by using selector Ml); otherwise
the obtained word cannot be rewritten any more and one obtains a

P

"useless setential form." [

-10-

ITI. AN EXCURSION IN ETOL LANGUAGES

In this section we investigate the structure of derivations
in ETOL systems (Theorem 3 and Corollary 1) and then provide a new
result on the combinatorial structure of ETOL languages (Theorem 4)
which enables one to prove that certain languages are not ETOL
languages (Corollary 2). Our Corollary 2 will be very crucial in the
next section when we compare L(ETOL) with L(C). We are also convinced
that the results of this section shed new 1light on L(ETOL).

To investigate the structure of derivations in (E)TOL systems
we need the following notions.

Definition. Let G = (z, H, w) be a TOL system.
(1). For a word o € L(G) let sha denote the length of the shortest
derivation of a in G.
(2). For a letter b ¢ ¢ let M(b) denote the set of all words o ¢ L(G)
satisfying the following two properties:
(i). if 8 ¢ L(6) and shp < sha then #8 < # o, and

(ii). if B « L(G) and §b€ = §D0 then #ba < #po. O

Theorem 3. Let G = (z, H, w) be a TOL system, let #& = m and
let b e 2. If o c M(b) then sha < #o - m'.

Proof.

Let G = (z, H, w) be the combinatorially complete version of G,
that is G is a DTOL system such that

H=1{h:hisa homomorphism on Z* and for some
h in H, h < h}.
(i). For every b ¢ z and for every o « M(b) there exists a

8 € M(b) n L(G) such that sha = shg and oo = #8.

-11-

Proof of (i):

Assume that o ¢ M(b) and consider a shortest derivation D of a
in G (that is a derivation of o of the length sha). If in traceD
(that is in the sequence of words occurring in D except for o) every word
is such that if it contains at least two occurrences of the same
letter then all those occurrences contribute equal subwords to a,
then clearly a ¢ M(b) n L(G) and (i) trivially holds.

Hence let us assume that traceD contains a word y such that vy
contains two occurrences 01 and O2 of a letter (say c) which contribute
different subwords to «; let T1 and T, be subtrees of the derivation
forest TD of the derivation D’rooted at 01 and O2 respectively. The
situation is represented by the following picture (we assume that O1

is to the left of 02):

-12-

Let us modify D in such a way that we replace TZ by Tl‘ Clearly
in this way we obtain a derivation 6 of a word & in G. Note that
both D and 6 are of the same length.

Notice that #ja = #bQ. Otherwise one of Tl’ Ts (say Tl) contributes
more occurrences of b in o« (in D) than the other. Then #b& > #ba
which means that sha < sha and #b& > #y0 contradicting the fact that
o e M(b). (Symmetrically if T, contributes more occurrences of b in
o (in D) than Tl then if a is the word obtained by replacing T1 by T2,
the above reasoning holds again).

This implies that shd = sha.

If we iterate the above process going (say top-down) through
all the words in trace D then we arrive at a derivation tree D of a
word g such that shg = sha and #bB = #ba where D is also a derivation
tree in G. Hence (i) holds. [J
(ii). Let b e ¢ and let 8 ¢ M(b) n L(G). Then_ﬂs__f}B < #8 - g

Proof of (ii).

Let D be a shortest derivation of 8 in G. For a word y in
trace D and a nonnegative integer k we say that y is a k-word if
v contains exactly k occurrences each of which contributes in D at
least one occurrence of b in g.

Now we can divide words in trace D in blocks grouping together
all consecutive words that are k-words for some k. In this way we

get the following situation:

-13-

D: A w -
' ' Nk BLOCK 1. A1l words here
‘} are kl—words.

- BLOCK 2. A1l words here
are kz-words.

- BLOCKs.. Al1l
words here

#(are ks—words.

B

Since an ancestor of an occurrence that contributes an
occurrence of b to g also contributes an occurrence of b to g, we get

k1 <ky <l < ks'
Let us consider now a block, say BLOCK i for 1 <1 < s. Let it

consist of Ei words. We claim that £1 < m". This is seen as follows.

If Ki = 1 then clearly Ki < m". Otherwise we proceed as follows.

A

Let Yj be the j'th word in BLOCK i, 1 < j < Ki and let .
xj,l"“’xj,ki be the sequence of all occurrences in yj (occurring
in Y5 in this order) that contribute at least one occurrence of a to
8. In this way for each 2 < j < ﬂi we get a ("being an ancestor of")

function gj mapping {Xl,l""’xlaki} onto {Xj,l’“"’xj,ki} such that

-14-

gj(xl,t) = Xj ¢ for 1<t <k, Since Gis a DTOL system we can

i

»

consider g to be a function from a subset of » into a subset of =.

Now to prove that Zi <" we assume otherwise, i.e., Ki S
Then clearly either 9, is the identity mapping (on the set of letters
corresponding to X1 1,...,X1 K) or there exist r, s, 2 <r <s < Ki
] b .i

such that 90 = 9 Let us consider the first possibility first.

s
Then we can modify D to D in such a way that we do not change D up to
Yy and then we apply the sequence of tables leading from Vg to B.
Note that in this way we get a word 8 (the result of D) such that
shg < shg and #bﬁ'z #bB. This contradicts the fact that g « M(b) and

so it must be that Ki <m".

On the other hand it is clear that s < #g and so shg < #28 - m"
which proves (ii). 0

Clearly (i) and (i1) imply the theorem. [J

Corollary 1. Let G= (z, H, w) be a TOL system, where #& = m,
the maximal length of the right-hand side of a prodhction in G equals n,
o] = q, and Tet b ¢ ©. If a « M(b) and #pe = v then la] < anmm.
Proof.

Directly from Theorem 3. [J

Now using the above result we can prove a result on the combinatorial
structure of languages in L(ETOL).

Theorem 4. Let K be an ETOL language over an alphabet .z and let
b ¢ © be such that {#ba :a e K} is infinite. There exist a positive
integer constant Q, an infinite strictly growing sequence {ni}iezN+

of positive integers and an infinite sequence {ai}iezN+ of words from K

n,
such that # o, = n, and lag| < Q ! for each i ¢ N'.

-15-

Proof.

Let K and b satisfy the assumption of the theorem.

It is well-known (see[ER3]) that each ETOL language is a coding
of a TOL language. Thus Iet G= (8, H, w) be a TOL system and let f
be a coding such that K = f(L(G)).

Since {#ba : a e K} is infinite, there exists a letter d ¢ & such
that f(d) = b, {#jo : o« L(G)} is infinite and consequently M(d) is

infinite. Let B ¢ M(d). By Corollary 1 there exists a positive

8
integer constant Q such that |g] < Q 4" Since |f(g)] = |g| and
#bf(s) > #48 we get ‘
[f(8)] = Q e e e e e C e (%),
Let W= {f(B) : B ¢ M(d)}. Then clearly Z = {#o o e W} is
infinite. Let us choose from W an infinite sequence {ai}i N+ of
€
nonempty words such that #bai < #ba1+1 for j e N+ andv]et
{ni}- , be the corresponding sequence of lengths (that is n, = |a.|
1el 1 1
for i ¢ N¥). Then (%) implies that the theorem holds. 0
: m
Corollary 2. Let K be a Tanguage such that K g-_:_,{bna2 :n=0, m> 2"}

and {#ba : a e K} is infinite. Then K ¢ L(ETOL).

Proof.

Assume to the contrary that K is an ETOL Tanguage. Then K
satisfies the assumptions of Theorem 3. So let Q, {n].},€ N and

1

{“i}- " satisfy the conclusion of Theorem 3. Then however we get that,
ie

: + Zni ny
for each i ¢ N, 2 < {ail < Q '; a contradiction.

Hence the corollary holds. 0O

-16-

IV. COMPARISON WITH L(ETOL)

In this section we locate the position of L(EOL) and L(ETOL)
within the framework of continuous grammars.

First of all we can characterize L(EOL) and L(ETOL) by requiring
some natural restrictions on the form of selectors in a continuous
grammar.

Definition. "Let G = (I, h, w, K, A) be a n continuous grammar

‘ n

. _ Xt % . . . ‘

with K = \\J)Xiyizi' We say that G is a simple n-continuous grammar
i=1

(abbreviated as nSC grammar) if Xi = Zi =@ for each 1 < i <n. HWe

also say that G is a simple continuous grammar abbreviated as SC

grammar. (I

Theorem 5. Let L be a language. L ¢ L(EOL) if and only if
L e L(1SC).

Proof.

Obvious. 0O

Theorem 6. L(ETOL) = L(SC).

Proof.

(i). Let G= (&, H, w, A) be an ETOL system where H = {hl""’hn}

4

for some n= 1. Let, for 1 < i <sn, £,.y = {a,.y : a e £} and let
" (i) (1)

0 =\\./Jz(i) uz. (For a word o ¢ z+, () denotes the word obtained

i=1
from o by replacing in it every occurrence of every letter a by a(i).)
n
A —
Let G = (o, h, w(1) K) be a SC grammar, where K =\N,/z(:)
i=1

and h is defined as follows:

-17-

forae, 1 <1i<n-1,

(a)) = {a(].+1),a} U {a(i) Dae hi(a)}
)

h (3
h(a(n) = {a(l))a} u {d(n) Lo € hi(a)},

h(a) = {a}.

It is éasy to see that L(e) = L(G), consequently L(ETOL) < L(SC).

(i1). Let G = (2, h, w, K, 4) be a simple continuous grammar with

n
~ o+ <1 - . .)
K =\ V.. Let for 1= 4 s ntl, 54y = fa; © 151 <n), Fbe anew
i=1 n
symbol, e=__Jujy uz u{Fl. Let, for 1 <1 <n+l, hy be the finite
i=1
substitution on o defined by:

foraez, 1<j<n, 1<1ic<n,

({u(i):aeh(a)} ifi=jandaeYi,
hilags) =
{F}, otherwise,
{a(j+1)sa} if j < n,
Merleg)) - .
{a(l),a} ifj=n,

hi(a) =h.(F) =h ,(a) =h (F) = {F}.

A
Let G = (o, H, w1y A) be the ETOL system where H = {hl,...,hn+1}.
A
It is easy to see that L(G) = L(G), hence L(SC) < L(ETOL). O

Corollary 3. L(SC) = L(2SC).

Proof.

It follows from the observation that the algorithm from the proof
of Theorem 2 produces a SC grammar if the original grammar is SC.' It
also follows from the proof of the previous theorem and a well-known
fact that every ETOL language can be generated by an ETOL system with

two tables only. [

-18-

We are going now to compare L(EOL) and L(ETOL) with L(C). First
of all let us notice that Example 1 (and so also Example 2) provides
a 2C language that is well-known not to be an EOL language (see, e.g.,
LER1]). Then Example 3 provides an example of a 3C language (hence,
by Theorem 2, a 2C language) that is well-known not to be an ETOL
language (see [ER2]). We are going to sharpen those observations now.

By Theorem 5 we know that L(EOL) < L(1SC). In Tooking for a
candidate for a language L ¢ L(1SC)\L(EOL) one may be inclined (as
we were!) to think that the RC language {cnbmaK :n =1, spt(n) < m:
and spt(m) < £} from Example 4 may do the job. It has the "right to
left orientation" which seems to be impossible to achieve in EOL
languages. However, it turns out that one can generate this language
by an EOL system! Our next example is showing how it is done. We
find this quite instructive for the reader to go through this example
as, in our opinion, it is one of the very few "concrete" nontrivial
examples of EOL systems.

2

2
Example 5. Let Gy = (2, hy, S, {a,b,c}), 6, = (I,, h,, CB°A®, {a,b,c})

and Gy = (23, hg, CBA, {a,b,c}) be EOL systems such that

1}

{§,T,R,A,B,C,a,b,c,F},
22 = {A,B,C,a,b,c,F},

23 = 22,

h (S) = (TA3, hy(T) = (RB,T}, hy(R) = (C,RI, hy(A) = (A%,a,a%},

ny(8) = 8%,6,6%, hy(0) = tc,e,c?), hy(a) = hy(b) = hy(c) = hy(F) = (F,
ho(A) = (A%,2,a%3, hy(8) = (82,03, hy(c) = (¢ c,c?,

hz(a) = hz(b) = hz(c) = hz(F) = {F},

hS(A) = {Azaasaz}s h3(8) = {stb}9 h3(C) = {C23C}

h3(a) = hg(b) = h3(C) = h3(F) = {F}.

-19-

Let L = {cnbmaz :n > 1, spt(n)

IN

m and spt(m) < £}.
L(G

<

We claim that L = L(Gl) U L(GZ) 3).

To see this let us first divide L into five sublanguages as follows.

Note that each word o in L can be written in the form
n m ¥a

: 1 1 1
o = Cnbmaﬁ - C2 +n2b2 +m2a2 +£2,
nl n1+1
where spt(n) < m, spt(m) < £, 2 * <n, 2 >n,
m m,+1 £ L£.+1
2 1 <m, 2 1 >m, 2 1 < £ and 2 1 > L.

With the form of o in L as above we define now
L1 = {g e L : ny < my < Kl},

LZ = {g e L ; Ny =m < Kl},

L3 = {gq e L ny+ 1< my = 21},

L4={oceL:n1+1=m1=£1},and
L5={CL€L:n1==m1=£1}.

Note that as the consequence of the above definitions we get
that

- if a e L2 then n, = 0,

' L3 then m, = 0,

i
o
—4—1
Q
m

- if o ¢ L4 then m, = 0, and
- if a ¢ L5 then n, = 0 and m, = 0.
Clearly L(G)) =L, L(Gy) = L and L(G3) < L.
On the other hand we have the following.
(1). Ly ul, vl g,L(Gl).

This is proved as follows.
npooom b
(i.1). Let a « Ll’ o = C2 M2 b2 m a2 +£2.

-20-

n, m, £
1 1 1
We first derive C2 B2 A2 in the way that corresponds to the following

derivation tree:

/5\

T A
| /7 \
T Ao A
R B
l /" \
: S
R
c/ \c
e dN
C C C B....B A A
T NG , ,
ny m 4
2 2 2

-21-

We can do this because Ny <m < El. Now to n, occurrences of
C we apply the production C - cz, to m, occurrences of B we apply the

production B - b2 and to ZZ occurrences of A we apply the production

2

A > a“; all other occurrences are rewritten using productions C + c,

B-+band A~ a. In this way we get a in L(Gl).
L

oM 1
(1.2). Lletae Ly, o= 2 Tp2 Ttm 2 ey
Analogously to the way described in (i.1) we first derive
n1~1 m Kl
2 2 1o . .
C B A . We can do this because nq - 1< m1 < Kl. Then we rewrite

all occurrences of C using production C - c2, m, occurrences of B using
production B ~» b2 and ﬂz occurrences of A using production A - a2;
all other occurrences are rewritten using productions B - b and A - a.
In this way we generate a in Gl‘

N m, £

1 b
(i.3). Llet o c L 2 Ttng 2t g2 T

3 ¢ 7
Analogously to the way described in (i.1) we first derive
C- B A" . MWe can do this because Ny <m=1 <Ly, Then we rewrite

n, occurrences of C using production C - c2, all occurrences of B using
production B ~ b2 and £2 occurrences of A using production A - aZ; all
other occurrences are rewritten using productions C + ¢ and A - a.

In this way we get o 1in L(Gl).

(i1). L4 g_L(GZ).
nq myom
This is proved as follows. Let o = 2 g2 g2 My
, nq n1+1 n1+l
. . . o 2 "2 2 .
We first derive in nq steps the word C- B A . Then we rewrite

n, occurrences of C using production C +~c2, all occurrences of B using
production B -~ b (this is the only "finishing production" for B in G)

and £2 occurrences of A using production A - a2; all other occurrences

-22-

are rewritten using productions C - ¢ and A » a. In this way we get

a in L(GZ).
(ii1). L5 g,L(G3). non.on
2Ll ly
This is seen as follows. Let o« = ¢ b~ a 2. We first derive
n, n, n
. o111 .
inn, steps the word C- B~ A . Then we rewrite 22 occurrences of A

using production A - a2; all other occurrences are rewritten using
productions C - ¢, B~ b and A » a. In this way we get o« in L(G3),
Since a finite union of EOL languages is an EOL language we have

demonstrated that L is an EOL language. [

Hence we are still left with the task of finding an example of
a 1C language that is not an EOL Tanguage. It turns out that there

exist 1C languages that are not ETOL Tanguages, which will be demonstrated

NOW.
Let GO = (z, h, w, K, o) be the 1LC system where
I = 21 U 22, 21-= {a,b,c,d}, ZZ = {A,B,C,D,X},
w = AX,
A = {a,bicﬂdSX},
K = 2:52 , and
h(A) = {(ABC,aBC}, h(B) = {BC,bC}, h(C) = {C,cD}, h(X) = (x°} and
h(D) = {d}.

Let f be the weak identity on a" defined by £(X) = X, £(b) = b,
f(a) = f(c) = f(d) = A.

Lemma 1. L(GO) ¢ L(ETOL).

Proof.

Let us consider a "typical" derivation D of a word in GO‘ It can

be pictured as follows:

-23-

- A X
ABC X2
2 22
part 1 ABCBC X
S n
g ABCBCS ... BC" e
- n+1
+
(- apcac...sc"xe
Cortl r.+2 n+l+r n+l+ry
r 20 aBc * Bcl! ...sc ! ¥
r1+1 r1+3 n+1+r1+1 2n+1+r1+1
yp = abcce BC ...BC X
r1+1 r1+4 n+1+r1+2 2n+1+r1+2
abcDC BC ...BC X
rl r1+5 n+1+r1+3 2n+1+r1+3
part 2 g abcdcDec * BC .BC X
r1+2 2(r1+2) n+l+r1+r1¥ 2 2n1+1+r1+rl+2
ab(cd) BC ...BC X
r+2 2(r,+2)+r n,+2r,+3+r
| rF2 2(rpr2)eryrl nezepader, NITATTRIRM
Yo = ab(cd) bC ...BC X
2 2 £ q
_ ab(cd) ! b(cd) ? b(cd) ™1 2

Y

Note that because K = Z:E%, in every word occurring in D all
occurrences of all Tetters from L, are to the right of all occurrences
of all Tetters from Iy We can drive D in two parts, part 1 consisting
of all words containing an occurrence of A and part 2 containing all
words containing an occurrence of a. Let "block" be a subword (of a
word in D) beginning with an occurrence of B or b and ending on an
occurrence just before an occurrence of B, b or X. Note that the first
word (z) in part 2 determines the number of blocks (n+1) in any
subsequent word in D. Because of the form of K blocks in words in D
have the left-to-right priority order, that is first the leftmost block
must be rewritten into a terminal (sub)word, then the second from the
left block must be rewritten into a terminal (sub)word, etc. So we
can talk about the first, second, third, etc. block in D. Let "the
representation of block i" be the subword corresponding to this block

of the form bCp(]) appearing for the first time. Thus in D above

v, +2
bC 1 is the representation of block 1 (it appears in yl) and
2(r1+2)+r2+1
bC is the representation of block 2.
Clearly

p(1) = 2, and
p(i+1) = 2p(i), for j = 1, .o (**).
It is also clear that

Ki = p(i), for i = 1, o (xx¥) .

Moreover, because at each step of a derivation the production

r ’e
X - XZ is applied, q > 2 n+1.

n+l

Now (**) implies that p(n+l) = 2 and so (***) implies that

q > 22

-25-

On the basis of the above analysis it is not difficult to show that
f(L(GO)) satisfies the assumptions of Corollary 2 (set b = b and a = X).
Consequently f(L(GO)) ¢ L(ETOL). Since it is well-known (see, e.g.,
[RS]) that L(ETOL) is closed with respect to homomorphic mappings,

L(Gy) ¢ L(ETOL). O

Consequently we get the following results.
Theorem 7. L(ILC)\L(ETOL) # B.
Proof.

Directly from Lemma 1. [J

Corollary 4. (i). L(EOL) g L(1c).
(ii). L(ETOL) ¢ L(2C).
Proof.
(1) follows from Theorem 5 and Theorem 7, and (ii) follows

from Theorem 6, Corollary 3 and Theorem 7. [

-26-

V. MAXIMALLY CONTINUOUS GRAMMARS

Although, clearly, L(C) < L(RE) we do not know whether or not
L(RE) < L(C). In this section we introduce a very natural variation
of continuous grammars, called maximally continuous grammars, and
demonstrate that they generate precisely the class of L(RE).

Definition. (1). Let G = (%, h, w, K, o) be a nC grammar where

~
[}
Cj

+_%
. li" The direct maximal derivation relation === is

*
XiY
Gimax

1

i=1
defined as follows.

+ *
For a e £ , B e & , a ==> g if there exists an i, 1 < i < n, such
Gymax

* *
that o = xyz for some X « X?, yeVy, zeZywithy =aj...a, m=1,

m)
Bpseenly € I, BT XYq...y 7 where Vi€ h(aj) for 1 < j < m and the
following condition is satisfied:

if x=xja for acz then a ¢ Y, and if z = az; for a e © thena ¢ V..

*
Then ===> denotes the reflexijve and the transitive closure of ===
max;G max;G’

(2). The maximally n-continuous grammar (or nMC grammar for short)

is a nC grammar G = (2, h, w, K, 4), where the direct derivation

relation = is replaced by direct maximal derivation relation ==,
G « max; G
Hence the language of G is defined by L(G) = {a € & : w == q};
max;G
L(G) is referred to as a nMC language.

(3). A grammar G (language L) is continuous if it is n-continuous for

some n = 1; we say that G is a MC grammar (L is a MC language). [J

Example 5. Let G = ({a,b}, h, bab, K, {a,b}) be a IMC grammar
where K = {a,b}*{E}+{a,b}*, h(a) = {az,aba} and h(b) = {b}. Then
n, n

m
L(G) = {ba~ ba b ... ba2 b:m=1, LRI (e 0}. Note that

if we consider G to be a 1C grammar then

-27-

n
L(G) = {ba

n n

2 m. .
ba “b...ba b :m=1, nl,...,nm > 1}, [0

1

First of all let us notice that the proofs of Theorem 1 and
Theorem 2 carry over to maximally continuous grammars (with the notions
of maximally left-continuous, written LMC, and maximally right-
continuous written RMC, grammars, defined in the obvious way).

Theorem 8. For every MC grammar there exists an equivalent

LMC grammar and an equivalent RMC grammar. []

Theorem 9. For every MC grammar G there exists an equivalent 2MC
grammar H. Moreover, if G is RMC or LMC then so is H. 0O

We investigate now the language gencrating power of MC grammars.
We term a MC grammar G propagating, denoted PMC grammar if
G=(z, h, w, K, &) and, for every a ¢ £, A ¢ h(a).

Theorem 10. (1). L(PMC) = L(CS), (2). L(MC) = L(RE).

Proof.

We will prove (1) and then (2) follows from the well-known fact
that adding erasing productions to context-sensitive productions
yields the class of grammars generating L(RE).

Since it is straightforward to construct a linear bounded
automaton to accept the language of a given PMC grammar, L(PMC) < L(CS).

To show that L(CS) < L(PMC) we proceed as follows.

Let G= (2, P, S, A) be a context-sensitive grammar where &
is the total alphabet of G, A is its terminal alphabet, P its set of
productions, A its terminal alphabet and S its axiom. We can assume
that G is in the Penttonen normal form (see [P 1), that is
P = P1 U P2 U P3 where all productions in P1 are of the form A - a,

A e 2\A, a € A, all productions in P2 are of the form A » BC with

-28-

A,B,C ¢ z\a and all productions in P3 are of the form AB - AC with
A,B,C ¢ z\A. Let #P = r and we assume that productions in P are
ordered, hence, for 1 < j < r, we can talk about the j'th production
of P denoted B then £h§ﬁ- denotes the left-hand side of s and
rh5n denotes the right-hand side of TS

We assume that G is organized in such a way that the rightmost
symbol of any sentential form o in G (o 4 L(G)) is always marked in
a special way, hence if G rewrites such a symbol then it knows that
this is the rightmost symbol. Clearly every context-sensitive language

can be generated by a context-sensitive grammar G satisfying the above

assumption.
Let By = {[A,i] : Aezx, 1<i < 3},
for s ¢ {0,1,4,5}
= {[A,i,j,s] : Aez, 1<1<3 and 1<3j<r}, and
for s ¢ {2,3}
| = {[A,i,-,5] : A ¢ Z,'l < i < 3}.
Then let o = Iy u_/jz u {F} where F is a new symbol, and let
0(2) = {[A,i,-,2] A c x and 1 <1< 3},
0(3) = {[A,i,-,3] : Aezand 1 <1 < 3},

for 1 <1 <3
= {[A,i] : for some 7 € Py, Lhsw = A} and
= {[A,i] : A ¢ £}.
Let h be the finite substitution on o defined by(z):
for [A,i] « Zb’

-29-

.

h([A,i1) = {A} v {[A,1.,3,0] : my € Ppand A= Zhsw}
o {[A1,3,1] = 75 ¢ Py and A = thsmi} v (LALT,-,2]) v
u {[A,1,3,4] : my e Py, AB = @héﬁj for some B ¢ £\A} U
v {[A,i,3,5] : Ty o€ P3, BA = §b§ﬁj for some B ¢ I\a},

for Ae ZN\A, 1 €1 <3, 1<]J<r,

, {[B,i]} if o= A~ B,

h([A,i,3,0]) =

{F} otherwise,

{[B,i1[C,i+1(mod 3)]} if wj = A » BC,
h([A,1,3,1]) =
{F} otherwise,

h([A,i,-,2])
h([Aaia‘s3])

{[A,i], [A,i+1(ﬂ@d 3)9"93]}»
{[Aai5—32]}a
{[A,i 1} if @Déﬁj = AB for some B ¢ z\aA,

i

i

h([A,1,3,4])
{F} otherwise,

{[C,i]} if my o BA ~ BC for some B ¢ z\a,

1l

h([A,i,3,5])
{F} otherwise,

for all other x ¢ o,
h(x) = {F}.

let, for 1 <i<3,1<Jj<vr,

* - + *
Ket,c,b,i = BpllATI
_ F o ok
KCf,C,i,j - Zb{[A,l,JsOJ} Zb:
Keetab = Bp

*
Kee,t,i,5,1 = (DAT.I,101 v o(2)) (6(2))" vhere A = Lhsr,

* Ty *
KCf,t,i,j,Z N (@(2)) {[Aai,j31]}+(®<3)) where A = ﬁhﬁﬁj)

-30-

Ket,e,3 = (0(2)) (03N,

Keg.p,e = (0N,

* — + *
Kes,b,i = %btb,i Y %b,i+1(mod 3)! Ip>

K e . R *
Kes,i,3,1 " rp{LA,1,3,411 (2 v [B,i+1(mod 3), j, 51)
where nj = AB -~ AC for some C ¢ I\A,
LK e K _
Kcs,i,j,e = Zb{[8,1,3,5]} Ly where " AB -~ AC for
some A,C € I\A.
Then Tet K be the union of all the above languages.
Let H = (o, h, [S,1], A, K).
H simulates G as follows. Assume that we have a sentential form
o in H such that o = [Al,iI]LAZ,izj . [An,in], where iu+1 = iu+-1(mod 3)

for 1 < u < n-1 (note that [S,1] is such a word).

To simulate an application of a production TS o€ Pl, " = (A » a)
H applies selector ch,c,b,i for some i ¢ {1,2,3} yielding the replace-
ment of one occurrence of the symbol [A,i] in o« by [A,i,j,0]. Then H

applies K to the resulting string replacing the unique occurrence

cf,c,i,d
of [A,1,3,0] by [B,i]. As a result, in two steps we have replaced an

occurrence of [A,i] in o by [B,i] obtaining a new string over Iy .

satisfying the same condition on the second components of letters from

Zb as o did.

The main problem in simulating production Ty € P = (A ~ BC),

2° 7
is that "its straightforward application" to an occurrence [A,i] in o

would yield a string that does not satisfy "the periodicity condition"

that o satisfies (iu+1 = 1u + 1(mod 3)). This condition is absolutely

necessary to maintain, so that the MC grammar H in simulating G can

-31-

rewrite one occurrence of a symbol in a word-precisely as G does. To
overcome this difficulty H proceeds in several steps as follows.
First it rewrites o using selector ch,t,b which results in a string
a; having occurrences of symbols from 0(2) v {[A,i,j,1]} only. The
only selector that can be applied now is ch,t,i,j,l (except for ch,t,e
the application of which would lead to an "idle rewriting"). As a
result a suffix of ay consisting of letters from 0(2) only got

rewritten into letters from o(3) only yielding ay. Now (providing

that aq contained at least one occurrence of the symbol [A,1,j,1])

the only selector that can be applied is ch,t,i,j,Z' However this
implies that ag contains precisely one occurrence of [A,i,j,1] and so

o was rewritten in oy in such a way that precisely one occurrence of

[A,1,3,1] was introduced. Note that when K was applied to

cf,t,i,J,1
ay yielding a, the suffix of aq consisting of letters from 0(2) was
changed into a suffix of a, consisting of letters from 0(3) in such

a way that the second components of letters were increased by 1

(modulo 3). Since the unique occurrence of [A,1,j,1] in oy Must be

the occurrence neighboring this suffix (otherwise ch,t,i,j,Z cannot be
applied) there is a "gap" between the second component of [A,i,j,1] and
the leftmost element of the suffix considered (if it is not empty).

So we have the situation

a = ... [A,i,3,1][D,i+2(mod 3), -, 3] .

(or o, = ...[A,1,],1]).

Hence the application of K 5 which uses production

cfyt,i,g
[A,1,3,1] > [B,i][C,i+1(mod 3)] yields the string aq satisfying the
periodicity condition. Then the application of ch .3 rewrites

symbols from ©(3) into the corresponding symbols in 0(2) and the

-32-

application of selector K using the substitution

cf,t,e (
h([A,1,-,2]) = [A,i]!1) yields then the string 8, where the transition
from o« to B simulates the application of production A - BC in G.

To simulate an application of a production Ty o€ P3, s o= AB ~ AC

for A,B,C ¢ z\A, H applies selector K first (note that it does

cs,b,i
not depend on j). As a result of this we get from o a string aq

such that it contains exactly one occurrence of a Tetter from 24,

say x, and exactly one occurrence of a letter from Lg, Say y; moreover
those two occurrences are next to each other with x to the left of Y.
Now to simulate the specific context-sensitive production Ty selector
K

must be applied. However K can be applied only

CS,1,J,1 cs,1,3,1

if aq is of the form @] = ...Xy..., where x = [A,1,5,4] and y = [B,1,3,5].

Then the application of K 1 yields the word 0y differing from

cs,i,J,
oy only by the replacement of the unique occurrence of [A,i,j,4] by
[A,i]. Consequently ay contains the unique occurrence of [B,1,j,5]
with all other letters in %y being from Iy Now K4,1,j can (and must)
be applied replacing the unique occurrence of [B,i,j,S] by [C,i]
yielding g. Thus what happened on the transition from o to 8 is
that a subword of the form [A,i][B,i+1] in o was replaced by [A,i][C,i+1].
Hence the simulation of " is successfully completed. Note that |
obviously B again satisfies the periodicity condition and so the
simulation of an application of an arbitrary production from P can be
started again.

The rewriting process in H ends by applying selector ch,t,b
substituting A for [A,i], 1 <1 <3, Ae ©. If any occurrence in a is
replaced in this way then all occurrences in a must be replaced in this

way, because no selector in H can be applied to a string containing

an element of A.

-33-

Based on the above intuitive comments one can construct a formal
proof of the fact that indeed L(H) = L(G).

Hence the theorem holds. [J

-34-

VI. DISCUSSION

There are at least two methodological advantages to the study

of continuous grammars.

(1). They form a special case of selective substitution grammars.

They demonstrate that selective substitution grammars not only generalize
a multitude of rewriting systems discussed in the literature, they also
provide interesting new classes of rewriting systems.

(2). Since continuous grammars constitute a natural case of a rewriting
system lying midway between two extreme cases of rewriting - totally
seqUentiaT (as in context-free grammars) and totally parallel (as in

EOL systems) - their study contributes to our understanding of the
difference between sequentiai and parallel rewriting.

In this paper we have concentrated on the study of the Tanguage
generating power of continuous grammars. In order to fully understand
this topic one should attempt now to answer the following questions
(which we are not yet able to answer).

(i). What are the precise relationships among the seven classes of
1angudges emerging from our study: L(ic), L(1LC), L(IRC), L(2C),
L(IMC), L(ILMC), L(1RMC)?

(i1). What is the felationship between L(2C) and L(2MC)? We know that
L(2C) < L(2MC). Is it the case that L(2C) ¢ L(2me)?

(i11). Does there exist a language in L(ETOL) \ L(1C)?

In addition to answering those questions one should also attempt
to study the different classes of continuous grammars introduced here
with respect to the usual language - theoretic propertiés. For example,
results on the combinatorial structure of languages in these language
classes and results on the closure properties of these language classes

would be natural next topics to consider.

-35-

ACKNOWLEDGMENT

The authors are indebted to P. Zeiger for comments concerning
the first version of this paper. The authors gratefully acknowledge the

financial support of NSF grant number MCS 79-03838.

-36-

REFERENCES

[ERL]

[ER2]

[ER3]

LP]

[R]

[RS]

LRW]

[s]

Ehrenfeucht, A. and Rozenberg, G., The number of occurrences of

letters versus their distribution in EOL languages, Information

and Control 26, 256-271, 1975.

Ehrenfeucht, A. and Rozenberg, G., On proving that certain languages

are not ETOL, Acta Informatica, 5, 407-415, 1976.

Ehrenfeucht, A. and Rozenberg, G., Nonterminals versus homomorphisms

in defining languages for some classes of rewriting systems, Acta

Informatica, 4, 87-106, 1974.

Penttonen, M., One-sided and two-sided context in formal grammars,

Information and Control, 25, 371-392, 1974.

Rozenberg, G., Selective substitution grammars (towards a framework
for rewriting systems). Part I: definitions and examples. EIK,

1977.

Rozenberg, G. and Salomaa, A., The mathematical theory of L systems,

Academic Press, New York-London, to appear.

Rozenberg, G. and Wood, D., Selective substitution grammaré.
Part II: the role of selection, McMaster University, Dept. of
Computér Science, Tech. Rept. No. 77-CS-10.

Salomaa, A., Formal languages, Academic Press, New York-London,

1973.

-37-
FOOTNOTES

(1). We choose here an EOL system rather than a context-free grammar
because the latter has a Timitation of not being able to rewrite terminal
symbols.

(2). 1In what follows, when we count modulo 3 then it is counted on

positive integers, hence, e.g., 4 = 1(mod 3).

