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ABSTRACT

It is demonstrated that every context-free language is a
homomorphic image of the intersection of two DOS Tanguages and that
every recursively enumerable Tanguage is the homomorphic image of
the intersection of three DOS languages. It is also proved that by
increasing the number of components in the intersections of DOS
languages one gets an infinite hierarchy of classes of languages

within the class of context-sensitive languages.






INTRODUCTION

Recently there have appeared a number of papers investigating
sentential forms of grammars in the classical Chomsky hierarchy (see,
e.g., [BPR], [ HP], [MSW] and [ S2]). Clearly such an investigation
is needed if one is to fully understand language theory from the
"grammatical point of view" (as, for example, opposed to the "machine
point of view"). Moreover such a research provides a chance for a
systematic build-up of the theory of, e.qg., context-free languages.
An example of a systematic build-up of a theory is, in our opinion,
provided by the mathematical theory of L systems (see, e.g., [RS]),
the core of which fits into a very basic mathematical framework.

The essentfa] construct of the theory of L systems is a DOL system
which is really an iterative homomorphism on a free monoid. In [ER1]
a sequential analogue of a DOL system, called a DOS system, was
introduced and investigated. We believe that DOS systems can play
the same essential role in the theory of context-free languages, that
DOL systems play in the theory of L systems. This paper supports our
belief. We demonstrate the ability of DOS languages to represent
afbitrary context-free languages and arbitrary recursively enumerable
languages. Since intersections of DOS languages are essential in
those representations, they are also investigated in this paper. It
is shown that increasing the number of components in the intersections
of DOS Tanguages gives rise to an infinite hierarchy of classes of
languages.

le assume the reader to be familiar with the rudiments of formal
language theory. We use mostly standard terminology and notation.

Perhaps only the following requires an additional explanation.



(1). A weak identity is a homomorphism that maps each letter either
into itself or into the empty word.

(2). For a word a, alph o denotes the set of letters occurring in o
and mir o denotes the mirror image of o; for a language K,

mir K = {mir o :aeKJ}.

(3). Throughout this paper we consider two languages jdentical if
they differ by the empty word only.

(4). If X is a class of grammars than L(X) denotes the class of all

languages generated by grammars in X.



I. DOS SYSTEMS AND LANGUAGES

In this section we recall from [ER1] the definitions of a DOS
system and a DOS language.
Definition. Let % be a finite alphabet.
A sequential homomorphism (abbreviated s-homomorphism) on ©* is a
mapping h from ¥ into 22* defined inductively as follows:
(1). h(n) = {A},
(2). for each beT there exists a 8¢ I* such that h(b) = {8},
(3). for each aex’,
h(a) = {a,Ba, 1o = a,ba, for some bel, a,, a,e 7* and h(b) = {g}}.
The s-homomorphism h is extended to ZZ* by Tetting
h(K) =U h(a) for each K ¢ 7*. [
oeK
As usual, we assume that an s-homomorphism on £* is given by

providing its values for all elements from . To simplify the notation,

in the sequel we will often identify a singleton {x} with its element x.

Definition. A DOS system is a construct G = (Z,h,w) where I is
a finite nonempty alphabet, wer* and h is an s-homomorphism on ¥, The
language of G, denoted L(G), is defined by
L(G) = {x :xeh™w) for some n=0}. L(G) is referred to as a DOS
language. If G is such that for no aeZ, h(a) = A then we call G
propagating and refer to it as a PDOS system (and we refer to L(G) as a

PDOS Zanguage). 0O

Remark.
(1). As customary in language theory, whenever h(a) = o for aeX then

we refer to (a,n) as a production of G and write it in the form a~a.
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Also, if for x,yeZ* and n=0, we have y e h"(x), then we say that x
derives y (in G) in n steps.

(2). Clearly, each DOS language is generated by a reduced DOS system,
that is by a DOS system G = (X,h,w) such that each letter from I appears
in at Teast one word of L(G). In the sequel we will consider reduced

DOS systems only. [J

Example. Let G = ({a,b,c},h,a) be the DOS system where h(a) = bc,
b2 and h(c) = cb. Then bc derjves bich? and

m~ =
— —~
o o
~— —
1] i

fa} v (b"eb" im=1,n>0}. 0

Example. In [ER1] a theorem is given (Theorem 8) allowing one to
provide various examples of languages that are not DOS languages. Thus,
for example:

(1). There exist finite languages that are not DOS languages; {a”,b*}
is an example of such a language.
(2). Dyck Tanguages over more than one sort of parenthesis are not DOS

languages. [J



IT. A COMBINATORIAL RESULT

In this section we present a combinatorial result that will be
very essential in the proof of the representation theorem for context-
free languages presented in the next section. The proof of the
combinatorial result presented in this section is based on the follow-
ing construction.

CONSTRUCTION 1.

Let m be a permutation on the set {1,...,n}, n=2, and let
T= T T, T, be a sequence of all pairs from {1,...,n} x {1,...,n}
describing .

Let us consider the set Z = {Xi,xi,YiXi :1<i<n} and let h be
the mapping from Z><{T1,...,Tn} into the set of {0,1}- sequences of

Tength four defined as follows:

for 1<i<n, 1<ks<n,

1100 if T = (i,3) for some 1<j<n,
h(xi’Tk) = ‘
0000 otherwise,
_ 1010 if T, = (i,j) for some 1<j=<n,
h(Xi’Tk) =
0000 otherwise, .
0011 if T = (j,i) for some 1<j<n,
h(Yi’Tk)
0000 otherwise,
- 0101 if T = (j,i) for some 1<j<n,
h(Yi’Tk) =

0000 otherwise.

Let hT be the function from Z into the set of sequences of length

4n over {0,1} defined as follows:



for aeZ,

hT(a) = h(a,Tl)h(a,Tz)...h(a,Tn).

The Toliowing property of the above construction is very
essential for our applications.

Lemma 1. Let r>2. For each acZ consider hT(a) as a number
written in base r with the rightmost character of hT(a) being the
Teast significant digit of hT(a)g Then the following holds:

(1). for 151,535, e {1,...5n],
h (X )+ h (Vs ) = ho (X ) + ho(Y, )

1 1 2 Js

if and only if

i, =1,, 3, =3, and j, = n(i,), and

(2). for ie{l,...,n}, hT(Xi) # h (X,

;) and h_(V.) # hT(Vi).

Proof.
(i). Assume that hT(Xil) + hT(le) = hr(xiz) + hT(sz).
. + .
11) hT(YJl

T, = (i,.m(i,)). Then the 4(s-1) + 1 element of p (counted from the

Consider p = hT(X ). Assume that se{1l,...,n} is such that

left) is 1. Since p = g, where q = hT(XiZ) + hT(Yj ), i, = 1i,. But

2
also the 4(s-1) + 2 element of p is 1 and so i, = n(i_ ). Then however,

1
for every 1<t<4, the 4(s-1) + t element in q is 1 and so (because
p=aq) J, = m(i,). Thus j, = J, and so )(1.1 + le = XT.2 + sz implies
that 1, = 1,, j, = Jj, and j, = w(i;).
(ii). It follows directly from the construction that i, = 1,,
j, =3, and j = w(11) implies that hT(Xil) + hr(le
Note that (2) follows immediately from the construction used,

hence the Temma holds. [

) = n (T )+ n (T,

).



Let ET be the function from Z into the set of sequences of length
4n+1 over the alphabet {0,1,...,n} defined as follows:
for 1<i<n and ae {X,X,Y,Y},

hf(ai) = ihT(ai).

The HT function satisfies the following property.

Lemma 2. Let r>n. For each ae Z consider HT(a) as a number
written in base r with the rightmost element of ET(a) being the Teast
significant digit of HT(a). Then the following holds:

(1). Each of the sequences

ho (X)), ho(X,)s <oy h(X )3

is strictly growing,

(2). for s iz, jl, j2 e{1l,...,n},

h (X, )+ h (Y, ) = HT(Xiz) + hT(?jz)

if and only if
i, =1,, 3, =3J,and j, = (i), and

(3). for ie{l,...,n},

h (X;) # h_(X;) and h_(Y.) # h_(Y.).

Proof.

Directly from the definition of ET and Lemma 1. [

Now we get our basic combinatorial result on sequences of positive

integers "satisfying a given permutation".



Theorem 1. For every n=2 and every permutation m on {1,...,n}
there exist four strictly decreasing sequences of positive integers

Xy vevs X3 Y 4 vuus Y., X5 ou., X and Vl, o, Y

i i i i i Tt

such that:

(1). for i, 1, j1’ j2€ {1,...,n},

X1.,1 + le = X}.2 + sz if and only if
i, =1,,3, =3, and w(il) = 31’ and
(2). for ie{l,...,n},
Xi # Xi and Yi # Yi'

Proof.

Directly from Lemma 2. [J



ITI. REPRESENTING CONTEXT-FREE LANGUAGES

In this section we demonstrate that every context-free language
K is of the form K = ¢(M1n Mz) where ¢ is a weak identity and M;, M,
are DOS Tanguages.

Theorem 1 from the Tast section will be an essential tool in the
proof of the above mentioned result. We will use it for the following
permutation T, on the set {1,...,n} (where n > 2):

for 1<1i<n,

! if i =2,
i-2 ‘ if i is even and i = 2,
m () = (12 if 1 is odd, i+2<n
n -1 if i = n, n odd,
L n if i = n-1, n even.

Then Tet X5 vovs X3 Y 5 vues Y3 X 5 voey X_and Y, ..., Y be
1 n 1 n 1 n 1 n
four fixed strictly decreasing sequences of positive integers (associated
with Wn) satisfying the statement of Theorem 1.
Using those sequences we will define now the basic tool for

proving the main result of this section: a blocking pair of DOS systems.

CONSTRUCTION 2
let m>1 and Tet n = 2m+1. Let Ab’ Al, cees Am’ Ae be distinct

Tetters and et o = A A1"'AmAe‘ lLet

b
Zw = Zw,i U Z@,z u Zw,s U Zw’l+ where
Lyy = {Ab,Al,...,Am,Ae},
Zm,2 ={81J :l<i<m,l<j<n} U{Bb,j :2<j<sn-1,j even} u

U {Begj: 3<j<n,j odd},
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{¢}

™
1]

and Zw i 1<i<4, are mutually disjoint.

]

Let hw be the s-homomorphism on Zz defined as follows:
h (¢) = ¢,

Y X

hm(Ai) = ¢ nBi,n¢ " for 1<iz<m,

hm(Ab) ) Bb,n—‘1¢Xn_1’

h(Ay) = ¢Y“Be,n ;

hw(Bb,z) =By, >

h,(By 5) b,J_2¢Xj“2_Xj for je {4,...,n-1},

w'"e,s €,3

Y -Y.
h (B, .)=¢d7% J for je{5,...,n},
W e,] e:J'2

Y. .Y =X
hy(By ) =¢?7 DBy L T for je{2,...,n}, ie{l,...

Y-, Xi-Xe
hm(Bi,z) = ¢ Bi,l¢ Ai+iAi+z"'AmAeCiAbAsz’"

Yl Xl_Xz .
Ai_ ¢ By ¢ for i ¢ {1,...,m},

hw(Bi 1) = B1 . for ie{l,...,m}, and
h (C.) = C, for ie{l,...,m}.

,m},
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Let Hw be the homomorphism on Z; defined in the same way as hw’
except that everywhere X1 is replaced by ii and Yi is replaced by 71
for 1<i<n.

Let Gw = (Zw,hw,w) and éw = (Zw,ﬁw,m).

Let us consider L(Gw) n L(ﬁw).

(1). Obviously wel(G ) n L(G,).
(ii). If a word ue:L(Gw) n L(éw) and o # o then o does not contain any
occurrence of a letter from Zm,1‘

This is so, because then o must be either of the form

U

U .
i ‘
alAj¢ Br,saz or of the form

;
ulAj¢ Br o

U, U

Q
Lol
j=~]
-
k.
P
Q
i
&
jos]
o

1AJ.ocz for some words a,, a, and j,r e {b,e,1,...,m}

i,5ef{l,...,n}, Ue {X,Y}, which is impossible because for every

jef{l,...,n}, Xi # Xi and Yi # Yi'

(111). If a word aeL(G ) n L(G ) and o # o then o is of the form

v;Civ; for some ie{1,...,m}, where

Xr+Yr—z | X, ¥, 4 N
Yi = B¢ By e Bicau® B1,28 Y
X Y, Xs-o*Y,
$s-2 S
B.i+1s3¢» B-i+2’5‘.‘¢ Be’s

where r,s ¢ {2,...,n}, r is even and s is odd.
This is seen as follows.
From (ii) it follows that o does not contain occurrences from

Zm L Let us inspect a from left to right. It must be of the form
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for j ,j e{1l,..,n}, j even and a a word.
0 1 0 1

Consequently j = Wn(jo). Thus we can write

Xj +Y Xj +Y
= B . 0 1 . 1 2 . =
¢ baJod: Bl 9\]1¢ BZ:JZOLZ
X. +Y. X, +Y
=B, . ¢Jo Jig . ¢Jr Jeg %2
b,30¢ 1,31¢ 2,3,

for j2€ {1,...,n} and a, a word.

).

Consequently j, = (j

n'-i

And soon . . .

Thus 3, =7 (3,05 3, = 7 (305 3, = 7 (3,)s -

Hence according to the definition of the permutation T the
sequence j,, J,» J,» ... 1s a sequence of positive integers descending
(according to wn) until we get into an 1 such that j. = 1. This must
happen because n = 2m+1. But that means that the production for
Bi , must have been used, so that o must have the alleged form. Note

b

that for no other i # i the production for B? 5 could be used, because

the form of the permutation U implies that the consecutive second

indices of letters from Zm )

2

in o to the right of Bi . ascend through
odd numbers 3, 5, 7, ... and so until we meet Ci no element of the form
B€ . for 1 # i can occur. However the form of the production for Bi

(and the form of m ) implies that if o = yC,§ then y = & and so (111)
holds.
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(iv). If ae:L(Gw) n L(éw), o # o and an occurrence of a letter from

Zw\(zw’3LJZw,qL){Bb’l,Beas}) in o is rewritten, then the resulting

word is not in L(G ) n L(G ).
w w
This follows from the form of productions in Gw and éw and from
the observation made in the proof of (iii): if § is a subword of a

word 1in L(Gw) n L(éw) and § does not contain an element from L,

5

then it can have at most one occurrence of a letter b from Zm , such

s

that b = 81 . for j = 1.

]

It is because of properties (iii) and (iv) above that we call

the pair (Gm,Gm) the blocking pair. If we want to get a word in

L(Gw) n L(Gw) then in both Gw and 6@ only one but arbitrary letter of

type B (that is a letter from L, 2) which is not a B, - or B_- type
can be "compietely rewritten" (the same letter in Gw and éw) yielding
a letter of type C (that is a letter from Zm s). A11 other elements

of w are prevented (blocked) from being completely rewritten.

We are ready now to prove the main result of this section.

Theorem 2. For every context-free Tanguage K there exist a

weak identity ¢ and DOS languages M, , M_ such that K = ¢(M117M2).

2
Proof.

Let K be a context-free language.
Let G = (VN’VT,P,S) be a context-free grammar with V = VyuVs

such that L(G) = K.

Let for each nonterminal a in VN’ 0y = “a,1’“a,z""’“a,ma be an
ordered sequence of all right-hand sides of productions for a in G.
, - p (@), () la),(a)
Let -for each a in VN,wa Ab A, ..qu Ae .

a
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Let f be the homomorphism on V* defined as follows:

for aeV,

ifacV

(" a /
T)
f(a) =
wa if a eVN,

and Tet ; be the homomorphism on V* defined as follows:

for aeV,

a if aeV
f(a) =

where & = AVIE(R) Rl@)E() i

W AL a@y ) ) e

Then Tet [Gw 1 and [E; ] be the DOS systems constructed in the
a a

same way that Gw and ém are constructed in CONSTRUCTION 2 except
a a

that only the following changes are made:

(1). o, is the axiom of [6, ] and 5a is the axiom of [Gw 1,
a a

)

(2). [hJ(Cy) = flu, ). [h1(C;) = Flu,

(3). both [hw] and [Ew] have only identity productions for symbols

from VT’

(4) n J(Al3)) = n (al®))
)

3

(
X

" ) for x e {1,...,ma,b,e},

— @)y -7 oa(a
[ J) = (8
where [hw] is the s-homomorphism of EGw ] and [E;] is the s-homomorphism

_ a
of [Gw 1.
a
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Now we consider all pairs ([Gw ],[éw 1, a EVN, and we take care
a a

that in two different pairs the alphabets involved are disjoint,

Then Tet H = (0 ,9,.c) H, = (0,.9 ,c,) where ¢ = f(S),
c, = f(s),

2

©, is the union of alphabets of all [Gw 1, aeV
a

o, is the union of alphabets of all [é@ 1, aeV
a

g, is the union of all s-homomorphisms [hw 1, ae:VN, and
a

NS

NS

g, is the union of all s-homomorphisms [ﬁw 1, ae VN‘
a 1

Let ¢ be the weak identity on (GllJGZ)* that erases all Tetters
except for Tetters from VT'

Rather than to provide a formal and rather tedious proof that
L(G) = ¢(L(H1)er(H2)) we give some intuition of how a derivation step
in G is simulated by L(H,) nL(H,).

First of all every nonterminal a is coded as a block

w, = Aéa)Aga)...Aéz)Aéa) in H and as o, = Eéa)ﬂ§a)...ﬂéz)ﬁéa) in W,
where m, is the number of different productions for a in G. The
intention is that if one rewrites an occurrence of a in a sentential

form o in G by its i-th production, then the corresponding occurrence

of Wy in the corresponding sentential form 8 in H and the corresponding
occurrence of &a in the corresponding sentential form B in H, are
rewritten in such a way that in a number of steps it leads to the

subword Yiciyi in H, and in H,, where Y5 is of the form described under

(1i1) in CONSTRUCTION 2. Then in H1 this occurrence of Ci is rewritten
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by (f(u

where My is the right-hand side of the i'th production for a.

a,i) and in H, this occurrence of Ci is rewritten by ¥(”a,i)’
Hence the single rewriting step of an occurrence of a into

Ha,i was simulated in a number of steps, by the pair of DOS systems

[G“a] and [éwa] acting on the corresponding occurrence of Wy in the

corresponding sentential form in H, and the corresponding occurrence

of 6a in the corresponding sentential form 1in Hz, respectively. As

the result of this simulation the given occurrence of g and the given

occurrence of &a, respectively, give rise to blocks f(ua 1.) and

s

f(“a,i) respectively interspersed by subwords consisting of symbols
¢ and Bi,j only. Those symbols are distributed in such a way as to
prevent the rewriting of any of them subsequently (otherwise one will
never get a word which is in L(HI) n L(Hz)).

In this way, although one symbol, say A, in VN is coded by a

block of symbols in H, and in HZ, care is taken that only one

symbol of this block Teads to a rewrite that codes a rewrite of A in G.

Finally, ¢ takes care of erasing all thoseauxiliary symbols (that
is symbols different from terminal symbols of G).

Hence, if we set M, = L(Hl) and M, = L(HZ) the theorem holds. [

Remark. Notice that the DOS systems resulting from the construc-
tion of the proof of Theorem 2 are propagating so that M1 and M2 in

the statement of Theorem 2 can be taken to be PDOS languages. [J
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IV. REPRESENTING RECURSIVELY ENUMERABLE LANGUAGES

In this section we demonstrate that every recursively enumerable
language K is of the form K = “(M1” M n Ms) where u is a weak identity
and M1’ Mz, M3 are DOS languages.

Theorem 3. For every recursively enumerable language L there

exist DOS languages M, M,, M, and a weak identity u such that
L = u(Mln Mz“ Mg).

Proof.

It is well known (see, e.g., [ S1]) that for every recursively
enumerable language L there exist a weak identity ¥ and context-free
languages L , L, such that L = w(Lln Lz).

Let A, be the alphabet of L , A, be the alphabet of L, and Tet
A, = {a' taeh,} where (A1U A, )n A; = 0. Let L; be the language
resulting from L, by replacing every occurrence of a letter a from
A, in L, by a' from A;.

Let K = leirL;. Clearly K is a context-free language. Let
G = (VN,VT,P,S) be a context-free grammar generating K. Then let us
use the construction from the proof of Theorem 2 which yields DOS
systems H, = (el,gl,gl), H = (@2,92,;2) and a weak identity ¢ such

2
that K = ¢(L(H.) n L(H )). Let o = (Glu @2)\VT, 6 =1{b ""’br}’

1 2 1

0, = alph(L nl,) = {c ,....c.}, 0 = {c,...oc.} and m=r+s. Let

A be a new alphabet, A = {Fl,...,Fm} and let § = Fl...Fm.

Let H = (QuA,g,8) be the DOS system where the s-homomorphism
g is defined by:

g(Fi) = F1F1+1...Fmb1F1F2...Fi for 1<ic<r,

1 .
‘ch'échle“‘F" . for 1l<j<s,

WFreg) = FrrgFrgen s 43

g(a) = o for o e o.
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Let Ts be the mapping on (6,u @2)* defined by:
Tg(A) = §, and

to(a,a,...a) = 6a 6a,6...6a 6 formz1, 8,5..058,€0,00, .

B

Then for Ke (6,u 0,)* Tet
7 (K) =U.T6<a).
aeK

Obviously T (L(Hl)) and t.(L(H_)) are DOS languages.

§ § 2
Let 1 be the weak identity on (0'uA)* defined by

a if ae:VTLJVT where VT ={a':a ¢ VT}
A otherwise.

It is rather easy to see that
K = Mg (L(H,)) 0 g (LH,D) nL(H)) = Dxmizx’ txelynl,)e
The key observation here is that if a word o in L(H) is also in
TG(L(Hl))(1T6(L(H2)) then in its derivation in L(H) each production
introducing an element from ©, (and so also its primed companion
from @{) is used in such a way that never to the right of an occurrence
of an element from @; is there an element from @1 and never to the left
of an element from 9, is there an eiement from @;. Consequently
i(a) = BmirB' where Bel nlL,.

Now let 1 be the weak identity obtained from {I by changing i in

' and erases the letters

such a way that it also erases letters from VT

that ¢ erases.

Then obviously

L= n(K) = U(TS(L(HI)) ntg(L(H,)) nL(H))

and so if we set M, = T@(L(H~)), M2 = TS(L(HZ)) and M3 = L(H), the

1
theorem holds. [
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Remark.
Note that from the proof of Theorem 3 it follows that DOS
Tanguages Ml, Mz, M3 from the statement of Theorem 3 can be taken to

be PDOS Tanguages. [

Coming back to Theorem 2 we notice that the class of languages
of the form ¢(M1n MZ) where ¢ is a weak identity and M1’ M2 are DOS
languages is larger than the class of context free languages, as

shown by the following example.

Example. Let G (Z,hl,w), G, = (Z,hz,w) be DOS systems where

v = {a,b,c,A,B}, hl(a) = a, hl(b) = b, hl(c) = ¢, h.(A) = aAb,

1

h,(B) = Bc, h (a) = a, hz(b) = b, hz(c) = ¢, h (A) = aA, hZ(B) = bBc

2 2

aAbBc.

1]

and w

Then L(G,) nL(G,)

i

{a"ab"™Bc" i n = 1} - a well known example of a

1anguage that is not context-free. [

We do not know whether the class of Tanguages of the form
¢(Mln Mz), where ¢ is a weak identity and M, M are DOS Tanguages,
forms a subclass of the class of recursive languages. However we
can show that if it is the case then such an inclusion cannot be

effective in the following sense.

Theorem 4. Let C be an effective enumeration of a recursive
subclass of the class of recursive languages. There does not exist a
total recursive function f such that, given a weak identity ¢ and DOS
systems Gl, Gz, f(¢,Gl,GZ) = n where n is the index of

#(L(6,) nL(6,)) in C.
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Proof.

Let él, 52 be two arbitrary DOS systems. We catenate to their
axioms a new Tetter ¢ at the right end and then augment productions in
61 and éz by ¢~¢. Let G, G, be systems obtained (effectively) in
this way.

Let ¢ be the weak identity on the intersection of alphabets of
G1 and G2 which erases all letters except for ¢.

Then clearly we have
¢<d(L(6,)nL(G,)) if and only if L(G,)nL(G)) # .

Since it was proved in [ER2] that it is undecidable whether or
not L(él)er(éz) = P for arbitrary DOS systems él, EZ, the above

property implies the theorem. [
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IV. ON INTERSECTIONS OF DOS LANGUAGES

The results of the Tast two sections indicate that the class of
languages consisting of intersections of (several) DOS languages is
worth investigating. In particular a natural question arises: 1is the
class of interesections of n DOS Tlanguages, denoted by f“)nL(DOS),
larger than the class of intersections of (n-1) DOS Tanguages for
every n=2. In this section we will show that the answer to the above
question is affirmative, and moreover for every n=2 there exists a

finite Tanguage in the difference (\nL(DOS)\(ﬁ\ _1L(DOS).

n
First we need some notions concerning DOS systems.
We start by recalling from [ER1] the notion of the derivation
forest TG of a DOS system G. For the purpose of this section it
is best explained informally by an example.
Let G = ({a,b,c,d},h,abc) be the DOS system with h(a) = a,
h(b) = d*, h(c) = cba and h(d) = A. Then Tg 1s an infinite forest

with the following being an initial subforest of it:

the origin of TG - a b | o
/\ I
a d d o b a
I 2 ANIEAN
a it A c b a d d a
o
a A A a

A path in TG is an infinite path starting in one of the nodes of
the origin of TG. A cut in TG is a sequence T of nodes of TG such that

on each path of TG there is precisely one node from T. It is easily
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seen that x is a word in L(G) if and only if it corresponds to (the
sequence of Tabels of) a cut 1in TG‘

Also we call a Tetter a in a DOS system G = (I,h,0) propagating
if for no positive integer r, h"(a) = A; otherwise a is called erasing.
We use pr G and er G to denote the set of propagating letters in G
and the set of erasing letters in G respectively.

The following Temma will be useful in our proofs of the following
two theorems.

Lemma 3. Let G = (Z,h,w) be a DOS system. If
(1). for every ae, there exists a positive integer s such that
aSeL(G), and
(2). there exists a letter aeZ such that a is propagating,
then every Tletter in Z is propagating.

Proof'.

From (2) it follows that, for every ae L(G), we have
(alph a) n (pr G) # @. Then (1) implies that every letter in I is

propagating. [

We show now that increasing the number of components in the
intersections of DOS languages leads to an infinite hierarchy of

classes of languages.

Theorem 5. For every nx>2 there exists a finite Tanguage Kn

such that KneﬂnL(DOS) and K4 ﬂn_lL(DOS).
Proof.

Let n>2, Zn = {A1

,...,An} and let

K = {a cendir=0,a,,...,8 €L and a; # 3 for i # j, 1<1, j<nl.
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(i). We will demonstrate now that Kne r\L%(DOS).

To this aim Tet

=
=
S
I
=
=
=
—~
=
I
=

- _ ph-1 n-i
Gn = (Zn,hn,mn) where i ATCAA and

hn(Ai) = Az’hn(A ) = A ,....h (A

> 3 n‘\‘n-1’/ " n‘n

for 2<is<n-1,

- - pN-1 n-1
G, (Zn’hi’wi) where ws AL CALAL and

L(Gi) = {al...ak: CHPPPRPL Zn,k:SZn -1 and Ai occurs at most
once in al...ak}.

n
It is easy to see that K ¢ (L(G.). On the other hand, for

i=1 [

each ie{1,...,n}, Ai has at most one occurrence in each word of L(Gi)'

n n
Consequently (\L(G;)eK . Thus K = (ML(G,) and so K e ﬂnL(DOS).
i=1 i=1

(ii). We will demonstrate now that if Kne fQ\mL(DOS) then m=n.
This is shown by the following sequence of observations.

(1). If Kn = L(Gl)r1L(GZ) n... nL(Gm) then we can assume that the

alphabet of each Gi’ 1<i<m, equals Zn.
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Proof of (1):

Clearly the alphabet of every Gi’ 1<1i<m, must contain Zn‘ If
for some je {1,...,m} the alphabet of Gj contains some letters not in
Zn, then we can consider Zn as the terminal alphabet of Gj’ and all
other letters in Gj can be considered as nonterminal letters of Gj‘
In this way we can view Gj as a DOS systems with nonterminals (called
an EDOS system). It is proved in [ER1] that for every EDOS system
there exists a DOS system generating the same language. Hence (1)

holds. [

(2). Let Kn , = {Ai :1<i<n} v {AiAj :1<i#j<n} and let G be a
DOS system with the alphabet L If

(I). K <L(G), and

n,2

(I1). for some je {1,...,n}, Aj is propagating,
+
then L(G) = z,

Proof of (2):
(I) and (II) together with Lemma 3 imply that every letter in
G = (Zn,h,m) is propagating. Then, because all one letter words over

Zn are in Kn , one can order elements of Zn into a chain PP

22 n
such that h (s} = 2, b *(a) = e ) sa,f
such that (al) = a,, (a2 CIETRR (an_1 = a,, for some
. . t
tst ...t 21, Since Kn,255L(G) it must be that h™(a ) = a,a,

for some t=1 and so L(G) = Z;. 0
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(3). Assume that Kn = L(Gl) nL(Gz) nee nL(Gm) for some m=1. A
letter a in Z is called multiple if it appears in at least two
different paths of TGj'for each je{l,....n}. There exist no multiple
letters in Lo

Proof of (3):

Assume that a is a multiple Tetter and consider an arbitrary

J
We have two cases to consider.

G., 1<j=<m. By (1) we can assume that the alphabet of Gj equals L

(a). A1l letters in Gj are erasing.
Then obviously a? eL(Gj).
(b). Gj contains a propagating letter.
. . . n _ ot
Since Kn 2ggKn, Kn 2g;L(Gj) and so (2) implies that L(aj) I

b ?

Hence a? ¢ L(Gj).

Thus a? eL(Gj) and, since j was arbitrary, a®eL(G,)n ... nL(Gj);
a contradiction.

Hence X contains no multiple letters. [

(4). Assume that K, = L(G1)"L(Gz) Oeeen L(Gm) for some m =1. Let
f be a function from . into {1,...,m} defined by: for ac o f(a)

equals the minimal index j from {1,..,m} such that in TG. a appears
J

on one path only (by (3) fisa well defined function). Then f is injective.

Proof of (4):

Assume to the contrary that Zn contains a,b with a # b such that

-
—
o))
~
il

f(b). We have two cases to consider.

Case 1. In TG both a and b appear on the same path. Then no word

in L(Gf(ap contains both an occurrence of a and an occurrence of b.
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Consequently no word in L(Gl) n... mL(Gm) contains both an occurrence
of a and an occurrence of b; a contradiction.
Case 2. In Tef( ) a appears on a different path than b. Without

a
loss of generality assume that a appears on a path that is to the
left of the path on which b appears. Then in each word of L(Gf(a)),
and hence in each word of L(G )n... nL(Gn), the unique occurrence of

a is always to the left of the unique occurrence of b; a contradiction.

Thus f must be injective. [

(5). From (4) it follows that whenever Knezfﬂ}mL(DOS) then m=n.

Now the theorem follows from (i) and (ii). 0O

To put the previous result in a proper perspective we show now
that the class of languages obtained by the intersections of DOS
Tanguages is properly contained in the class of context sensitive
languages.

First of all we have the following result.

Lemma 4. There exists a finite language K such that

Ke;n(:jl (), L(00s)).

Proof.

Let K = {a,b,ab,ba,a®}.
(1). If G is a DOS system with the alphabet {a,b} such that G contains
a propagating letter and K< L(G) then a? ¢ L(G).

Proof of (1).

This follows directly from Lemma 3. 0
(2). If G is a DOS system with the alphabet {a,b} such that G does

not containa propagating letter and KcL(G) then a®e L(G).
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Proof.
Obvious (because then a’= a%). [
(3). Now we complete the proof of the lemma as follows.
Assume that GI,...,Gn are DOS systems such that
L(Gl) n...nL(G ) = K. We can assume that the alphabet of each

n

Gj, 1<j<n, equals {a,b} (see the reasoning under (ii).1 in the
proof of Theorem 5). From (1) and (2) it follows then that

L(Gl) Noee nL(Gn) must contain a®; a contradiction.

Consequently Kq:\\u/)({ﬂ\nL(DOS)). 0
=1

Theorem 6. K\_/)(fawnL(DOS)) is strictly included in the class
n=1

of context sensitive languages.

Proof.

Since for every n>1 and every DOS systems Gz""’Gn one easily
constructs a Tinear bounded automaton accepting L(G,)n ... nL(Gn),

the weak inclusion is obvious. The strict inclusion follows from

Lemma 4. 0O
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