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ABSTRACT

It is demonstrated that the degree of ambiquity of a context
free language K in the class of EOL systems is not Targer than the
degree of ambiguity of K in the class of context free grammars. A
language K is said to have the negative prefix property if no word
K catenated with a nonempty prefix of a word from K+ yields an
element of K. It is shown that if an EOL Tanguage has the negative
prefix property and is EOL-unambiguous then K+ is also EOL-unambig-
uous. Using those results several conjectures concerning ambigu-

ity of EOL languages are disproved.



INTRODUCTION

The topic of ambiguity of context free grammars and languages is
one of the classical topics of formal language theory (see, e.g., [P]
and [S]). The class of EOL systems (see, e.g., [RS]) forms a very
natural extension of the class of context free grammars.

Investigating the ambiguity of EOL systems and languages forms
then a "natural extension" of the research on ambiguity of context |
free grammars and languages. However very little is known on this
topic: [ReS] treats some aspects of ambiguity of OL systems and
languages and in [MSW] some observations are made on the ambiguity of
EOL systems and Tanguages concerning mainly EOL forms. In particular
such a research is needed to put the relationship between the class
of EOL systems (languages) and the class of CF grammars (languages) in
proper perspective because simple intuition leads one to a conclusion
that while a context free language is defined in the class of EOL
systems its degree of ambiguity might be spoiled; in particular an
unambiguous context free language may be inherently ambiguous EOL
language. This is conjectured in [MSW].

In this paper we begin a systematic study of ambiguity of EOL
systems and languages and in particular we disprove the above conjec-
ture. That is, we show that the EOL-ambiguity of a context free
language cannot be larger than its context free ambiguity. Since it
was observed already in [MSW] that there exist inherently ambiguous
context free languages that are EOL-unambiguous we get in this way

(yet another) point in favor of EOL systems and languages.



We also provide a condition under which an EOL language Kt ois
EOL~unambiguous if K is EOL-unambiguous. This allows us to disprove

some other conjectures concerning ambiguity of EOL languages.



PRELIMINARIES

We assume the reader to be familiar with the basics of the
theory of EOL systems and languages and the basics of the theory
of context free languages (see, e.g., [RS] and [S]). To settle the
notation for this paper we recall the definition of an EOL system.
Definition. An EOL system is a construct G = (Z,h,S,A) where
Z is a finite alphabet, h is a finite substitution from I into the
power set of r* (extended homomorphically to I*), S e ¥ \ A, S is
called the axiom of G, and A 3 %, A is called the terminal alphabet
of G. The language of G is defined by
L(G) = {x e A | xe h'(S) for some n = 1}. [

Mostly in formal language theory one considers two languages
equal if they differ at most by the empty word. For this reason we
assume that no languages we consider contain the empty word.

Usually, the definition of the (degree of) ambiguity of a
grammar is based on counting the number of distinct derivation trees
for a word in the grammar. We will consider also an alternative way
of defining ambiguity which is based on counting the number of prime
(derivation) trees defined as follows.

Definition. A labelled tree T is called prime if there exists
a path © in T leading from the root of T to a leaf of T with the
following property: if v is a node on t such that v has exactly
one direct descendant, then the label of v is different from the

label of its descendant. [

Definition. Let G be an EOL system.

(1). UWe say that G is ambiguous of degree k, where k is a positive




integer, if every word in L(G) possesses at most k distinct derivation
trees in G and, moreover, some word in L(G) possesses exactly k dis-

tinct derivation trees. G is ambiguous of dearee « if, for any

positive integer k, there exists a word in I.(%) possessing more than
k distinct derivation trees. If G is ambiguous of degree 1 then we
say that G is unambiguous. We use amb G to denote the degree of
ambiguity of G.

(2). We say that G is p-ambiguous of degree k, where k is a positive

integer, if every word in L(G) possesses at most k distinct prime
derivation trees in G and, moreover, some word in L(G) possesses exactly

k distinct prime derivation trees. G is p-ambiguous of degree « if, for

any positive integer k, there exists a word in L(G) possessing more than
k distinct prime derivation trees. If G is p-ambiguous of degree 1 then
we say that G is p-unambiguous. We use pamb B to denote the degree of
p-ambiguity of G. 0

We end this section by demonstrating that p-ambiguity is an
"honest" measure of ambiguity of an EOL system in a sense that in
every EOL system G every word in L(G) has at least one prime deriva-
tion tree. Thus L(G) remains unaltered even if only prime derivation

treéSvare taken Tnto accoUnt.
Theorem 1. Let G be an EOL system. Every word in L(G) has

a prime derivation tree.
Proof.

Let w e L(G) andk1et T be a derivation tree of w in G, If T
is not prime then Tet T(l) be a derivation tree constructed from T
as follows: on every path in T leading from the root to a leaf
choose the earliest (the nearest to the root of T) occurrence of a

node with one direct descendant only such that both the node and its
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descendant have the same label; in each case replace the subtree rooted
at the node by the subtree rooted at its descendant. Obviously, T(1)
is a derivation tree of w in G. If T(i) is prime, then we have got a
prime derivation of w in G. Otherwise we iterate the above construc-
tion obtaining in this way the sequence v = T, T(l),... of derivation

trees of w in G. Since T is a finite tree, = is finite and its last

element is a prime derivation tree of w in f.

Consequently each word in L(G) has a prime derivation tree. [J



RESULTS

We start by comparing the ambiguity and the p-ambiguity of EOL
systems and languages.

Lemma 1. (i). For every EOL system G, pamb G < amb G.

(ii). For every EOL language K, pamb K < amb K.

Proof

Obvious. [

In proving various properties of EOL systems and languages one
often transforms a given EOL system to obtain another one generating
the same Tanguage, but "better" to deal with. The following result
describes transformations which do not spoil the ambiguity (p-ambiguity)
of the system considered.

Lemma 2. Let G and H be EOL systems, such that L(G) = L(H).

[f there exists a function ¢ mapping every successful derivation tree

in G into a derivation tree of the same word in H such that:

(1). ‘the range of ¢ is the set of all successful derivation trees in H,
and

(2). for a successful derivation tree T, if ¢(T) is prime then T is prime,

then amb H < amb G and pamb H < pamb 6.

Proof,

Obvious. [

The following is a variation of a very useful normal form for
EOL systems used often in the literature.

Definition. Let G = (z,h,S,4) be an EOL system. We say that
G is in normal form if G is synchronized(l), S ¢ h(b) for every b ¢ 1,

and if o ¢ h(b) for b e 3, then either a.c a* or o« e (\{a v {F,51))"



or o = F, where F is the synchronization symbol of G. [

The following two lemmas establish the usefulness of EOL
systems in normal form as far as ambiguity is concerned.

Lemma 3. For every EOL system G there exists an EOL system
H such that L(H) = L(G), H is in normal form, amb H s.émg_G and

pamb H < pamb G.

Proof.

This follows from an easy modification of a well known technique
for constructing an EOL system H (for a given EOL system G) which is
propagating, in normal form and such that L(G) = L(H); see [RS],
proofs of theorems . If one skips the part of
this construction yielding a propagating system, then one gets direct-
1y a function iﬁsatisfying the statement of Lemma 2. Hence the
.result follows from Lemma 2. 0

One m1ght46; inclined to think that ”stab1e productions A-A
are an additional source of ambiguity for EOL systems. However we

shall show that this need not be the case. The main tool in this

argument is the construction in the following Temma.

Lemma 4. Let G be an EOL system in normal form. There exists

an EOL system H such that L(G) = L(H) and amb H = pamb H = pamb G.

Proof.

>

Let G = (2,h,S,A).

Let H = (£,h,5,A) be the EOL system constructed as follows.
(1). Let W(G) = =\(au{F,S}), where F is the synchronization symbol
of G and let W(G) =

T = W(G) vau {F,S}.

]

b [ 1 <14 <3andbeW&}. Then
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(2). The finite substitution h is determined as follows.
(2.1). Let b e W(G).
Ifbeh e h(b

), then b and b, ¢ H{bs).

3 2) 3

If o ¢ h(b) and o avA*, then o ¢ E(bl) and o ¢ h(b

(b
( ).
If « ¢ h(B), o # b and o ¢ (H(G))", then
(b ) for every z in Z@, where Z@ is the set of all words resu1t-.
ing from o by attaching to at least one (occurrence of a) Tetter in o ~
the index 1 and attaching the index 2 to all remaining (occurrences of) letters,
Gy € ﬁ(bz) where ty 1s the wqrd resulting from o by attaching the
index 2 to every (occurrence of a) Tetter in o, and
oq e'ﬁ(b3), where %y is the word resultino from o by attaching the
index 3 to every (occurrence of a) letter in a.
(2.2). If o e h(S) and a € &%, then a e H(S).
If a e h(S) and « e (W(G))" then z ¢ H(S) for every z in Z_.
(2.3). For every b e =, F e h(b).

(2.4). h is completely determined by (2.1) through (2.3).

The following observations follow directly from the construction of H.
(i). Let T be a derivation tree of a word x in L(H). Let T be the
tree resulting from T by changing each label of a node in T that is of
the form bi’ 1 <i<3,be W), into b. Then T is a derivation tree
of x in L(G); we say that T corresponds to T.
(ii). Let T be a derivation tree of a word in L(H) and let v be an
internal node of T. Let T be the corresponding tree in G.
If the label of v is of the form bl’ b ¢ W(G), then on the path Teading
from the root of T to v there is no identity (that is there is no node
e such that e has only one direct descendant and the labels of e and
its direct descendant are identical) and there is a path leading from

v to a leaf of T on which there is no identity. If the Tabel of v is
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of the form bZ’ b e W(G), then on the path leading from the root of
T to v there is no identity but on every path leading from v to a
leaf of T there is an identity.
If the label of v is of the form by, b e W(G), then there is an iden-
tity on the path leading from the root of T to v.
(ii1). Let T be a prime derivation tree of a word in L(G). There
is precisely one way of changing every label in T which is an ele-
ment of W(G) into a label from W(G) in such a way that the resulting
tree T is a derivation tree of a word in L(H). On the other hand, if T
is not prime, it is not at all possible to obtain from T a derivafion
tree T of a word in L(H).
(iv). Every derivation tree of a word in L(H) is prime.

Now from (i) through (iv) it follows that L(H) = L(G) and if
x € L(H) = L(G), then:
the number of different prime derivation trees of x in L(H)
equals
the number of different derivation trees of x in L(H)
edua]s
the number of different prime derivation trees of x in L(G).

Hence the lemma holds. [

We can prove now that both notions of ambiguity of EOL languages

that we consider are equivalent.

Theorem 2. For every EOL language K, amb K = pamb K.

Proof.

(). From Lemma 1 we have pamb ¥ < amb K.

(ii). Let GO be an EOL system defining the p-ambiguity of K,
that is L(Gy) = K and pamb Gy = pamb K. By Lemma 3 we can assume

that GO is in normal form. Hence by Lemma 4 there exists an EOL
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system H such that amb H = pamb H = pamb G, and L(H) = L(Gy). Conse-

quently amb K < pamb K.

The thecorem follows from (i) and (ii). [

The above result allows us to show that if we consider a
context free language in the family of EOL systems then we do not
spoil its degree of ambiguity.

Theorem 3. Let K be a context free language such that the
degree of context free ambiguity of K equals k (where k is either a
positive integer or «). Then amb K < k.

Proof.

If k = » then the result is obvious.

Let k be a positive integer and let G be a context free grammar
such that L(G) = K and the degree of ambiguity of G equals k. Clearly
we can assume that G is reduced, and so G does not contain rules of
the form B -+ B, B a nonterminal of G. Now Tet us use the standard
construction to obtain an EOL system H such that L(H) = K; that is
we add to productions of G productions of the form b - b, b a terminal
symbol of G. Clearly pamb H equals the degree of ambiguity of G.

Hence the result follows from Theorem 2. [

The reader should note that the above theorem cannot be
strengthened into "if and only if" result for context free languages.
It was pointed out in [MSW] that the language
Ky = @Y™ [ mn = 13 v @™ | man 2 13
which is well known to be inherently ambiguous context free language
(see [P])y is EOL-unambiguous.

Thus altogether we arrived at an important feature of the class
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of EOL systems. They not only define a class of languages larger than
the class of context free languages but they never spoil the context
free degree of ambiguity of a language and sometimes they can

improve the degree of ambiguity. In particular CF-unambiguous
languages remain EOL-unambiguous while some CF-ambiguous languages
become EOL-unambiguous.

Let K1 = {a'b' | i =2 1}. It is conjectured in [MSW] that

amb Kl+ = =, We disprove this conjecture now: it turns out that K1+

is EOL-unambiguous!!!

Corollary 1. K.© is an EOL-unambiguous language.
Loroiiary 1

Proof.

This follows from Theorem 3 and from an easy observation that

i1 . + .
{a’b | 121} dis a CF-unambiguous language. [

Now we turn to a result that will allow us to prove (in some
cases) that K" remains EOL-unambiguous if K is:EOL-unambiguous.
First, we need the following definition.

Definition. A language K has a negative prefix property if for

all x e K, z ¢ Kt the following holds: if y is a nonempty prefix of

z then xy ¢ K.

Theorem 4. Let K be a Tanguage with a negative prefix property.

If K is EOL-unambiguous then so is K+'
Proof.

Let G = (z,h,S,A) be an unambiguous EOL system generating K. By
Lemma 3 we can assume that G is in normal form and by Lemma 4 we can

assume that each successful derivation tree in G is prime.
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Let U,Z,Y be new symbols, U,Z,Y £ I, and let
6= (U {U,Z,Y},h,Y,a) be the EOL system where h results by extending
htor U (U,Z,Y} as follows:
h(Y) = {U}, h(U) = {UZ,Z} and h(Z) = {Z,S}. Then let H result from G

by the construction from the proof of Lemma 4.

First of all we notice that L(H) = K and every successful derivation
tree in H is prime.

Moreover for each word in L(H) there is only one prime derivation
tree; this follows from the obvious fact that there is exactly one way

of "gluing" a tree of the form (n = 1, 11,...1n, jO"‘;’jn~€ {1,2}):




-14-

with a forest of the form (resulting from "concatenation" in H trees

corresponding to successful derivation trees from G;

r € {1,2,3}, Xgseo-aX, € L{G)):

\"O,...

to obtain a (prime) successful derivation tree in H.
The fact that K has a negative prefix properfy ensures that this is
the only way to obtain a derivation tree for Xpe e+ Xg in H.

Consequently the theorem holds. [J

vV

let K, = {a' b | i >1}. It is conjectured in [MSW] that

amb KO+ = We disprove this conjecture by showing that

1
jo3)
=

=2
~
nNo
1
8

g@Q_KO+ = amb K2+ = 1, where K, is as defined above.

Corollary 2. Both KO+ and K2+ are EOL-unambiguous.

Proof.

Obviously both KO and K2 possess negative prefix property. It
is obvious that K2 is EOL-unambiguous and it is shown in [MSW] that

KO is EOL-unambiguous. Hence the result follows from Theorem 4. [
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FOOTNOTES

(1). For the purpose of this paper we assume that an EOL system
G = (z,h,S,A) is synchronized if for every terminal symbol b if
x € h(B) then either x = A or x = F, where F is the synchronization

symbol of G.
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