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Abstract. 0S systems generalize context-free grammars without non-

terminals. It is shown that it is decidable whether or not two arbitrary

0S systems generate the same set of (derivation) sequences. As a corollary

we get that it is decidable whether or not two arbitrary context-free grammars

have the same sets of derivation sequences.



0. INTRODUCTION

When considering a context-free grammar Gx:(VN,VT,P,S) from the "compu-
tational point of view" one can restrict oneself to G = (VN U VT,P,S) which
is "a context free grammar without nonterminals"; such systems were investigated
e.g. in [2] and [5]. Generalized somewhat such svstems give rise to 0S
systems, which can be viewed as the ggquentia] counterpart of OL systems (see
e.g. [ 3]). Studying 0S systems is in our opinion a very natural step in a
systematic study of the foundations of forma) language theory. On the one
hand in this way one hopes to build up a more thorough foundation: of the theory
of context free 1anguages, on the other hand when contrasted with the theory
of OL systems such a study can shed new light on the basic differences
between parallel and sequential rewriting systéms.

In this paper we view a 0S system as a system to generate sequences
of words (all "derivations" in it) and then we consider the basic decision
problem : do two arbitrary 0S systems generate the same set of sequences?
We prove that this problem is decidable and show that as a corollary it
yields the following result: "it is decidable whether or not two arbitrary

context-free grammars generate the same set of derivation sequences."



I. PRELIMINARIES

We assume the reader fo be familiar with basics of the theory of context-
free grammars (e.g. in the scope of [4]). Mostly we will use standard terminol-
ogy and notation with perhaps the following requiring an additional explanation.
(1) We consider finite alphabets only. For a word a, la| denotes its length
and alph(o) denotes the set of letters occurrine in a. For o nonempty and
1<i<|a]l, a(i) denotes the i'th letter in a3 e.g. a(l) denotes the first
and o(]a]) the last Tetter of a. For a positive integer k, pref o denotes the
prefix of a of length k (if k > |a| then prefka = a)3 analogously Sufka denotes
the suffix of o of length k. For two words a and B, mpref(a,B) denotes the
maximal common prefix of a and f and msuf(a,B) denoteé the maximal common suffix
of a and B.

(2) For a word o over an alphabet I, o = dy..-2., N 2 1, aﬂ

; eZforls<is<n,

the set {ai...an,a2a3.¢.anai, ceedp q3p8p...8 5,8 2q...a, ¢} is called

the set of eyclic conjugates of a and denoted by conj(a).

(3) Given a (directed, labeled) tree T we define its size, denoted as size T,
to be the sum of lengths of all its paths.

As usual in formal language theory we are faced with the problem of
distinguishing between letters and their occurrences in words. In order not
to burden our notation too much we will treat this problem rather informally,
we hope however that this does not Tead to confusion. For example it
should a]wayswbe cTéar fﬁdm“thé context Whgther we are talking about
the i'th occurrence in a word or about the letter that is "the value"
of the i'th occurrence in a word.

In dealing with words the following well-known basic Temma (see,

e.g., [1] turns out to be very useful.

Lenma 1. Let T be an alphabet, let B ¢ Z* and let g5 a, € Z+; If

a]B = 8@2 then there exist y,é € Z* and £ = 0 such that ay = YS, a, = &y and

B = ('YKS)KY = Y(&Y)K» 0



We end this section by proving a combinatorial result on the structure

of equal words which will be crucial in our further considerations.

Lemma 2. Let ¥ be an alphabet, n = 1, Ayaeeesdp € L, 0B e 5t
and 1 <1 < J <n. Then
(1) ... Ay. @y 08yl = a]...ajm]Baj+}...an
if and only if
*
(11) ... there exist v,8 ¢ £ and £ 2 0 such that o = a;Y8, B = 6yaj and
- £ '
a1+7...ajN} = y(éy) .
Proof.
(i) Let us assume that (II) holds. Then
i %,
ay...8, a8, 4.8 = a]...aiyay(ﬁy) aj..-a and
- L *
a}...ajn]BajH...an = a1...aiy(6y) éyaj...an
and so (I) holds. o
(i1) Let us assume that (I) holds. Hence |a| = [g8]. If |a| = [B] =1 then

3 and so (II) holds. Consequently, assume that

2. Let a'l"'aj..'[ = v, a_i+]...aj__‘ = § &ﬂq aj_ﬂ‘...an‘»‘-‘ £.

it must be that o = ass B = a

[\

lal = (8] =
Then (1) i&p1iés that ?a§a3€'= ?aiSSE and consequently

(I11) . .. aéaj = ajéﬁ.

Thus there exist words a,8 ¢ ©* such that o = ai&'and B = Eaj. Note that @, B « 2+.

Hence (II1) implies that a8 = &8 which by Lemma 1 implies that there exist words

v,8 and integer £ > 0 such that a = v§, B = &y and 3 = y(éy)ﬂ. Consequently

0= a8, 8 = Oyay and agq..a, g T v(sv)6. Thus (11) holds. O

1 J=-



(&2 ]

IT1. 0S SYSTEMS AND PRODUCTIONS

In this section 0S systems are introduced, and some basic notions
concerning (rewriting) productions are considered.

First of all we owe the reader an explanation of why we give a new
name to grammars that are variations of context free grammars without non-
terminals. The reason is that the work presented in this paper forms a
result in our research concerning foundations of formal language theory. We

are convinced that the theory of L systems (see, e.g. [ 3]) constitutes an

example of a sysfematic approach to formal Tanguage theory.

There one considers two basic mappings, a homomorphism and a finite substi-

- tution, and forms a rewriting system either by iterating one homomorphism or a
finite numbef of them, or by fterating one finite substitution or a finite number
of them. Thus e.g. the name "a OL system" denotes the L system (where L
symbolizes parallel rewriting) without interactions (that is what 0, zero,
stands for) that consists of iterations of a finite substitution. We
want to consider the theory of Chomsky grammars also to be built up in this
way and so e.g. the ana]ogué of a OL system will be a 0S system where S
will stand for sequential rewriting (the “sequential use" of finite substi-
tution).

Definition. A sequential system without interactions, described as a
0S system, is a three-tuple G = (I,h,w) where £ isan alphabet (called the
alphabet of G), @ € Z+ (called the axiom of G) and h is a finite substitution -
ffom Z* into Z* (called the transition function of G or the set of productions
of G; each pair (x,a) with x.e % and o ¢ Z* such that o e h(x) is called a

production in G). [

Definition. Let G = (IZ,h,w) be a 0S system.

#
(1) Let B ¢ 17 and Yy € L . MWe say that B directly derives y in G, denoted



as B =y, if 8 = By X Bys ¥ = BiaB, and (x,a) is a production in G.
G

o
(2) Let B ¢ gt and vy ¢ ¥ . We say that B derives vy in G, written B %t Y,
<

if there exist words YiseeoY, such that Yo T Y Yy

i-1 =y for 2 < i

G

n

. * . +
and B=Yy. Wewriteg=y if B=y or g=y
a G G

(3) A finite sequence of words YgoYpsereoYys N 2 1, is called a G-sequence

if Yg 7w and Y=Y
G

the set of sequences of G and is denoted as E(G).

i+] for 0 < i s n-1. The set of all G-sequences is called

(4) The language of G, denoted as L(G), is defined by L(G) = {B ¢ DU ;>8}. 0
G

As usual in Tanguage theory, toevery G-sequence we can assign a
derivation graph, which in the case when the axiom is of Tength one becomes
a derivation tree. Given a derivation graph T, a node e in it is called
productive if it contributes a nonempty subword to the ;ast word of a sequence
represented by T (this subword is denoted by contr(e)); otherwise e is called
nonproductive.
We now introduce some terminology and notation needed in this paper.
Given a production (x,a) in a 0S system G = (£,h,w) we write it also
in the form x ~ o and we also write (x>a) ¢ h and say that x + a is a
production in h. Taking -a more general view we say that x'»> a is a
production (over %) if x ¢ L and o ¢ Z*, For a production m = (x»a) we
say that x is its left-hand side (denoted as lhs(m)) and a is its right-hand
side (denoted as rhs(m)).The length of m is denoted by |v| and defined by
[m] = |rhs(r)|. (For G = (I,h,w) we use maxrG to denote max{|m| :7 is a
production in G}.) The domain of m, written as dom(m), is defined by
dom(m) = (B € 5t 1R = Bw(lhs(ﬂ))B2 for some By:By € Z*}. Then for a word
8 in I \dom(n), m(B8) = P, and for a word B in dom(rw),

m(R) = {B](rhs(n))ez PR = B](Zha(w))B2 for some BisBy € Z*}.



Let m and p be productions over some alphabet £. We say that they are
assoctated (written as m ~ p) if there exists an x in t such that
(x) n p(x) # .

Obviously m ~ 7 for every production m.

We classify now productions into six types.

Let m be a production over an alphabet I, m = (x~+a).

t

(T) 1 is Oftype1 if a A.
(2) mis of type 2 if a = x.

(3) 1 is of type 3 if (1) # x and a(|a]) # x.

H

(4) m is of typed if a = xB for 8 ¢ I  such that 8(|8]) # x.

i

(5) m is of type5 if a = Bx for B e LT such that 8(1) % x.

%
xBx for R e I .

it

(6) 7m is of type 6 if o
Lemnma 3.
(1) If m is a production of type 1 and p ~ 7 then p = .

(2) If m is a production of type 2 and p ~ m then p is also a production of

(3) Ifmisa proquction of type 3 and p ~ 7 theh p =

(4) If 7 is a production of type 4, m = (x + xB), and p ~ 7 then either
o =mor p= (y > By) where B ¢ conj(R).

(5) If m is a production of type 5, m = {x~B8x), and p ~ 7 then either
p=morp= (y - yB) where B ¢ conj (B).

(6) If 7 is a production of type 6, m = (x > xBx), and o ~ 7 then either

o=, 0r p= (y~ By) where B e conj(Bx), orp = (y » yB) where B e con(xB).

(1) and {2) are rather obvious and (2) through (6) follows from

Lemma 2. [J



ITI. WINMING WORDS

When one considers whether or not E(G1) < E(Gy) for 0S systems Gy.6,
it is quite instructive to consider this probiem as a game of G] against GZ‘
Given a word o in L(G1), whenever G] applies a production m to (the i'th
occurrence in) a we say that G, attacks, or makes a move on o (more specifically
the (i,m)-move on a). In this way one obtains a word B from W(Q). We say
that G2 defends (this move) if by applying a production p to (the j'th occur-
rence of) o it generates B (more specifically it defends by making the (j,p)-move

on o).

Thus (assuming that Gy and G, have equal axioms) E(Gl) ¢ E(GZ) if and

only if G1 can win against GZ‘ We are now going to explore this point of view

somewhat further.

kIt will be very convenient in our considerations to assume that every
word starts with the marker ¢ and ends with the marker ¢ where ¢ does not
belong.to the alphabet I fixed in our considerations.

+ .
Let o e ¢Z ¢, a = ¢a].,.an¢, aj e Lforl<jsn, 3et‘w € h] and let

ie {1,...,n}. We say that o is an (i,m)-winning word if lha(n) = a(i) and
¢aT"‘aiFIrh$(“)ai+]"‘an¢ ¢ hyla). If o is an (i.r)-winning word for some
i and m then we also say that a is a winning word.

(i) The left horizon of the occurrence as with respect to m in a, denoted

as Zhoru ﬂ(ai) is defined as follows:

A

(1) if a ¢ dom (1) then Zhoru,“(ai) = a5,

(2) if o € dom(m) andwis of type j for j e {1,2,3,4} then Zhora,n(ai) = a5,

(3) if a ¢ dom(m)andmis of type 5, m = (x » 8x), then Zhara,w(ai) F A5 4
’where t = fmsufKBj"I,prgfi_}u)j,
In what follows we will count the left boundary marker as ) and the

right boundary marker as 47



(4) if a e dom(n)andw is of type 6, m = (x > x8x), then Zhora‘ﬂ(ai) = Ay

where t = Imsuf((x@)jw],prefi_7a)‘.
(i1) The right horizon of the occurrence a; with respect to m in a, denoted

as Phora ﬂ(ai)g is defined as follows:

%

(1) if a ¢ dom(m) then Phora,ﬁ(ai) =a

(2) if a edom(m)and ™ is of type j for j ¢ {1,2,3,5} then rhor | n(ai) = a.,

(3) if o e dom(n) andmis of type 4, m = (x - xB), then Phora,ﬁ(ai) =85 14

"

where t [mpref(B‘al,prefIa}ai+]...an)[,

(4) if o e dom(m)and 7 is of type 6, m = (x - xBx), then rhopa’ﬂ(ai) = a5, 4

where t lmpref((ﬁx)[(x], pref[aia“iﬂ’”“an)l'

Let o = ¢a]...an¢ € ¢Z+¢, a; €L for 1 < j <n, be an (i,n)-winning
word. Then we write a in the form o = quti,w(a) midi,n(“) righti,ﬂ(a) where
mid n(u) is a subword of o starting with Zhora w(ai) and ending with

]

r«hora,ﬁ(ai).

We will now consider several cases in which one can alter a winning word
(a) to obtain another winning word.

Lerma 4. If YysYp @re words such that Yy midi ,'n(a)YZ € ¢X+¢ and
azPh(YTYZ) ¢ alph(a) then y = Y]midi,ﬂ(a)yz is an (3§ - Ilef‘tim(cx)] + Iyﬂ,’n)——
winning word.

Proof.

We will prove the Temma by demonstrating that if vy is not an
(i »‘]ng%i’ﬂ(u)[+ly}},w)—winning word then o could not be an (i,w)-winning
word, (To simplify the notation we set oy = 1eftigﬂ(a)).

So let us assume that y is not an (i - Ilefti Tr(cz)[ + IY]I,W)4winning

word. (Note that y(i - ]aT[ + |y1[) = a(i) and so lha(m) <y (i - ‘a]l + IY]I)-)



1o

We have six cases to consider.
(1) If n is of type 1 then (by Lemma 3) G, defends by the (i R Ly o)~
move on y. Hence m e h,. But then G, can defend the (i,n)-move on o by G,
by making the (i,m)-move on a.
(2) If m is of type 2 then (by Lenma 3) 62 defends by applying a production
of type 2 to y. Since alph(y) ¢ alph(a), G, can defend tﬁe (1,7)-move ona by Gy.
(3) If m is of type 3 then (by Lemma 3) G, defends by the (i - ia‘l + [y]],n)—
move on y. Consequently the (i,m)-move by G, on a is defended by the
(i,m)-move by G2 on a.
(4) If 7™ is of type 4 then (by Lemma 3) we have two cases to consiaer.
(4.1) If the (j - }a}[ + ly]],n)—move by 6, on v is defended by G, also by
applying the production m then by Lemma 2 it must be the (i - fa1l + ly]’,ﬂ)—
move by 62 on y. But then the (i,w)-move by G] on a can be defended by the
(i,m)-move by G, on a.

(4.2) If the (i - tall + iy‘l,n)~m0ve by Gy on y is defended by G, by an
| application of a production p = (y + By), where = ga'(x + xB) and B e conj(B)
then (by the definition of the rhor n(a1)) G2 can defend by applying p to an

occurrence b 1in y which lies within mid Tf(a). But then the (i,m)-move by G}
on a can be defended by GZ by applying p to "the same" occurrence b.
The two remaining cases (of m being of type 5 and m being of type 6)

can be proved analogously to the case (4). [

Lemma §. Let !midi Tr(oz)] 2 3 and let

mid] o (O.) = ZhOPa’“(ai )Y181Y261Y382Y4T‘h0r

(ai)
where 8,8, are words such that (|| -1) divides |81 and (|n] -1) divides

o,

|8,]. Then the word
Left, TT(cx) Zho”a,w(ai)YIYZaiY3Y4Phora,n(ai)”ighti,v(a) is an (i - }B1l,n)~

winning word.
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Proof.

Since the proof of this Temma is very similar to the proof of
L.emma 4, we leave it to the reader. The crucial observation here is that,
because (|| -1) divides IB][ (and (|m] -1) divides IBZI), by removing g,
(and 82) we have removed from the perijodic word (y(Gy)2 — see Lemma 2) sub-
words whose lengths are multiplicities of the period. But then if 62 can
defend on such words it can also defend on the original one and in the

“corresponding" positions. []

In the same way we Teave to the reader the proofs of the following

two lemmas.
,ﬁ(ai)

where (|n] -1) divides ]le. Then the word Zefti,ﬂ(a)aiY3Y4rh0pa,ﬂ(ai)righttﬂ(a)

9

Lemma 6. Let {midi Tr(oc)l 2 2 and et midi’ﬂ(a) = a;v3Bpv4rhor,

is also an (i,7)-winning word. (I

 Lerma 7. Let }midi’w(a)[ =z 2 and let mid, (a) = Lhor | W(ai)Y1BTY2ai
where (|m| -1) divides [61]. Then the word Left, ﬂ(a)lhar& W(ai)y]yzairighti (@)

is an (1-IB]f,ﬂ)~winning word. [J

Remark. It may be worthwhile to emphasize here that:

(1). in the statement of Lemma 6 we have mwdigﬂ(a) = a.738,7y rhcr@ w(ai) where

3

the leftmost occurrence of a here is indeed 1hora (a,), and

LT g

(2). analogously, in the statement of Lemma 7 we have
midi,ﬂ(a) = ‘Ihorouw(ai)\{161\(251,i where the rightmost occurrence of a, here is

indeed rhord ﬂ(ai)' 0

k]
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IV. THE 0S SEQUENCE EQUIVALENCE PROBLEM

We will now consider the sequence equivalence problem for 0S systems:
"Decide, given arbitrary 0S systems G1 and GZ’ whether or not E(G1) = E(Gz).”
We will demonstrate that this problem is decidable.

To this end let G, = (T hxgw) and G

1 1’ 2~
0S systems. Considering the sequence equivalence problem for 0S systems, we

(Zz,hz,mz) be two arbitrary
can assume that 21 = 22 = % and Wy = Wy = . Also following our convention
from 'the Tast section we assume that words in L(G]) and L(Gz) start and end
with ¢, which is not an element of & and so is never rewritten. Clearly we
can then assume that logl = Ja,l = 3.
The fo]Idwing result allows one to check whether L(Gi) contains
winning words.
Lemma 8. Let C =4 « (#1) . (maxr61)2, The following two statements
are equivalent:
(M) L(G1) contains a winning word,
(2) L(G1) contains a winning word o such that there ex1sts & derivation
tree T of a with the property that no path in T is longer than C.
. Proof.
(1). Clearly (2) implies (1).
(i1). To prove that (1) implies (2) we proceed as follows.

Let o = ¢a1...an¢, ay5...52, € L, be a winning word in L(GT) with the follow-

ing property:
it has a derivation tree T that is such that among all the deriva-

(). ..{tion trees in G] for winning words there is none of the size smaller

than T.
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Let a be an (i,7m)-winning word and let (as in the preceding) it be of the
forma = Zefe, (o) mid; () right; (o).
We consider two cases separately.
(i1.1) ]mtdi’n(q)[ = 1. |
Let p be an arbitrary path in T starting at the root of T and ending at the
occurrence in a (a leaf).
Ve have two subcases to consider.
(i1.1.1) p contains a node e that is an ancestor of mid, "(a), however the

$

direct descendant of e is not an ancestor of miai’ﬂ(a).

Then et Py be the "initial" part of p, starting at the root and
ending at e, and let P, be the “final" part of p, starting at the direct
descendant of e and ending at a leaf.

Clearly neither py nor p, can have nodes with the éame labels,
because otherwise we could "shorten" p by removing the path between two such
nodes and obtain a derivation tree T of a 'winning word (see:Lemma 4)‘such
that sizeT < sizel which contradicts (*). Thus the length of p is bounded
by 2 « (#I).

(ii.2.2) It is not true that (ii.1.1) holds.

Then, reasoning analogous to that from (ii.1.1) yields that the
Tength of p is bounded by #I.

(ii.2). ]midi,“(a)] > 2.

Then we have three subcases to consider; they correspond to Lemma 5,
Lerma 6 and Lemma 7 respectively. |

Clearly the "worst case" is the one corresponding to Lemma 5 and so

we consider only this case.

Let. mid, (a) = Thor .
iy o

L]

W(aT)Y1B1Y2§iY352y4rhoru5%(ai),whefe (Jr] 1)

divides IB]{ and (x| -1) divides }BZI.
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Let p be an arbitrary path in T starting at the root and ending at
a leaf (an occurrence in a). A node e on p is called special if the sub-
word it contributes to o contains one of the occurrences from the set

{Lhor (ai),rhor

- 7T(ai),ai} but the direct descendant of e does not contain

Oy
this occurrence in its contribution to «.

Clearly p can contain at most three special points which yields
the division of p (done ana?ogous?ylto that in (i1.1.1)) 1ht¢ at h@st four
Parts py.p,ysP3sP, (which catenated in this order yield p).

Let us consider an arbitrary part p of p (p « {p],p2,§3,p4}). To
each node e of p we assign its description des(e) = (x,M,N) defined as follows:
x is the label of e in T,

if e is a productive node in T and contr(e) = SRL P for some

8- g+
1 <gs<n-1,s21then M= g-1 {mod(|n] -1)) and N = q-+s(mcd(iw§ -1)),
if e is a nonproductive node in T then M = N = || -1,

We note that no two different nodes on p can have the same descrip-
tion. The reason is that by removing the path between them we obtain
- either a smaller derivation tree of o (if thoaeunodgsvawéxnmnpwoductﬁve),
—or a smaller derivation tree of a winning word o shorter than o this
follows from Lemmas 4, 5, 6 and 7 and from an observation that the construc-
tion of p guarantees that the subword we remove to obtain o from o lies
either to the left of Zhora

“(ai), or between Zhar& (ai) and ay, or between

’ i

a; and Pho”a,w(ai)’ or to the right of rhora’ﬂ(ai) — moreover the length of
these subwords is divisible by (|| ~1).

Thus the length of p is bounded by (#E)(mamr63)2 and consequently
the length of p is bounded by 4 « (#I) - (maer1)2.

This completes the proof of the lemma. [J
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On the basis of the above lemma we can now demonstrate that the 0S
sequence equivalence problem 1s decidable.

Theorem 1. It is decidable whether or not 5(61)§g E(Gz) for arbitrary
0S systems G] and Gz.

Proof.

Clear by Lemma 8. [J

Let G = (VN;V{;P,S) be a context;fréé’grammg;fmu(As usual we assume
that every nonterminal in G can be rewritten, in a number of steps, in such
a way that it yields a word in V;). The weakest notion of a derivation in
G (used quite often in the Titerature) ic defined as the sequence of words

*
80’81""’Bn’ n =1, such that BO = 5, Bn € VT and Bi Z» 8i+1 for 0 < i < n-1.

We will call the set of all derivations (in the sense as above) the
computation set of G and denote it as‘comp G. Clearly in" considering comp G
one can consider the 0S system G = (V,H,S) where V = VN U VT and h is defined
by productions in P (so h:;v; +“V§). Then, obviously, camplG] = eomp GZ if
and only if E(E}) = E(ﬁé) where G],G2 are two arbitrary context-free grammars.

The question of whether of not comp 61 = cqmpiﬁé for arbitrary
context-free grammars G} and 62 is one of the most natural questions about
context-free grammars. The above reasoning and Theorem 1 now yields the -
following result. |

Theé;;; 2: It is decidable whether or not comp G] = éomp G2 for

arbitrary context-free grammars G] and GZ' 0

Remark. We have assumed that every nonterminal in a context-free
grammar can be rewritten; because of this Theorem 2 is in fact stated for
context-free grammars satisfying this assumption. However it is easy to

see that it holds for arbitrary context-free grammars. [J
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It is very instructive to compare Theorem 2 with the well known
result, see, e.g. [5] that it is not decidable whether or not two context-free

grammars generate the same set of sentential forms.
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