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ABSTRACT

Counting languages are the languages of the form

n

{a?az...ag | t>22,n>1} where a ,a; are letters no two con-

EERE
secutive of which are identical. They possess a "clean structure"
in the sense that if an arbitrary word from such a language is cut
in t subwords of equal length then no two consecutive subwords con-
tain an occurrence of the same letter. It is shown that whenever
an FPOL system G is such that its language contains a "dense enough"

subset of a counting Tanguage then the whole language of G cannot

have such a clean structure.






I.  INTRODUCTION

One of the important research areas in formal language
theory is the search for results describing the structure of a
single language within a given language family. The classical ex-
ample of such a result is the "pumping lTemma" for context free lan-
guages. It says that if certain words are in a context free lan-
guage then (infinitely many) other words must be also in this lan-
guage. Such resu1t§ clearly shed some Tight on the generating
abilities (restrictions) of grammars (or machines) defining the
given class of languages.

In this paper we establish a result in this direction for
the class of languages generated by OL systems without erasing
productions and with finite axiom sets (called FPOL systems). One
of the most popular type of languages (serving as examples of strict
inclusions of some classes of languages in others) in formal lan-
guage theory are t-counting Tanguages. Those are languages of the

nn

form {3132"'32 | t>2,n > 1} where a ,a, are letters no two

ELERELN
consecutive of which are identical. They possess a "clean structure

in the sense that if an arbitrary word from such a language is cut
into t subwords of equal length then no two consecutive subwords
share an occurrence of a common letter. We demonstrate that if an
FPOL system G is such that its language contains a "dense enough"
subset of a counting language, then the whole language cannot have
such a clean structure (or even a structure "approximating" it!).
Thus again a result in this Tine: 1if certain words are in the lan-

guage from the given class, then other words must also be in the

same Tanguage.



Certainly there are very few results like this for the class
of FPOL Tanguages and we believe that this result together with its
proof sheds some new light on the structure of derivations in
FPOL systems.

Perhaps it is also worthwhile to mention that results 1like
this are especially valuable in the theory of L forms where one is
really interested in the structure of "all sentential forms" that

a given system can generate. In particular our result is used in

[3].



IT. PRELIMINARIES

We assume the reader to be familiar with rudiments of formal
language theory and in particular with the rudiments of the theory
of L systems (see, e.g., [2]). We use a rather standard terminology
and perhaps only the following notation requires an explanation.
(1). N,N+ and N(t) denote the set of nonnegative integers, positive
integers and positive integers Targer than t, respectively.

(2). For a finite set Z, #Z denotes its cardinality.

(3). If o is a word over & then alph o denotes the set of all
letters from 1 that occur in o, pref, (a) denotes the prefix of

o of the length k and suf, (o) denotes the suffix of o of the
length k. | o | denotes the length of a and #, o denotes the number
of occurrences of the letter a in a.

(4). If K is a language then
alph K =U alph o, ALPH (K) = {alph o |aeK} and

a e K

Tess K=#{|a| laeKand |a| =q}.

(5). In our notation we often identify a singleton set with its
element.

To establish the basic notation for this paper we recall now
the definition of an FPOL system.

Definition
(1). An FPOL system is a construct G = (z,P,A) where © is a finite
nonempty alphabet, P is a finite set of productions, each of the
form a»o with a ¢ .0 ¢ Z+ satisfying the condition

(va) Z(306) ;Hlava is in PL.



A is a finite nonempty set (of axioms), A < st

(2). Given words x,y e 5" we say that x directly derives y in G

if x = ay and y = Op o0y where < Ap50q >5. . <50 > € P. We

Ay
write then x §> Y.

(3). For a positive integer m we say that x derives y in m steps if
there exist XpoeeeoXy such that

X0 6 X1 X1 G Yoo X1 & Xpandx = y. We denote it by

m .
X E» Y. If x =y or there exists an m such that x §:>y then we say

that x derives y in G and denote it by x %w Y.
(4). The language of G, denoted as L(G), is defined by
L(8) = (e s | Gw), [w= olp. O

Definition. Let G = (z,P,A) be an FPOL system.
(1). Letoes’. Then 6 = (1,P,a).
(2). LetneN". Then L"(6) = {a ¢ L(G) : (3w) ,[w %> al} and
L"(6,0) = L"(6 ).
(3). inf G c = where a ¢ inf G if and only ff {o e L(G) : a e alph a}

“is infinite; elements of inf G are called infinite letters (in G).

(4). fin G = 2\inf G; elements of fin G are called finite letters
(in 6).
(5). mult G ¢ inf G where a € mult G if and only if

(Vn)N+(3“)L(G)[#aa >n]l;

elements of mult G are called multiple Tetters (in G).

(6). copy G = {me N | (Fa),[o" ¢ L(G)T3.

(7). The growth relation of G, denoted as fG’ is a function from

N* into finite subsets of N' defined by fo(n) = {Ja| | o e L(n,6)].



(7.1). If there exists a polynomial ¢ such that

(VH)N+(Y/m} fe(n) [m < Cb(n)]

then we say that fG is of polynomial type;

otherwise fG is exponential.
(7.2). If there exists a constant C such that

(vn) ,(3m) [m < C]
N fo(n)

then we can say that fG is Timited.
(7.3) If (Vn)N+[#fG(n) = 1]

then we can say that fG is deterministic. [J
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IIT. AUXILIARY RESULTS

In this section we investigate certain aspects of derivations in
FPOL systems in general and in the so called t-balanced FPOL systems
in particular.

Definition. Let © be a finite alphabet.

(1). Let o e 2t and Tet t be a positive integer t = 2. A t-disjoint

+
decomposition of o« is a vector (ul,...,qt) such that Opsenesty €1,

ap...0p = a and, for every i in {1,...,t-1}, alph o n alph o, .= g

(2). Let K g.Z+ and Tet t be a positive integer, t>2. We say that

K is t-balanced if there exist positive rational numbers CqovnesCy with
t

l 'ci;= 1 and a positive integer d such that for every o in K there
i=1

exists a t-disjoint decomposition (ul,...,at)"of o such that, for every

ie {1,...,t}, C1'|d|"dfilailfici’ al+d. In such a case we also say
that K is (v,d)-balanced and that (ul,...,at) is a (v,d)-balanced
decomposition of a, where v = (Cl"'”’ct)’
(3). An FPOL system G is t-balanced if L(G) is t-balanced, [J

The following threé Temmas describe the basic property of
growth relations of t-balanced FPOL systems.

Lemma 1. If G = (z,P,A) is a t-balanced FPOL system with t = 3,

then there exists a positive integer k. such that, for every a in &

0

and for every positive integer n, #fG (n)<k0v
Gy )
Proof. Clearly it suffices to show that for every a in & there

exists a positive integer ka such that, for every positive integer n,

#fG (n) <k

a*
a
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Let v = (Cl”"’ct) and d be such that L{G) is (v,d)-balanced. Let

c = min{cl,...,ct}. If a ¢ % then eitherca ¢ inf G or a ¢ fin G.

min
We will consider these cases separately.

(i). Let a e inf G.

In this case we will prove the result by contradiction. Thus let us
assume that:

there does not exist a positive integer ka such that, for every posi-
tive integer n, #fg (n) <k ..., et e e e et ranen (*).
Then we proceed as follows.

(i.1). There exist a positive igteger Nps @ positive integer r larger

than #% and words WiseonsWy, in L O(Ga_) such that, for every i in {1,...,t}

and for every j in {1,...,r-1},cilw.

J+1l>c1.!wjl + 2d.

This 1is proved as follows.

Clearly it suffices to show (i.1) with o replaced by Cnin

Let us take an arbitrary n and let f. (n) = txla'-~axs} where elements

a
XqseeesXo are arranged in the increasing order. Let X5 aeeesXs be the
, 1 r
longest subsequence of XqsennaXg defined as follows:
xi1 = Xqs and |
forvl <J <=1, 1j+1 is the smallest index with the property that
x{ - X CZdH..
j+l J min
If r < #% then s < #5 CZ? . Since n was arbitrary, if we set ka equal
min
to the smallest positive integer larger than (#: 2d ) + 1 then we get
min
that, for every positive integer n, #fG (n) < ka’ which contradicts (*).

a

(i.2). Leta = oy a o, be a word in L(G) that is Tong enough, meaning

that, for every i e {lg...gﬁ}3,+&4$ﬁi>3iwr§ + 5d where WiseoooW is a



sequence (in the order of increasing length) from (i.1) for some fixed
n

= 0
ng and r. Let By = aqWa, € L “(G,a),
— — no
By = AW ay € L “(G,a),
where &i’QZ are some fixed words such that

— "o — "o
4 € L (G,al) and %y € L (G,az).

Let, for each i e {1,...,r}, (81[1],...,81[t]) be a (v,d)-balanced
decomposition of Bse

Since IBiI > |a] and t = 3 the condition on the length of o assures

us that either W, is contained in the word resulting from Bi by cutting
off its prefix (81[1])(Eﬁgiywrl+2d(81[2])) or w, is contained in the
word resulting from Bs by cutting off its suffix

(suf' |+2d [t 1]))(61[tj). Because these two cases are symmetric we

assume the first one.

2d
|- |8:,11-18
i+l Cm1n i+l

Consequently |Bi+1[1]}-lsi[1][> 0 and so Bi+1[1] results from Bi[l]

Since, for each i e {1,...,r-1},|w. il > 2d

|W1$ z
by catenating to 81[1] a nonempty prefix of 81[2]. Also
18, L1118y (101 (cq - Claap L+l D)+d) = (eq oyl ) =d) = g (|- [y |)+2as
<|w,|+2d.
Thus in constructing consecutively 82[1],83[1],...,Br[1] we use nonempty
subwords of a prefix of 81[2] and we never reach the occurrence of Wy
indicated by the equality By = Eiwlaé. However r > #1r and so at Teast
two nonempty subwords used in the process of constructing
82[1], 83[1]""’Br[1] contain an occurrence of the same letter. This
implies that there exists a j in {2,...,r-1} such that
alp (B [1]) n alph (B [2] # P which contradicts the fact that
(Bj[lj,..,,sj[t]) is a (v,d)-balanced decomposition of Bj'
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integers m dividing all numbers f (n) provided that n = o for suitably
chosen m.
The Temma follows now by the following easy to prove
property of DOL growth functions. Assume that a DOL growth
function f not identically zero has the following property. For
every positive integer m, there are integers My = m and o such
that My divides f(n) wherever n = ng- Then f is not of poly-

nomial type. [

After we have established the basic properties of growth
relations of t-balanced FPOL systems we move to investigate the
structure of t-balanced FPOL systems the languages of which contain
counting languages. Those counting languages are defined now.

Definition. Let t be a positive integer, t > 2. A language

M over » is called a t-counting language if M = {a?ag...agln > 1}

where for i ¢ {1,...,t}, a; e r and aj # aj+1 for j e {1,...,t-1}.

We also say that aj and aj+1 are neighbors in M. 0O

To prove our main theorem we need the following transformation
of an FPOL system.
Definition. Let G = (2;P,A) be an FPOL system and k a posi-

tive integer. The k-decomposition of G is a set G = {Gys...,G ) of

FPOL systems (called components) such that, for every i e {1,...,k},

6. = (Z,Pk,Ai) where A

1 = Aand A, = fala e L'H(E)) for 1 e (2,...,k),

1
and (a » a) ¢ Pk if and only if either a %%’u or a’@$ A for m < k and

a = A, [

It follows directly from the above definition that

k
L(G) = \\w,) L(Gi) where G = {Gl”"’Gk} is a k-decomposition of G.
i=1 '
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A particular kind of decomposition will be useful for our
purposes. It is defined as follows. Let G = (z,h,A) be an FPOL

system. We say that G is well-sliced if:

K(6,)) = ALPH(LY(G.))

(1). for every a in £ and every k,2=1, ALPH(L 3 a

and moreover if x is a word such that [x| = 2 and #alph x = 1 then
“

G ) if and only if there exists a word y such that |y| = 2,

X
e L a

alph x = alph y and y « Ll(Ga),

(2). for every a in = ifl\,) L"(a
n =1

) is finite then \UJ L"(6,) = {aladd,

n=>1

The proof of the following result is rather standard .

(see, e.g., [1]) and so it is omitted. (By a well-sliced decomposi-

tion of an FPOL system we understand a decomposition each component
of which is well-sliced).
Lemma 4. For every FPOL system there exists a well-sliced

decomposition. [J

We are ready now to prove the main result of this paper.

Theorem 1. Let t = 3, M be a t-counting 1anguagé, G be a
t-balanced FPOL system and K = MnL(G). There exists a constant C
such that 1§§§qK < C.]ogzq for every positive integer q.

Proof. Let G = (z,P,A) and A = alph M. By Lemma 4 there
exists a well-sTiced decomposition of G and since it suffices to
prove the theorem for a single component of such a decomposition let
us assume that G is well-sTiced.

Since the result holds trivially when K is finite, let us
assume that K is infinite.

(1). For every letter b in A there exists a multiple Tetter a and a
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word o in {b}* such that a %i>a. This is obvious.

2). IfaemultG, bea,ac {b}+ and a ¥L>a then

(
(1). fe is either constant or exponential,
(i1). fg is either constant or exponential, and
(111). fGa is constant if and only if be is constant.
We prove (2) as follows.

By Lemma 2, f. is deterministic and because G is well-sliced, for

Gy

every positive integer n, 2 ¢ fG (n) if and only if b* < Ln(Ga).
i i a
Let t=b ', b?2,... be such that i) = fg (3).
a
If © contains infinitely many different words then Ga satisfies the

assumptions of Lemma 3 and so fGa is exponential.

Otherwise, because G is well-sliced, fG is a constant function.

Thus (i) is proved. But a derives striigs "through" b and so a and b
must have the same type of growth. Consequently (i) implies (ii) and (iii).
(3). Either, for every b in A, bezis a constant function, or, for
every b»in‘A’;fﬁbzig exponential.

This is proved as follows.

Let b € A. From (1) and (2) it follows that be is either constant or
exponential. Now let a be a neighbor of b (in M). Then if we take a
word o from K of the form ...a"b"... (or symmetrically ...bnaﬂ..,)‘and
will derive in G words from it in such a way that each occurrence of b
in o will produce the same subtree, then if b is not of the same type
as a, we obtain a word 8 in L(G) that is not t-balanced; a contradic-
tion. Consequently any two neighbors in M must have the same type of

growth and (3) holds.
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(4). It is not true that f. is constant for every a in A.

Ga

We prove it by showing that if fGa if constant for every a in A then
the fact that K is infinite leads to a contradiction.

Since K is infinite we can choose a in K which is arbitrarily long,
e.g., so long that each derivation graph for o in G is such that on
each path in it there exists a label that appears at least twice.

In a derivation graph corresponding to a derivation of o from w in A
we choose a path p = €ps€qs--- AS follows:

eq is an occurrence in w such that no other occurrence in w contrib-
utes a Tonger subward to o,

€:;41 1s a direct descendant of e; such that no other direct descendant

of e; contributes a longer subwerd to a.

Now on p we choose the first (from eo) Tabel ¢ that repeats itself

on p. Then we take the first repetition of o on p (and we let B,8 to
be the words such that the contribution of the first ¢ on p to the
level on which the first repetition of o p occurs is 8 o 8 where the
indicated occurrence of ¢ is the occurrence of ¢ on p).

The situation is illustrated by the following figqure:
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M‘Mﬂ“h

S -

SO

i

Now we proceed as follows.

(). BB#A.

We prove it by contradiction.

To this aim assume that gg=A.
(1.1). Then every Tabel o on p that repeats itself must be such that

Foo = . -
p => §p§ implies &8 = A.

This is seen as follows.
Since G is well-sliced, o = 0,0 =% rpr and p == upu for some words

Z,Z,u,u such that alph wy = alph ss.
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Then

o = ol = C(I)ucﬁi

c=>0 = Lot = C(l)zpii(l) =
o=0 = o = Tt = ...
oc=0g = o =5 o =

(1) (1) () ) (1) (D) (2) 5(2)

for some words ¢/, ,C 5 ees S ut T ut . where

(1;(1) ,(2)5(2)

all the words u . are nonempty if 8§ is nonempty.
Consequently if 68§ # A then there exists a positive integer £, such
that #fG e) > kO’ which contradicts Lemma 1 (where kO is the constant

g
from the statement of Lemma 1).

Thus (i.1) holds.

But (i.1) implies that a cannot be longer than a fixed a priori con-
stant; since a was an arbitrary word in K this contradicts the fact
that K is infinite.

Thus indeed gg # A and (i) holds.

(i1). Since G is well-sliced, o = yoy for some words v,y such that
alph vy = alph gg and o == 1 for some 7 ¥, Since we have assumed
that fG is constant for every a in A, fG is constant.

a T
Then

O = 7 = W(l) %é W(Z) ;9 W(3) =>

5 = vt = (1) 741 o (2, (1-(2)

= .,
o = yoy = ?( 1) YO??( ) (2) (1) '(1)§( ) =
o = yoy = y(1) vorr (1) __,M(Z)Y(l)ww( )o(2) Y(3)Y(2)Y(1)Tr\—{(1)\-((2)-(3

Y

)
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where ali yﬁgy(1)§(l),,..,n,w(l),". are nonempty words.

Since fG is constant, the above implies that there exists a posi-
™
tive integer £ such that #fG (£) > kO which contradicts Lemma 1 (where k
- )
is the constant from the statement of Lemma 1).

0

Consequently it cannot be true that fG is constant for every a in
a
A, and so (4) holds.

(5). fG is exponential for every b in A. This follows directly from (3) and (4).

(6). Tthe exists a positive integer constant s, such that in every
derivation without repetitions (in its trace) of a word from K, already
after So steps an intermediate word contains an occurrence of a multiple
Tetter a for which there exist b in & and o in {b}" such that a & a.
This is obvious.

(7). Now we complete the proof of the theorem as follows.

1g§§qK < Ul + U2, where

U1 is the number of all the words from K of length not larger than g

that are obtained by a derivation without a repetition which does not take
more than So steps, and

U2 is the number of all the words from K of Tength not larger than q that

are obtained by a derivation without a repetition which takes more than

S steps.
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The following graphic represents the situation:

LA\
q __________ G e, N Wk M e WD Soecw WG VO G G M SR e SOWE W DN g, siihe wien e WA el e
b3
b 4
X .
. .
X
% L)
A y «
L4
x .
X
i ]

where s is the number of steps (in derivations without repetitions)
required to derive a word in K and £ is the Tength of a word in K (so

that the point (i,j) is on the graphic if in i steps one can derive a

word from K of Tength j).

From (2), (5) and (6) it follows that for i >sg all the points

(i,j) are above the exponential Tine u® for some constant u > 1.

But then Lemma 1 implies that there exists a constaht h, such that (note

© loeg,q
- : _ 2
that Sq = 1oguq) 1§§§qK < Uy, < hysy + hglog g. Since Tog g = Tog,u

Tess K < ho.sg + hy L2 C.1 f itabl tant C
- * v T < . ( -y .
—q 0°°0 0 4092«1«1 = 092q Oor a suitable constan
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Thus the theorem holds. [

As a corollary of the above theorem we get the f011owing result which
turns out to be useful in the theory of EOL forms (see [3]).

Corollary 1. Let G be an FPOL system such that L(G) contains
{anbncnln > 1}. Then for no finite language F, L(G)\F 1is 3-balanced.

Proof. Directly from Theorem 1. [
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