A Software Lifecycle Methodology and Tool Support
Leon J. Osterweil

CU-CS-154-79

LUﬂTUmversn;y of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

A SOFTWARE LIFECYCLE
METHODOLOGY AND TOOL SUPPORT

Leon J. Osterweil
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

CU-CS-154-79 April, 1979

INTERIM TECHNTICAL REPORT
U.S. ARMY RESEARCH OFFICE
CONTRACT NO. DAAG29-78-G-0046

Approved for public release;
Distribution Unlimited

THE FINDINGS IN THIS REPORT ARE NOT TO
BE CONSTRUED AS AN OFFICIAL DEPARTMENT
OF THE ARMY POSITION, UNLESS SO DESIG-
NATED BY OTHER AUTHORIZED DOCUMENTS.

We acknowledge U.S. Army Research support
under contract no. DAAG29-78-G-0046 and
National Science Foundation support under
grant no. MCS77-02194.

ABSTRACT

This paper describes a system of techniques and tools for aid-
ing in the development and maintenance of software. Improved verifica-
tion techniques are applied throughout the entire process and management
visibility is greatly enhanced. The paper discusses the critical need
for improving upon past and present methodology. It presents a pro-
posal for a new production methodology, a verification methodology,
and the system architecture for a family of support tools.

INTRODUCTION

There has been growing interest recently in the problem of pro-
ducing high-quality software at reasonable cost [1-6]. The cost of
producing programs has been observed to range up to and sometimes be-
yond $200 per line [7]. 1In spite of these costs, embarrassing and
occasionally disastrous errors and shortcomings have been found in such
code. People actively involved in software development have become all
too accustomed to a variety of problems, including

cost/schedule overruns,

poor visibility into development status,
unreliability,

maintenance difficulties,

inconclusive verification, and
inadequate or nonexistent documentation

These problems have received a Tot of attention during the last
few years, and the quest for improved, modern software practices has
been generally a search for ways to eliminate or at least alleviate
these problems wherever possible.

As a consequence of intense multidisciplinary investigation of
these and related problems, some basic findings have emerged [8-11].
The key findings are that software is an intangible product and that it
is critically important that its production be carefully managed. Un-
fortunately software management is currently more of an art than an exact
science. The reasons are not hard to find. First, software is not
tangible; hence much management science does not apply directly. Second,
there are few if any basic software development principles and disciplines.

In view of the growing magnitude of U.S. software activities
(currently estimated at $10-20 billion per year [12,13]), it is not sur-
prising that considerable effort is being spent on discovering workable
software development and management principles. An important step in
this direction is the realization that software production is an activity
that properly takes place in phases, and that it should be managed as
such. The phased approach to software development is now widely accepted
as a basis for improving project cost effectiveness through improved

visibility and control.

END R&SH%E” PIRNEALRIYM- DETAIL CODE
USER DESIGN
ANALYSIS | DESIGN

Figure 1. Phased approach to software development.

Figure 1 illustrates typical names and the usual ordering of
some of these phases. Generally, the first phase, requirements analysis,
should result in the production of a requirements document specifying
the end user's needs and wishes for the software. The next phase, pre-
Timinary design, should be the identification and analysis of the func-
tional capabilities needed to achieve the requirements. The next phase,
detail design, should be the derivation and definition of specific data
aggregates and algorithmic modules capable of effecting these functional
capabilities. The final step, coding, is then the process of implementing
these specifications as computer source code.

Many discussions of the phased approach also include documenta-
tion, testing and maintenance as sequential phases of software production.
It is our opinion that documentation and testing should not be considered
phases, but rather pervasive activities throughout the development process.
The next section explores this idea more fully. Maintenance also should
not be considered a sequential phase, but rather an activity continuing
throughout the useful 1ife of the software.

Maintenance has become a catchall term for all activities occurring
after the code is declared operational. In practice these activities are
quite diverse, encompassing such things as (1) correcting coding errors,
(2) repairing design flaws (and impacted code), and (3) upgrading of basic
capabilities (resulting in redesign and recoding). It now becomes clear
why 50-60% of total software lifecycle costs are ascribed to maintenance
[14,15]. Figure 2 illustrates this notion of maintenance as the iterative
alteration and correction of requirements, design, and code.

We believe that the greatest benefits of this phased conceptualiza-
tion of software development and maintenance will not be obtained until

REQUIREMENTS PRELIMINARY DETAIL
ANALYSIS DESIGN DESIGN
MAINTENANCE
UPGRADE
CAPABILITIES

Figure 2. The maintenance process.

the conceptualization is supported by adequate tools and automation
[16-18]. Specifically, what appear to be needed are tools and techniques
to (1) facilitate the transition from one development phase to the next
and (2) determine that the transitions have been made correctly. This
paper proposes an integrated tool-supported methodology being designed

to address effectively both of these objectives.

LIFE CYCLE VERIFICATION

Careful management throughout the T1ife cycle is critical to the
success of any software project. This careful management must be based
upon adequate visibi]ity into the development (and hence maintenance)
process; The phased approach dictates that milestones be inserted into
the process as monitoring points. By itself, however, it does not
specify how this monitoring is to be done. Clearly the tantalizingly
intangible nature of the evolving software product is the problem.

Thus the driving philosophy behind our approach is that project
related products and information be made as visible and tangible as
possible. It is important to observe that such things as reports,
summaries, and analyses must be considered key project information.
Indeed, such information may be more useful in improving project visi-
bility and manageability than more obvious and mundane items, such as
1istings and design diagrams. For this reason, much emphasis is
placed upon techniques for producing useful reports, summaries, and
analyses at all phases of the development (and hence, maintenance) cycle.

Ideally, these reports, summaries, and analyses will be automatically
drawn from rigorous representations of requirements, design, and code.
Thus important emphasis is also placed upon rigor, formality, and machine
readability of all project source materials.

If this is done, then thorough, objective, complete reports on
project status can be easily and automatically generated at critical
points in the 1ife cycle. These reports would represent both the status
of the project and inferences drawn from source materials. Verification
of the soundness of efforts in a given development phase is then obtain-
able by a comparison of the inferences drawn from one phase to status
summaries and inferences drawn from the previous phase.

CONSISTENCY CONSISTENCY
CONSISTENCY CONSISTENCY
| VAR VA
e REQUIRE- PRELIN-
MENTS INARY DETAIL CODE
USER DESIGN
ANALYSIS ‘| pesten
REQUIREMENTS PRELIMINARY INCREMENTAL CODE
VERIFICATION DESIGN DETAILED DESIGN VERIFICATION

VERIFICATION VERIFICATION

Figure 3. Lifecycle veri{ication.

Figure 3 illustrates this idea and embodies the important pr1nc1p1e
that verification and testwng are activities that must: occur during every
phase of the development and ma1ntenance cycles,. These incremental veri-
fication steps are exactly what are needed to assure‘that the éoftware
product is developing satisfactoriTy* Their purpose is to pﬁovide man-
agement (and project personnel) with the perceptions and insight needed
to prevent drift, poor coordination, and misdirection.

Thus, for example, in Figure 3 we see that a verification of re-
quirements back to the end user is dictated. This would be supported by
the creation of reports based upon the requirements as specified. The

reports would give the results of consistency cross-checks and analyses
of the interplay among requirements. Clearly this is most effectively
done if the requirements are represented in a rigorous, unambiguous,

machine readable format. More on this is presented in a later section.

Figure 3 also shows a verification of preliminary design to re-
quirements. This verification would be supported by reports on the con-
sistency of data flows and interfaces within the design. More important,
however, is that functional effects and characteristics of the designed
system could be inferred from a rigorous, machine readable design
representation. In comparing these inferred effects to the rigorous
statement of required effects, a meaningful verification is obtained.

That verification could then serve as a basis for a management
decision to proceed with the detailed design activity as planned. Here
too it is possible to verify that the effect of the detailed design
specification achieves the functional capabilities and performance
characteristics promised by the preliminary design, provided that both
are in rigorous, unambiguous, machine readable format and that analytic
tools are available. In actuality we view design as a multistage hierar-
chical process with verification occurring at each incremental stage.
This is described more fully in a later section of this paper.

Finally, Figure 3 shows a verification of the actual code to
detail design. In this activity the actual code is automatically
scrutinized by automated tools. Reports on the internal consistency and
soundness of the code are produced. More important, however, is that
inferences about the effect of the code can be drawn for comparison to
detail design specifications. This verification is perhaps the most
familiar because numerous tools of this type have been produced in recent
years. Their potential effectiveness has not been fully achieved because
they have not usually been coupled with the rigorous design specifications
needed for thorough verification. Nevertheless, these early tools and
techniques are extremely important to us. They serve as models of the
tools and techniques needed for verification of the earlier phases of
the software 1ife cycle. Further, the weaknesses of these early efforts
serve to underscore the importance of rigor and machine readability at

all phases of the life cycle as the basis for verification, visibility,
and hence manageability [19-21].

INTEGRATED VERIFICATION METHODOLOGY

In this section an overview of a verification methodology is
presented. This verification methodology has been evolved previously
for application to source code [16,20]. We have observed that it seems
applicable, however, to any rigorous algorithmic or combinatorial ex-
pression of a problem or its solution. 1In this section the methodology
itself is sketched; its applicability to the various 1ife cycle phases is
shown later.

SOURCE STATIC SYMBOLIC DYNAMIC
TEXT ANALYSIS EXECUTION ANALYSIS

FORMAL
VERIFICATION

Figure 4. Integrated verification methodology.

Figure 4 shows the juxtaposition of the four major techniques used
as components of the integrated verification methodology. As shown in
Figure 4, incoming source representations (code, design representations,
or requirements representations) are first scanned by a static analyzer.
Static analyzers are capable of examining algorithmic representations for
inconsistencies and certain errors without requiring actual or simulated
execution. Systems such as the DAVE[20-22] static analysis system have
proven to be useful in this way.

DAVE is capable of inferring the nature of data flows both within
and between modules of FORTRAN programs. The reports of these inference
scans are useful documentation, providing visibility to project personnel
and management. Further, instances of inconsistent data flow can be de-
tected and reported as errors. DAVE can also demonstrate the absence of
certain data flow errors such as uninitialized variable references and

mismatched subprogram invocation Tists. This also is useful management
information.

Examination of the nature of DAVE's analysis shows that the
analysis is actually performed on a graph representation of the source
program. Hence DAVE's basic analytic capabilities seem equally appli-
cable to graph and algorithmic representations such as those available
during design and requirements. This seems to be a common characteristic
of most static analysis techniques. Hence static analysis of data flow
and algorithmic consistency is the logical first step in providing visi-
bility and verification at each phase of the software life cycle.

Dynamic analysis lies at the other end of the methodology pictured
in Figure 4. In cynamic analysis explicit inputs to an algorithmic
process specification are used to explore the actual functioning of the
process. This provides a different kind of visibility and enables dif-
ferent verification. Whereas static analysis was able to ferret general
descriptions of data flows out of a general representation, dynamic
analysis is able precisely to identify improper handling of specific
input scenarios. With dynamic analysis the exact effect of a specified
scenario can be determined. This 1is invariably the most important kind
of visibility to project management and to a customer. Verification can
be derived from this visibility by comparing observed execution effects
to precise statements of intent.

Perhaps the most significant work in this area is the PET system
[23,247. The PET system and a prototype PL/1 Automated Verification
System are designed to monitor, respectively, executing FORTRAN and
PL/1 programs for adherence to specified statements of intent. The
statements of intent are to be created by the designers, developers,
and testers, and may employ the full power of the First Order Predicate
Calculus either Tocally or globally within the program. Hence if the
statements of intent embody a program's detailed design, these systems
are capable of verifying the correct implementation of functions to
handle expected input scenarios.

Careful consideration of this technique shows that this dynamic
analysis capability is applicable to any algorithmic specification that
has flow of control and contains representations of functional

transformations for all modules. Hence dynamic verification is seen

to be an extremely important capability applicable to the verification

of designs and code. The approach can also be applied to simulated
processes used to model early requirements and analyze their interactions.

Dynamic analysis techniques provide definitive visibility and
verification for specific input data sets and scenarios, but general
visibility can be difficult and expensive to achieve. Static analysis
is capable of wide scope, but is less capable of specifics and details.
In an important sense the two techniques are nicely complementary, but
an important middle ground needs to be more fully addressed.

This middle-ground capability, specific detailed visibility and
verification for classes of algorithmic scenarios, is supplied by a
relatively new technique known as symbolic execution. Experiments in
symbolic execution of source code have been carried out by Clarke [25],
Howden [26-28] and King [29]. These results have shown that this tech-
nique is capable of providing precise visibility into the functional
effect of specific paths and classes of paths through a source program.
Clarke and King have also shown that automatic constraint solving and
theorem proving techniques can be coupled with symbolic execution to
achieve verification. Their work shows that source code can sometimes
be shown to adhere to specific statements of intent not unlike those em-
ployed by the PET system.

Work to date on symbolic execution shows that this technique is
applicable to source code but, is probably better applied to designs
and requirements specifications. Symbolic execution is capable of
portraying functional effect to whatever Tevel of detail is specified
by the input source text. The experiments on code indicate that too much
detail is present in code. This results in excessively long and cumber-
some expressions of effect and proves to be an obstacle to visibility,
rather than an aid. Further, the excessive detail complicates automated
verification. Higher-level designs and requirements are inherently
freer of detail and thus are typically more amenable to symbolic execution.

A11 of this is excellent justification for placing symbolic ex-
ecution methodologically in between static analysis and dynamic analysis,

as shown in Figure 4.

This placement is further supported by observing that essentially
the same statements of intent have been used as the basis for verification
using both symbolic execution and dynamic ana1ysis. Symbolic execution,
however, has been shown to be effective only in some cases. This suggests
that when verification is desired, symbolic execution should be attempted
first because stronger, more general results are possible. Dynamic
analysis might then be employed to verify specific cases for which sym-
bolic execution verification attempts failed.

Experiments have shown that for actual source code, dynamic analysis
is Tikely to be the more successful verification technique. In dealing with
designs, however, it appears that the loss of detail will make symbolic
execution more effective and dynamic analysis less effective. This shift
in effectiveness should become more pronounced at higher levels of design.
Finally in verifying requirements, it appears that symbolic execution shows
much promise. It is important to note that methodologically this implies
that much important definitive verification will be achievable solely with
symbolic execution early in the program development cycle. Accordingly,
detailed verification emphasis should shift gradually to dynamic analysis
as the coding phase is approached and begun.

Formal verification is the final technique contained in the inte-
grated verification methodology. Formal verification is best viewed as
the Togical outgrowth of symbolic execution (although historically the
reverse has been true). In formal verification the complete definitive
functional effect of an algorithmic specification is determined and com-
pared to the complete definitive statement of the program's intent. The
determination of effect is made by symbolically executing every algorithmic
path. This is the sense in which formal verification can be viewed as an
outgrowth of symbolic execution, while the distinction between the two is
based upon thoroughness and comp]etenéssﬁ’

Thus, as was the case for symbolic execution, the expected effec-
tiveness and practicality of formal verification is expécted to be greatest
for higher-level designs. Formal verification of actual code is not ex-
pected to be effective at a]lbbecause of the inundating effect of

-10-

excessive detail. Interestingly, experience has shown this to be the
case. Most researchers advocate the application of formal verification
to high-level algorithmic outlines [30-32]. Formal verifications of
actual code, on the other hand, exhibit graphically the numbing effect
of the detail contained in code [30,31]. Thus, formal verification is
incorporated into our proposed methodology as an option that is expected
to be most effectively exercisable only at the higher Tevels of require-
ments and design.

ARCHITECTURE OF A PROPOSED IMPLEMENTATION

The preceding section has described a methodology capable of
providing for visibility and verification at each phase of the software
development cycle. It was shown earlier that these are critical cap-
abilities needed in order to manage software development. It was shown,
moreover, that visibility and verification are equally as necessary in
the management of a successful software maintenance activity.

In this section we present the general outlines of an architecture
for a system capable of supporting the development and maintenance of
software. The architecture dictates an integrated visibility and
verification functional capability applicable at all stages of the
development and maintenance cycles. Thus it supplies the informational
basis for effective project management. It also incorporates editing,
graphics, and file management capabilities necessary for conveniently
accessing data and implementing decisions.

The heart of the proposed system is a data base containing all
of the information needed for making and implementing management decisions
about a given program. Thus the data base is to contain source code,
object code, documentation, support libraries, and project utilities. In
this respect it helps fulfill the Tibrarian functions of the chief pro-
grammer team concept [33].

In addition, the requirements and design specifications for the
program must also reside in the data base. This reflects the philosophy
that a program is much more than code that executes on a computer. A
program is a systematic orderly plan for solving a problem. As such it

-11-

must contain a clear expression of the nature of the problem as well as
the solution to the problem. Hence the program requirements and all
available levels of design are integral components of the program and
must reside in the program data base.

If all of these essential program components are placed in a
centrally accessible data base, project personnel and management then
have access to all of those materials without which they cannot effec-
tively do their jobs. The architecture dictates user interface and in-
ternal structuring to facilitate this access as well as to restrict
alteration of critical components. In this way the data base management
system serves as an extension and implementation of the project config-
uration management scheme. The data base also reflects our stress on
management through visibility and verification, as it contains the re-
ports and analyses produced by the components of the verification meth-
odoTogy. The data base management system must be designed to facilitate
management access to these reports because the reports most effectively
convey the project status.

The components of the integrated verification methodology might
be viewed as part of the data base management system. They must be
capable of being invoked to produce analytical reports on appropriate
source text within the data base. They must then leave their reports
within the data base also. By simplifying and placing the execution of
analytic capabilities at the disposal of project management, a means
is provided for gaining visibility when it is needed and in a variety
of powerful ways. This provides a strong basis for decision making.

As already noted, moreover, such data base manipulation capabilities
provide a means for implementing certain decisions (e.g., reject or in-
corporate modules, retest or elaboratively continue testing other
modules). Here too we see that the data base management system im-
plements many important configuration management and control functions.

Figure 5 is a diagram of the architecture as just described. It
is important to note that the verification processes pictured here are
exactly those shown in Figure 3. Figure 5 shows, however, that all
are supported by the same core of analytic capabilities represented

-12-

REQUIREMENTS| PRELIMINARY DETAIL CODE
USER ANALYSIS DESIGN DESIGN
I N\ A
PRELIMINARY INCREMENTAL

REQUIREMENTS DESIGN DETAILED DESIGN CODE
VERIFICATION VERIFICATION - VERIFICATION VERIFICATION

REQUIREMENTS DESIGN CODE

LANGUAGE LANGUAGE LANGUAGE

FRONT END \\\\\\\\\ FRONT END(S) FRONT END(S)

=

PROJECT PERSONNEL INTEGRATED |
AND MANAGERS VERIFICATION
7 - MODULES
EDITORS
ILE PROGRAM DATA BASE
HANDLERY |SOURCE TEXT DOCUMENTATION REPORTS ANALYSES
‘l - - -
REPORT
[WRITERS

Figure 5. System architecture.

in Figure 4. This is possible only if the requirements and design are
captured and stored in rigorous unambiguous formats; if so, then syntax
analyzers for each format (as well as for all code languages) could be
created. These would then bLe used as front ends to produce standard

representations for analysis by the modules of the integrated verifica-

tion methodology.

Rigorous requirements and design notations are currently receiving
considerable attention [34-37]; thus these assumptions seem quite justified.
Interestingly enough, early experience with them indicate that the discipline
of representing requirements and design rigorously is highly beneficial
in itself [24,37]. The philosophy of compelling this is thus deemed an
advantage rather than an obstacle.

-13-

ACKNOWLEDGMENTS

The ideas presented here were stimulated and shaped by conversations
with Ted Biggerstaff, Lori C}arke, John Darringer, Lloyd Fosdick, Ed
Foudriat, Bob Glass, Linda Hammond, Bill Howden, Dave Kasik, Sharon Lamb,
Vern Leck, H. F. Lee, Larry Peters, Bill Riddle, Dick.Robinson, Bill
Rzepka, Ed Senn, Mark Smith, Terry Straeter, Dick Taylor, Armand Vito,
and Roger Weber.

REFERENCES

1. J. R. Brown, Getting Better Software Cheaper and Quicker, in.PraéﬁiCa}
Strategies for Developing Large Software Systems, Addison-Wesley,
Reading, Massachusetts, 1975, pp. 131-154, 19.

2. Proceedings 1975 International Conference on Reliable Software,
IEEE Cat. No. 75 CHO 940-7CSR, Los Angeles, 1975.

3. Proceedings Second International Conference on Software Engineering,
IEEE Cat. No. 76CH 1125-4C, San Francisco, 1976.

4. Proceedings Third International Conference on Software Engineering,
Atlanta, 1978.

IEEE Transactions on Software Engineering, SE Series.

6. J. R. Brown, A. J. DeSalvio, D. E. Heine, and J. G. Purdy, Automated
Software Quality Assurance, in Program Test Methods (W. C. Hetzel,ed.)
Prentice-Hall, Englewood Cliffs, N. J., 1973, pp. 181-203.

7. B. W. Boehm, The High Cost of Software, in Practical Strategies for
Developing Large Software Systems (E. Horowitz, ed.), Addison-Wesley,
Reading, Massachusetts, 1975.

8. J. R. Brown, Improving Quality and Reducing Cost of Aeronautical
Systems Software Through Use of Tools, in Proceedings of Air Force
Aeronautical Systems Software Workshop, April 1974.

9. R. D. Williams, Managing the Development of Reliable Software, in
Proceedings of the International Conference on Reliable Software.
April 1975, pp. 3-8.

10. R. K. E. Black, Effects of Modern Programming Practices on Software
Development Costs, in Proceedings of Fall Compcon 77, September 1977,
pp. 250-253.

11. J. R. Brown, Programming Practices for Increased Software Quality,
in Software Quality Management, Petrocelli Books, New York Ciiy, 1978.

12. W. E. Carlson, Software Research in the Department of Defense,
Proceedings Second International Conference on Software Engineering.
IEEE Cat. No. 76 CH 1125-4c, pp. 379-383.

13. B. W. Boehm, Software and Its Impact: A Quantitative Assessment,
Datamation, May 1973, pp. 48-59.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26,

27.

28.

29.

30.

-14-

D. S. Alberts, The Economics of Software Quality Assurance, AFIPS
Conference Proceeding 45, 433-442 (1976).

J. S. Gansler, The DOD Defense Systems Software Management Program--
Current Status, Software Management Conference Proceedings, Winter
1977-1978 Series ATAA-DPMA, pp. 5-11.

L. J. Osterweil, A Proposal for an Integrated Testing System for
Computer Programs, University of Colorado Department of Computer
Science Technical Report No. CU-CS-093-76, August 1976.

J. R. Brown and R. H. Hoffman, Automating Software Developement: A
Survey of Techniques and Automated Tools, TRW-SS-72-03, May 1972.

D. J. Reifer, Automated Aids for Reliable Software, Proceedings of
the International Conference on Reliable Software, April 1975,

pp. 131-142.
J. R. Brown, Why Tools?, Proceedings of Computer Science and Statistics:

Eighth Annua1 Symposium on the Interface, February 1975, pp. 310-312.

Experience 6, 473-486 (September 1976).

L. J. Osterweil and L. D. Fosdick, Some Experience with DAVE--A FORTRAN
Program Analyzer, AFIPS Conference Proceedings 45, 909-916(1976).

L. J. Osterweil, A Methodology for Testing Computer Programs, ATAA
Conference on Computers in Aerospace, Los Angeles, November 1977,
pp. 52-62.

L. J. Osterweil and L. D. Fosdick, DAVE--A Validation Error Detection
and Documentation System for FORTRAN Programs, Software Practice and

L. G. Stucki and G. L. Foshee, New Assertion Concepts for Self-Metric
Software Validation, Proceedings 1975 International Conference on
Reliable Software. LEEE Cat. No. 75-CH09 40-7CSR, 1975, pp. 59-71

L. G. Stucki, The Use of Dynamic Assertions to Improve Software
Quality, Ph.D. Dissertation, School of Engineering, University of
California at Los Angeles, June 1976.

L. A. Clarke, A System to Generate Test Data and Symbolically Execute
Programs, IEEE Transactions on Software Engineering SE-2. 215-222
(September1976).

W. E. Howden, Experiments with a Symbolic Evaluation System, AFIPS
Conference Proceadinas 45, 899-908 (1976).

W. E. Howden, DISSECT--A Symbolic Evaluation and Program Testing
System, IEEE Transactions on Software Engineering SE-4, 70-73
(January 1978).

W. E. Howden and L. G. Stucki, Final Report Methodology for the
Effective Test Case Selection, Phase II. McDonnell Douglas Technical
Report MDC G5800, Apr11 1975. '

J. C. King, Symbolic Execut1on and Program Testing, CACM 19, 385-394
(July 1976).

D. I. Good, R. L. London, and W. W. Bledsoe, An Interactive Program
Verification System, 1975 International Conference on Reliable Software.

IEEE Cat. No. 75-CH0940-7CSR, 1975, pp. 482-492.

31.

32.

33.

34.

35.

36.

37.

-15-

B. Elspas, K. N. Levitt, R. J. Waldinger, and A. Waksman, An Assessment
of Techniques for Proving Program Correctness- ACM Computing Surveys,
4, 97-147 (June 1972).

R. L. London, A View of Program Verification, 1975 International
Conference on Reliable Software, IEEE Cat. No. 75-CH0940-7CSR, 1975,
pp. 534-545,

F. T. Baker, Chief Programmer Team Management of Production Programming,
IBM Systems Journal 11, 56-73 (1972).

M. W. Alford, A Requirements Engineering Methodology for Real-Time
Processing Requirements, IEEE Transactions on Software Engineering
SE-3, 60-69 (January 1977).

D. T. Ross and K. E. Schoman, Jr., Structured Analysis for Require-
ments Definition, IEEE Transactions on Software Engineering SE-3,
6-15 (January 1977).

S. A. Stephens and L. L. Tripp, A Require s Expression and Valida-

tion Tool, Proceedings Third International Conference on Software
Engineering, Atlanta, May 1978. &

J. R. Brown, Functional Programming Final Technical Report, TRW
Technical Report No. 29580-6001-RU-00, July 1977.

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM

1. REPORT NUMBER 7. SOVT ACCESSION NGO 3. RECIPIENTY'S CATALOG NUMBER
&, TITLE (and Subtitie) 5 TYRE OF REPORT & PERIOD COVERED

"A Software Lifecycle Methodology and Tool

Support“ & PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRAMT NUMBER(s)

DAAG29-78-G-0046
MCS77-02194 (NSF)

3. PERFORMING ORGAMNIZATION NAME AND ADDRESS 10, PROGRAM ELEMENT, PROJECT, TASK

. AREA & WORK UNIT NUMBERS
Dept. of Computer Science

University of Colorado at Boulder
Boulder, Colorado 80309

‘Leon J. Osterweil

1. CONTROLLING OF FICE NAME AND ADDRESS 12. REPORT DATE
U. 8. Army Research Office April, 1979
Post Office Box 12211 13. NUMBER OF PAGES
Research Triangle Park, NC 27709 15

T4 MOMITORING AGENCY NMAME & ADDRESS(I(different from Controlling Olfics) 15, SECURITY CLASS. (of this report)

Unclassified

it

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

NA

6. DISTRIBUTION STATEMENT (of this Keport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract enterad in Hlock 20, it ditferent from Report)

NA

i, SUPRLEMENTARY NOTES

The findings in this report are not to be convtrued as an official
Department of the Army position, unless so designated by other authorized

docuwments.,

19. KEY WORDS (Continue on reverse sids if necessary and Identify by block number)

Testing; Verification, Data Flow Analysis; Software Tools

20, ABSTHRACTY (Continue on reverse side if neceseary and identify by hHlock number)

This paper describes a system of techniques and tools for aiding in the
development and maintenance of software. Improved verification techniques

are applied throughout the entire process and management visibility is greatly
enhanced. The paper discusses the critical need for improving upon past and
present methodology. It presents a proposal for a new production methodology,
a verification methodology, and the system architecture for a family of support
tools.

FORM
EQITION OF 1 6% SOLE o o
DD | an 72 1473 ITION NOV 6315 OBSOLETE Uriclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entersd)

