Using Data Flow Tools in Software Engineering
Leon Osterweil

CU-CS-153-79

@JjUniversity of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

v
USING DATA FLOW TOOLS
IN SOFTWARE ENGINEERING

by

Leon Osterweil
Department of Computer Science
University of Colorado
Boulder, Colorado 80309

CU-CS~153-79 March, 1979

This work was supported by NSF Grant MCS77-02194 and
Army Grant DAAG29-78-G-0046,

I. Introduction
o

Software engineering is a discipline which has recently been
experiencing a period of considerable but unstructured growth. It
now shows signs of embarking upon a phase of coordination and consoli-
dation. There has been a large amount of work devoted to the devel-
opment of software engineering tools. This seems to be particularly
promising work, as tools are vehicles for capturing software engineer-
ing concepts in a way which is tangible and useful to software practi-
tioners. Through well-implemented tools, desirable policies can be
promulgated and enforced throughout a project, in a way which increases
the coordination and efficiency of that project.

In the past, the quality of tools produced has been spotty.
Worse, however, the goals of most tools and the domains of their
efficacy have rarely been clearly enunciated. As a consequence, it
has been difficult for the community of software practitioners to
select tools appropriate for facilitating work on the specific tasks
comprising their software development activities. Thus specification
of the goals and domains of efficacy of a tool should be an important
part of its documentation. The availability of such specifications
should enable practitioners to intg11igentiy select and configure a
set of tools into an environment capable of supporting specific soft-
ware production activities.

In this paper we propose a generic configuration of tool capa-
bilities. We categorize many of the available tools into a few broad
classes, and show how these classes have properties which are nicely
complementary. We hypothesize that testing, documentation and veri-
fication are three of the most important software production activi-
ties and suggest that these activities can be nicely supported by
different configurations of representatives of these few tool classes.

IT. Class One - Dynamic Testing and Analysis Tools

The terms dynamic testing and dynamic analysis as used here,
are intended to describe most of the systems known as executioﬁ mon-
itors, software monitors and dynamic debugging systems ([Balz 697,
[Fair 751, [Stuc 75] and [Gris 707).

In dynamic testing systems, a comprehensive record of a single
execution of a program is built. This record -- the execution histo-
ry -- is usually obtained by instrumenting the source program with
code whose purpose is to capture information about the progress of
the execution. Most such systems implant monitoring code after each
statement of the program. This code captures such information as
the number of the statement just executed, the names of those varia-
bles whose values had been altered by executing the statement, the
new values of these variables, and the outcome of any tests performed
by the statement. The execution history is saved in a file so that
after the execution terminates it can be perused by the tester. This
perusal is usually facilitated by the production of summary tables
and statistics such as statement execution frequency histograms, and
variable evolution trees.

Despite the existence of such tables and statistics, it is often
quite difficult for a human tester!to detect the source or even the
presence of errors in the execution. Hence, many dynamic testing sys-
tems also monitor each statement execution checking for such error
conditions as division by zero and out-of-bounds array references.

The monitors implanted are usually programmed to automatically issue
error messages immediately upon detecting such conditions in order to
avoid having the errors concealed by the bulk of a large execution
history.

Some of this can be exemplified with the aid of a simple minded
program. Figure 1 shows a program whose purpose is to produce the
areas of rectangles and triangles having integer dimensions, when the
dimensions are given as input. The program, a procedure called areas,
is divided into two major functional portions. One function, implemen-
ted by procedure lookup, returns the area of the triangle or rectangle

H
o
H

by using a table lookup. The two dimensions input for the object are
used as the first two indices into the table, a three-dimensional
array, A. If the area of a rectangle is desired, the value 1 mu?t be
input with the dimensions, a value 2 indicates the area of a triangle
is desired. A value 0 causes the lookup loop to terminate. The value
1 or 2 is used as the third indexing coordinate into array, A.

Array A is initialized by the second functional portion of the
program implemented by the procedure init. This procedure initializes
A in a somewhat indirect way, perhaps motivated by an interest in elim- :
inating the need for multiplications.

In Figure 2 we see the same program augmented by the code neces-
sary to monitor for two types of errors -- division by zero and out of
bounds array reference. This monitor-augmented program is typical of
the code which would be generated automatically by a straightforward
dynamic test tool. The monitors are positioned so as to assure that
any occurrence of either of the two errors will be detected immediately
before it would occur in the actual execution of the program. To a
human observer it is obvious that many of these probes are redundant.
We shall be very much concerned with studying the forms of automated
analysis necessary to suppress such probes. |

Some systems ([Fair 757, [Stuc 757} additionally allow the human
program tester to create his own monitors and direct their implantation
anywhere within the program.

The greatest power of these systems is derived from the possibil-
ity of using them to determine whether a program execution is proceed-
ing as intended. The intent of the program is captured by sets of
assertions about the desired and correct relation between values of
program variables. These assertions may be specified to be of local
or global validity. The dynamic testing system creates and places
monitors as necessary to determine whether the program 1s‘behaving in
accordance with asserted intent as execution proceeds.

Figure 3 shows how the example program might be annotated with
assertions. These assertions are designed to capture the intent of the
program and explicitly state certain non-trivial error conditions, to

-l -

which this program seems particularly vulnerable. Figure 4 shows
how the code of Figure 1 might be augmented in order to test dynam-
ically for adherence to or violation of the assertions shown in
Figure 3. It should be clear from this example that dynamic asser-
tion verification offers the possibility of very meaningful and
powerful testing. With this technique, the tester can in a conven-
ient notation specify the precise desired functional behavior of

the program (presumably by drawing upon the program's design and
requirements specifi;ations), Every execution is then tirelessly
monitored for adherence to these specifications. This sort of
testing obviously can focus on the most meaningful aspects of the
program far more shaprly than the more mechanical approaches involv-
inb monitoring only for violations of certain standards such as zero
division or array bounds violation.

The previous paragraphs should make it clear that dynamic
testing systems have strong error detection and exploration capabil-
ities. They excel at detecting errors during the execution of a
program, and also at tracing these errors to their sources. It
should be observed, however, that this information is obtained only
as a result of an execution occurring in response to actual prodram
input data. The generation of thi; input data is the responsibility
of the tester, and in many cases involves quite a significant amount
of effort and insight into the program. In addition, as Figures 2
and 4 show, the instrumentation code required in order to do error
monitoring is often quite large, sometimes increasing both the size
and execution time of the subject program by several multiples.
Perhaps more important, however, is the fact that dynamic testing
systems are capable of examining only a single execution of a program,
and the results obtained are not applicable to any other execution of
the program. Hence, the non-occurrence of errors ih a given execu-
tion does not guarantee their absence in the program itself.

From the preceding discussion it can be seen that dynamic
testing is a powerful technique for detecting the presence of errors.
Hence it is a powerful testing technique. Because its results are
applicable only to a single execution, it cannot be used to effectively

demonstrate the absence of errors. Thus, it is not an appropriate
technique for verification (i.e., the process of showing that a
program necessarily behaves as intended). Furthermore, although the
assertions used for dynamic verification may themselves be valuable
documentation of intent, dynamic testing does not itself create

useful documentation of the nature of the program itself. Finally

it is important to observe that the benefits of dynamic testing can
only be derived as the result of heavy expenditures of machine storage
and execution time.

ITI. Class Two - Static Analysis Tools

In the category of static analysis tools, we include all programs
and systems which infer results about the nature of a program from con-
sideration and analysis of a complete model of some aspect of the
program. An important characteristic of such tools is that they do
not necessitate execution of the subject program yet infer results
applicable to all possible executions.

A very straightforward example of such a tool is a syntax ana-
lyzer. With this tool the individual statements of a program are
examined one at a time. At the end of this scan it is possible to
infer that the program is free of syntactic errors.

A more interesting example is a tool such as FACES [Rama 757 or
RXVP [Mi11 747 which performs a variety of more sophisticated error
scans. These tools both, for example, perform a scan to determine
whether all procedure invocations are correctly matched to the corres-
ponding definitions. The lengths of corresponding argument and para-
meter Tists are compared, and the corresponding individual parameters
and arguments are also compared for type and dimensionality agreement.
By comparing every procedure invocation with its corresponding defini-
tion in this way it is possible to assure that the program is free of
any possibility of such a mismatch error. Note that this analysis
requires no program execution, yetfpraduces a result applicable to all
possible executions. This sort of analysis, requiring a comparison of
combinations of statements, can also be used to demonstrate that a
program is free of such defects as illegal type conversions, confusion
of array dimensionality, superfluous labels and missing or uninvoked
procedures.

Data flow analysis is a still more sophisticated form of static
analysis which is based upon consideration of sequences of events
occurring along the various paths through a program. As such it is
capable of more powerful analytic results than combinational scans
such as those just described. The DAVE system [Oste 76, Fosd 76] is
a good example of such a tool. This system examines all paths origin-
ating from the start of a FORTRAN program and is capable of determining

that no path, when executed, will cause a reference to an uninitial-
ized variable. DAVE also examines all paths originating from a varia-
ble definition and is capable of determining whether or not there is a
subsequent reference to the variable. A definition not subsequently
referenced is called a "dead" definition. Hence DAVE is also capable
of showing that a FORTRAN program is free of dead variable definitions.

Data flow analysis is based upon examination of a flow graph
model of the subject program. The flow graph of every program unit is
created and its nodes are annotated with descriptions of the uses of
all variables at all nodes. Nodes representing procedure invocations
cannot be annotated in this way immediately. Figure 5 shows the collec-
tion of three annotated flowgraphs which would be created to represent
the variable usage by the statements of the example program of Figure
1. Procedures such as init and lookup which invoke no others are com-
pletely annotated. For such procedures a data flow analyzer T1ike DAVE
would determine the presence or absence of uninitialized variable

references and dead variable definitions. This can be done by using
data flow analysis algorithms such as LIVE and AVAIL [Hech 76] to effi-
ciently determine the usage patterns of the program variables along the
paths leading into or out of a pregram'node. '

The precise functioning of the algorithms can be stated as follows.
Suppose either of two events ref or ggjg*) can happen to a program vari-
able, say x, at a program node. The algorithms determine the functions
LIVE: {program nodes} - {T,F} and AVAIL: {program nodes} - {T,F} for
the nodes of the graph, where these functions are defined as follows:

If n is an arbitrary program node, then LIVE(n) = T (and we say
"x is 1dva at n") if and only if there exists a path p, from the node
n to another node n' such that x is ref at n' and x is not def at any
node of p between n and n'. Otherwise LIVE(n) = F,

If nis an arbitrary program node, then AVAIL(n) = T (and we say

*
The two events are usually given as gen and kill. For the sake of the

"x is avail at n") if and only if for each path p, from the program

start node s to n there is a node n' between s and n such that x is

def at n', and x is not ref at any node between n' and n. Otherwise
AVAIL(n) = F.

From these definitions, it is seen that if a variable x is
LIVE at the program start node then an uninitialized reference to
x is possible along some path. On the other hand if x is not LIVE
at the start node, then x cannot be referenced before definition for
any program execution. Similarly, suppose n is a node at which x
is def. Then if x is LIVE, there must be a path from n to a node at
which x is ref. If x is not LIVE at n, then n represents a dead defi-
nition of x.

From this it should be apparent that a LIVE analysis for each
variable in a program is capable of determining the presence or absence
of these two error types in the program. ([Fosd 76] shows that AVAIL
can be used to determine important variations and subcases of these
errors.) This analysis of all variables can be carried out in paral-
Tel by the algorithms described in [Hech 75] using time which can
ordinarily be counted on to be Tinear in the number of graph nodes for
usual program flowgraphs. '

The reader should verify that none of the variables local to
procedures init and lookup, represented by the graphs in Figure 5, are

live at the procedure start nodes. Moreover, there are no local varia-
bles which are both def and not live at any node. Hence there are no
uninitialized variable reference or dead definition errors for these
variables in these procedures. It is also important however to observe
that if, for example, the variable "xk" were misspelled in statement 14,
or if statement 14 were omitted, then xk would be live at node 3. This

would correctly diagnose the consequent uninitialized reference at
statement 17.

The analysis of the main procedure of Figure 5 can be completed
after the ref and def usage of pl, p2 and p3 in statement 36 is determmined.
This 1is accomplished in the following way by studying the manner in
which the parameters to procedure Jookup are used by lockup. First a
Tinear scan of the def Tists for lookup's nodes is used to ascertain

which parameters are def for lookup. Next the results of a LIVE scan
are examined. If a parameter pi is live at node 21, then pi is ref
for procedure lookup. These annotations are then transferred posi-
tion by position from the parameter 1ist in statement 21 to the argu-
ment Tist in statement 36. In this way, it is determined that pl., p2,

and p3 are all ref at node 36 and none of these arguments is def.

Having done this, it is possible to complete the data flow analy-
sis of the main program, as described above.

In summary we have seen that static analysis can be used to deter-’
mine the presence or absence of certain classes of errors and to produce
certain kinds of program documentation. Hence it is useful as an
adjunct to a testing procedure and offers weak verification capabil-
fties. It is also useful in supplying Timited forms of documentation
(e.g., the input/output behavior or a procedure's parameters and global
variables). There is currently ongoing research which indicates that
static analysis, particularly data flow analysis, can be used to both
verify and test for wider classes of errors, as well as to produce
additional forms of documentation (e.g., [Tayl 791).

0f particular interest to us here is the possibility of using
static data flow analysis to suppress certain of the probes generated
by dynamic assertion verification tools as part of a comprehensive test
procedure. As noted earlier, many“of these probes generated by dynamic
test aids are redundant. Their presence adds to the size and execution
time of a test run yet has no diagnostic value. Hence an automatic
procedure which removes them makes testing more efficient. It also
serves to focus attention on the importance of exercising the remaining
probes. Sometimes it is possible to remove all the probes generated by
an assertion or single error criterion. In this case, it has been
de facto demonstrated that the error being tested for cannot occur, and
this aspect of the program's behavior has been verified. This perspec-
tive shows how testing and verification activities can be coordinated
with each other.

For a specific example of this, let us examine the program in
Figure 2. We will demonstrate how the three static analysis approaches -
Tine-by-1ine, combinational and data flow - can remove progressively

- 10 -

more error probes. It is perhaps illuminating to observe that what

is being contemplated here is actually code optimization in the classi-
cal sense (e.g., see [Alle 76], [Scha 73]. We are attempting to iden-
tify and remove redundant code in some cases and to move code to more
advantageous positions in other cases. Even the techniques employed
are directly derivative from optimization techniques.

A straightforward line-by-line scan of the program in Figure 2
will suffice to remove several test probes. Clearly the inequality
tests in statements eZ, e3, €6, and e9 must always be true. Hence no
more sophisticated analysis is needed to justify the removal of these
probes.

A combinational examination of contiguous sequences of tests
can eliminate other probes. For example, e4 and e7 contain identical
tests, without any intervening flow of control or test variable alter-
ation. Hence one of the tests can be removed. Similarly, either el0
or e13 can be removed, and either ell or el4d can be removed. This
sort of probe removal is based upon analysis that is quite similar to
“"peephole optimization™ [Scha 73].

Additional probe removal can be justified by data flow analysis
arguments. Suppose the flow graph of the program in Figure 5 were
created and annotated as follows. "Each node has a def list consisting
of the range test occurring at that node. The ref list at a node con-
sists of all tests referring to variables altered by a definition at
this node. Thus for example we would say that (1 < j < 20) is def
at eb and ell, and that (1 < Jj < 20) is def at el and at ed. MWe
would also say that (1 < j < 20) and (1 < j-1 < 20) are ref at 9
and 11. More details of this annotation scheme can be found 1in
[Oste 777 and [Boll 79].

A

Based upon these conventions, we conclude that if a particular
then the test at node n is redundant. This analysis could be used
to remove the test probes at e4 and e7, as well as the probes at el9
and e22. It should be noted that this analysis is more powerful than
the combinational analysis outlined above, and thus capable of justi-
fying the removal of the probes named earlier.

-11-

Static analysis can also be used to justify the deletion of
certain probes inserted in response to assertions. Note that asser-
tion Al in Figure 3 expands to probe statements P1,1; P1,2; P1,3;
P1,4; and P1,5. Assertion A4 also expands to 5 probes in the program
in Figure 4. A1l of these probes could be avoided if a static scan
were used first to determine which (if any) of the procedure para-
meters were used as outputs (defs) by the procedure.

In this case static analysis can be used to remove all probes
resulting from an assertion. Hence verification of the assertion
can be achieved. On the other hand, we saw that many, but not all,
of the subscript range checking probes can be removed by static analy-
sis. We shall shortly show that some additional probes can be removed
by using symbolic execution and constraint solving.

We have thus shown that there are significant assertion types
and error categories which can be completely verified through static
analysis. It seems important to determine which other assertion types
and error categories give rise to probes which can be partially or
totally removed by static analysis. This is currently an open research
area. It is clear, however, that assertions of functional equality
such as A2 and A3 are beyond easy verification by static ana1ys€s.
Furthermore the removal of subscript range test probes involving func-
tions of test variables (e.g., 1 <-j-1 < 20 in e8) seems to require
either a set of special case static‘anaiyses or a different more gen-
eral form of analysis. We discuss such a different type of analysis
next.

IV. Class Three - Symbolic Execution Tools

By symbolic execution, we mean the process of computing the
values of a program's variables as functions which represent the
sequence of operations carried out as execution is traced along a
specific path through the program. If the path symbolically execu-
ted is a path from a procedure start node to an output statement,
then the symbolic execution will show the functions by which all of
the output values are computed. The only unknowns in these func-
tions will be the input values (either parameters in the case of an
invoked procedure or read-in values when a main program is being sym-
bolically executed).

Thus for example suppose we symbolically execute the path 1,
2, 32, 3, 4, 5, 6, 7,8, 9, 10, 11, 10, 11 in the program Shown in
Figure 1. At node 8 the value of i will be given by "1", and the
value of A(1,1,1) will also be given by "1". After node 10 has been
executed the first time, the value of j will be given by "2°, A(1,2,1)
will be given by "1 + 1. The next time node 10 is symbolically execu-
ted j will be "3" and A(1,3,1) will be "1 + 1 + 1". If the path |
8,9,10,11,10 is symbolically executed, then when node 8 is reached
the value of i will be an unknown and hence represented by "i".
The value of A(i,1,1) will Tikewise be represented by "i", When node
10 is reached for the first time j will receive the value "2" and
A(i,2,1) will receive the value "i + i". Similarly, the next time node
10 is reached j will receive the value "3" and A(i,3,1) will receive
the value "i + i + i".

A small number of symbolic execution tools has been built
[Howd 787, [King 76], [Clar 76]. These tools mechanize the creation of
the formulas and maintain incremental symbol tables. They employ
formula simplification heuristics in an attempt to forestall the growth
in size of the generated formulas and foster recognition of the under-
lying functional relations. (It should be noted, however, that these
simplifiers do not take roundoff error into account and, therefore,
may miprepresent the actual function computed by a sequence of float-
ing-point computations). Hence a symbolic execution tool would report
the value of A(i, 3, 1) after two iterations of the loop at node 9 to
be "3 * i".

-13-

The foregoing discussion strongly indicates that symbolic execu-
tion is an excellent technique for documenting a program. Symbolic
traces provide documentation of the actual functioning of a program
along any specific path. 1In order to use symbolic execution as a
technique for testing and verification however, it is necessary to
augment the technique with a constraint solving capability.

In order to clarify this, let us begin by observing that the
above described functional behavior occurs only when the given path is
executed., In general, however, a given program can execute an (often .
infinite) variety of paths, depending upon the program's input values. |
The conditions under which a given path is executed can often be deter-
mined by symbolic execution and constraint solution. Consider the
program given in Figure 1, as represented by the flowgraph in Figure 5.
Each edge of the flowgraph can be labelled by a predicate describing
the conditions under which the edge will be traversed. Thus for exam-
ple the edge (7,8) is labelled "h = 1", the edge (9,10) is labelled
"hoz= 2", (5,6) is labelled "h < 20" and edge (11,10) is labelled
"j < b" (note that node 11 is assumed to represent the loop incrementa-
tion and termination test operations). Sequential control flow edges
such as (8,9) and (10,11) are labelled by the predicate "true". Now
clearly a given path will be execuﬁed if and only if all of the predi-
cates attached to all of the path édges are satisfied. Unfortunately a
simple textual scan will express these constraints only in terms of the
variables within the statements. Thus the constraints will in general
not show their underlying interrelations. If the constraints are ex-
pressed in terms of the formulas derived through symbolic execution of
the path, then a set of constraints all expressed in terms of the pro-
gram's input values is obtained. Any solution of this set of constraints -
is a set of input values sufficient to force execution of the given
path.

Thus, for example, the non-trivial constraints arising from the
path 3, 4, 5, 6, 7, 8, 9, 10, 11, 10, 17 are:

h < 20 from (%5,6)

b < 20 from (6,7)

h > 1 from (7,8)
b= 2 from (9,10)
3 < b from (11,10)

From this we infer that this path will be executed if and only if
3<bs<?20 and 1 < h < 20. Hence argument values in these ranges will
force execution of the specified path.

If we were to symbolically execute the path 1, 2, 32, 3, 4, 5,
6, 7, 8, 9, 10, 11, 10, 11 then the constraints would be:

3220 <20
1

in

20 < 20

These are all satisfied, hence we can infer that the path will
always be executed.

It is important to observe that some constraint systems are unsat-
isfiable, indicating that the path spawning them is unexecutable. We
shall make important use of this shortly. No less important is the
observation that the problem of determining a solutien to an arbitrary
system of constraints is in general unsolvable. Hence we must not
expect that this potentially useful capability can be infallibly imple-
mented.

Experimentation has indicated, however, that for an important
class of programs the constraints actually generated are quite tracti-
ble [Clar 76]. , ‘

Testing and verification’cap@bi]itﬁes can be achieved by attempt~
ing to solve constraints embodying error conditions and statements of
intent. Thus, for example, if we create a predicate constraining the
subscript 1 to be "i < 1" at statement 8, we are specifying an out-of-
bounds array reference error. This constraint is clearly inconsistent
with the constraint "i » 1" attached to edge (7,8). Hence it is impossi-
ble for the first array subscript at statement 8 to be below bounds.
Hence we have shown that one of the tests generated in figure 2 is super-
fluous. A symbolic execution of a path from node 1 through node 8 will
similarly show that testing i against 20 is superfluous for that path.
The dynamic test for that error condition can be safely removed if it
is shown that all paths through node 8 must create constraints incon-
sistent with "1 = 20." In this example that is the case because proce-
dure init does not alter the value of h and init is always invoked with

h = 20. These facts can be inferred from static analysis. Hence a
combination of static analysis, symbolic execution and constraint
solution can be used to eliminate statement el of Figure 2. Similar
arguments can be used to eliminate statements ed, e7, eb, e8, el0,
ell, elZ, el3, el4, el5, €19 and e22.

Statements e8 and el5 are particularly interesting. It could
be argued that static analysis is sufficient to eliminate these
subscript checking probes as well. The subscripts being checked
here, however, are functions of program variables. Surely static
analysis rules could be devised for each of these situations, but
other rules would have to be devised for other common occurrences.
The result would be an inelegant mass of special procedures.

A symbolic trace, on the other hand, easily shows all functional
relations, and readily expresses the needed range checking tests
directly in terms of the input values. Thus the symbolic execution/
constraint solving approach provides an elegant technique which avoids
the need for the inelegant special-cases approach,

It is important to note that we have analytically justified the
removal of virtually all subscript checking probes from the program
in Figure 2. In particular, all probes inserted to check the sUb~
scripts of statements 8, 10 and 17.can be removed. Hence we have
verified that these statements correctly reference array A.

ATthough statement el6 is a probe for a different error (divi-
sion by zero) it should be apparent that the analytic technique just
described can be used to show that the test embodied in elf is also
unnecessary. This error condition is expressed as the constraint
"xk=0." This will be inconsistent with any constraint set arising
from symbolic execution of a path through node 14. Yet static analy-
sis will show that node 14 must always be executed prior to node el§,
Hence it is verified that the division in statement 18 is always well
defined.

Probes el7, el8, €20 and e21 cannot be removed, however. In
fact symbolic execution of a path such as 34, 35, 36, 21, 22, 23, 24,
25 yields only the following constraints:*

* . .
The notation (@) should be read as ”’cheh value taken as input, to
this path." Hence in this ca$e(§)mean5 “the third value read in."

-] 6~

(:) # 0 (from edge (35,36))
(3) =1 (from edge (24,25))

Thus clearly when statement 25 is encountered <:> is constrained
to be 1, but(i) and(é) are subject to no constraints. An out-of-bounds
subscript error at statement 25 could be simulated by any of the con-
straints i<l, i»20, j<1, or j>20. After symbolic execution these be-
1)>20,(2)<1 and(2)>20. None of those is inconsistent with
the constraints generated by consideration of path edges. Hence a

=0

& 21

3 =1

can clearly force execution of an array subscript reference error at

comel 1)<1,

solution such as

i

statement 25. Thus we see that the symbolic execution/constraint solv-
ing technique is a powerful testing aid. It should be noted that the
ATTEST system [Clar 76] implements most of the capabilities just de-
scribed.

Perhaps the most important use of symbolic execution/constraint
solution is as a technique for verifying assertions of functional
relations between program variables. At the end of the previous section
it was noted that verification of éssertions such as AZ, A3, A5 and A6
is beyond the power of the static anaiyZérs which had been presented.

We saw that static analysis is quite adept at inferring all the possible
sequences of events which might arise during execution of a program,

and that by comparing these with specifications of correct and incorrect
sequences, testing and verification capabilities are obtained. When the
statements of correct behavior are couched as predicates involving pro-
gram variables, however, symbolic execution/constraint solution is

most useful. This is not surprising, as symbolic execution is a tech-
nique for tracing and manipulating the functional relations between pro-
gram variables.

We have already discussed the fact that the subscript references
at statements 25 and 27 may cause array bounds violations. This was de-
termined by using symbolic execution/constraint solution to demonstrate
that probes P5,1 and P6,1 are not inconsistent with path induced

w17

constraints. Thus they cannot safely be removed and assertions A5
and A6 cannot be verified.

On the other hand, these techniques can help verify the correc-
ness of assertions A2 and A3. By using symbolic execution for the
path 10,11,10, we obtain the relation

Ali,J,1) = A(i,3-1,1) + i

Viewing this as a récurrence relation whose initial condition is given by
A(i,1,1) =1

we can obtain the analytic solution
A(i,3,1) = * i

from the theory of finite difference equations. This relation is

exactly the one asserted by A2. Hence this assertion is analytically
verified and need not be dynamically verified. Clearly this capability
rested heavily upon being able to draw on results from finite mathematics.
Cheatham has created a tool with impressive inferential capabilities of
this sort [Chea 78], although the problem of determining the closed

form of a recurrence is in general intractible. Also required here is
the ability to recognize when two formulas are equivalent. This pro-
blem is Tikewise intractible in general.

Additional pitfalls of demonétrating functional equivalence are
demonstrated by assertion A3. Here we easily see that symbolic execu-
tion will establish that after statement 17

A(i,3,2) = A(1,3,1)/2.0
This is mathematically equivalent to the equation
A(i,3,2) = 0.5%A(1,3,1),

and is readily recognized as being equivalent. Because of the peculiar-
ities of floating point hardware, however, the two formulas

A(i,3,1)/2.0 and 0.5%A(1,3,1)

will often evaluate to different values. Hence the results of symbolic
verification and dynamic verification may differ.

Despite these various limitations we are encouraged to believe

-18~

that symbolic execution/constraint solution can be used to yield
impressive documentation, testing and verification capabilities. Perhaps
these Timitations can be put in better perspective by observing that
symbolic execution and constraint solution are the basic techniques used
in formal verification or so called "proof of correctness" [Elsp 72];
[Lond 757, [Hant 76]. 1In formal verification the intent of a program
must be captured totally by assertions imbedded according to the dictates
of a criterion such as the Floyd Method of Inductive Assertions [Floy 67].
The correctness verification is established by symbolically executing

all code sequences lying between consecutive assertions and showing that
the results obtained are consistent with the bounding assertions. The
consistency demonstration is generally attempted by using predicate calcu-
Tus theorem provers rather than constraint solvers as discussed here. It
is crucial to observe, however, that these theorem provers are subject to
the same theoretical limitations discussed earlier. The undecidablility
of the First Order Predicate Calculus makes it impossible to be sure
whether a theorem is true or false. Hence we cannot be guaranteed of an
answer to the question of whether a symbolic execution will yield results
consistent with its bounding assertions. Furthermore the symbolic execu-
tion may make simplifications and transformations of real formulas which
do not recreate the functioning of f1oating point hardware. These and
similar Timitations of formal veri%ication have Tong been acknowledged.
Yet still formal verification is r%ght?y regarded as a useful technique
capable of increasing one's confidence in the functional soundness of

a program. This is exactly the sense in which the symbolic execution/
constraint solution technique just discussed should be considered worth-
while.

In fact, this technique is of more worth to a practitioner than
formal verification, because of its flexibility. As already observed,
formal verification requires a complete, exhaustive statement of a
program's intent. The technique just described focuses on attempting
to justify or disprove the validity of individual assertions. This
gives the practitioner the ability to probe various individual aspects
of his program as he may desire. From this perspective we view formal
verification as the logical, orderly culmination of a process of verify-
ing progressively more complete assertion sets. This culmination is rarely
reached due to its prohibitive costs.

-19-

V. A Strategy for Integrating Tool Capabilities

In this section we propose some ways in which the preceding
classes of tools can be combined to address important software imple-
mentation objectives. It seems that in creating software the overriding
goal 1is to create a product which demonstrably meets its current objec-
tives and shows promise of being adaptable to meet forseeable changes
in the objectives. Much research and experimentation has been devoted
to studying how to achieve this goal, and much is yet to be understood.
From this past work, however, certain basic needs can be clearly dis-
cussed.

Perhaps the foremost lesson learned is that software production,
especially on a multi-year, multi-person scale, is a costly, complex
activity requfring effective management [Brow 777, [Bioc 77]. Such
effective management can only be achieved if there is sufficient visi-
bility into the activity. This visibility enables managers and pro-
grammers alike to decide whether the project is on the way to achiev-
ing its goals, and if not what remedial action should be taken. Hence
it seems that chief among the capabilities essential in guiding a soft-
ware project to success are visibility into its status and ability to
determine whether the behavior of the evolving product is deviating
from the intended behavior. Visibility is provided by adequate doc-
umentation made centrally available by project personnel to each other
and to management. Clearly it is our thesis that this process can be
substantially facilitated by tools. Determining whether or not a soft-
ware product is meeting its objective is clearly the goal of the test-
ing and verification processes which, as the preceding sections suggest,
can be viewed as closely coordinated activities. Here too, our thesis
is that tools can be of significant help. Moreover, as the preceding
sections suggest, documentation can be viewed at least in part as an
activity which is preparatory to testing and verification.

A possible diagram of this view of the software production
activity is shown in Figure 6. From this diagram it is clear that the
activity should be greatly facilitated by automated aids to documenta-
tion, testing and verification. The preceding sections have provided
a basis for seeing how such automated aids can be fashioned from a

coalition of static analysis, symbolic execution and dynamic texting
aids. We now propose some details.

A complete set of program documentation must fully describe the
structure and functioning of the program. Clearly such a set must
describe a wide variety of aspects of the program. At present it seems
that certain of these items of description must inevitably be supplied
by humans. The previous sections of the paper have shown, however,
that some documentation can be generated by tools. This documentation
is, moreover, probably more reliably and cheaply done by such tools.

In addition, if some documentation is done by tools, the remaining
documentation is 1ikely to be done more carefully by humans, thereby
suggesting the possibility of greater quality and reliability.

Earlier sections of this paper suggest that static analysis tools
should be used first to create such documentation as cross reference
tables, variable evolution trees, and input/output descriptions of
individual variables and procedures. Symbolic execution tools should
be used next to create descriptions of the functional effects of execut-
ing various paths through the code. With constraint solution, a com-
plete input/output characterization of the code can be obtained.
Performance characteristics can be measured and documented with the
aid of a dynamic testing tool. It 'is proposed that all this documenta-
tion be stored in a central data base, forming a skeleton of the com-
plete documentation. Editors and interactive systems might be used to
gather from humans such things as text descriptions of variables and
procedures.

Each of the three tool classes produces a different kind of docu-
mentation. The types of documentation are only loosely related, hence
the order of application of the tools can be dictated by the importance
of each to the particular project. It is important to be aware, however,
that static analysis is relatively inexpensive, symbolic execution is
relatively expensive, constraint solution is usually quite expensive,

and dynamic testing can be quite expensive if extensive elaborate test
runs- are done,

In a tool-assisted testing activity, the order of application of

s

the tools is important. We have seen that tools can be used to focus
the testing effort on paths and situations which appear to be more
ervor prone. This is done by elimination of probes which were created
to test for common programming errors and for adherence to explicit
assertions. We saw that many probes can be removed by application of
progressively stronger (and more costly) static analysis. Some remain-
ing probes may be removed as a result of symbolic execution/constraint
solution. We saw that these probes are likely to be the more substan-
tive ones, monitoring for adherence to asserted functional intent.
Their removal constitutes significant verification, but it can be
expected that the cost of this will be relatively high. Hence symbolic
execution should probably be employed cautiously or not at all as a
test aid.

Finally a dynamic test tool should be used to gather definite
information about the existence and sources of error in the program.
As already noted, testing can only show the presence of error in a test
case, and even a simple program may have an infinite number of possible
test cases. Hence the tool aided procedure just outiined has added
importance in that it helps suggest test cases - namely those designed
to exercise probes not analytically removed.

We have seen that testing and verification can be closely related
activities. It is important to remember, however, that they do differ,
most noticeably in their goals and placement in the software production
process. Testing is the process of looking for errors. It should be
viewed as an activity which occurs frequently during code production.
Verification is the process of demonstrating the absence of errors. As
such it should not be undertaken until and unless testing has failed to
uncover ervors. Thus it is a less frequent, more critical process,
usually warranting greater expense and thoroughness. Our earlier dis-
cussion has shown specific ways in which verification results can be
obtained as outgrowths of testing activities. We have also seen, how-
ever, that some activities provide good verification results but are
Tikely to be relatively costly. Because verification is a less frequent,
more critical activity the extra cost may well be warranted.

A verification activity should start out 1ike the testing activity

-2

just described. The first step is to suppress error testing probesﬁand
probes resulting from assertions. Static analysis can be used to suppress
some probes, but the most significant probes probably can be removed only
by symbolic execution. Verification is achieved on an assertion-by-asser-
tion basis only when all probes generated by a single assertion have

been removed. In this way stronger more complete verification can be
obtained incrementally at greater cost and effort. Complete formal veri-
fication can be attempted if desired as the culmination of this process.

A final word should be said about the need for both verification
and testing. It has been observed that testing cannot demonstrate the
absence of errors. Hence verification should be attempted. We have
also observed that the verification process has its own risks. The
most important risk is that an assertion verification attempt may end
inconclusively because of the failure to determine the consistency
of constraints or the truth of a theorem. As already noted, this
does not necessarily signify the falsity of the assertion, just that
the verification attempt ended inconclusively. Another important risk
is that the verification may be successful but rely implicitly upon
false assumptions about the semantics of language constructs. As an
example of this, we saw that symbolic executors generally make incorrect
simplifying assumptions about the functioning of floating point hard-
ward. As a result even a complete formal verification of program correct-
ness may not completely rule out the possibility of an execution-time
error. Hence it seems that both testing and verification should be
considered techniques for raising the confidence of project personnel
in the software product. Each is capable of bolstering confidence

in its own way, and neither should be employed to the exclusion of the
aother.

-23-

VI. Software Lifecycle Considerations)

The previous sections of this paper have established the impor-
tance of having assertions to represent the intent of a program to be
documented, tested and verified. While the importance of the assertions
has been established, the source of the assertions has not been discussed.
In this section we propose that the assertions reasonably and naturally
originate in the early requirements and design phases of the software
production process. We also propose that the testing, verification and
documentation techniques already described are at least partially appli-’
cable to these earlier phases.

Figure 7 is a diagrammatic view of how the software production
and maintenance process might be divided into phases. It is an adapta-
tion of the "waterfall chart" [Reif 75] which has become widely accepted
as a model of those activities. 'The primary goal of these models is to
divide software production and maintenance into definable phases and
monitoring points. This division should lead to better defined criteria
for judging the quality and completeness of work in progress. We shall
show how this process also produces assertions and how tools can assist
in the process.

The requirements definition phase of this process is the phase
during which the basic needs of thé‘software project are enunciated.
These needs are to be expressed as'preciseWy and completely as possibie,
but in such a manner as to not suggest or bias an algorithmic solution.
One of the most effective ways to do this is to specify the required
functional and performance characteristics of the proposed program. Such
a specification need not and should not suggest how the functions are
to be computed. These specifications should, from the perspective of
this paper, be viewed as assertions of the intent which the eventual
program must satisfy. Hence the eventual code assertions must be direct-
1y traceable back to these original statements of intent. We shall ex-
plore potential mechanisms for doing this shortly.

The preliminary design phase is characterized by the process of
exploring possible strategies for building an algorithmic solution
which satisfies the requirements specification. During this phase pro-
cessing modules and data abstractions are defined, and algorithmic

-24 -

processes and data flows are represented, usually hierarchical, show-
ing, when complete, how the principal components of the algorithmic
solution are decomposed into successively more detailed specifications
of data and processing. In practice, such a decomposition process
invariably leads to greater understanding of the problem and conse-
quent changes in requirements. Hence the requirements and preliminary
design activities should be viewed as iterative and intertwined.
Together they should be considered to be the process of gaining under-
standing of the nature of the problem, and agreement about an accept-
able approach to its solution.

From the point of view of this paper, preliminary design is impor-
tant because it specifies the required functional behavior (assertions)
which apply to the various components of the solution. Hence this phase
begins the process of attaching successively detailed assertions to
successively smaller algorithmic units. This process should terminate
with the construction of code around very detailed assertions.

The detailed design phase is the phase during which the outline of
the solutions established during preliminary design, is elaborated down
to the Tevel of actual specifications for code. Detailed design should
not be viewed as merely an extension of the preliminary design activity.
At the start of detailed design it is necessary for the designers to re-
orient their thinking from a problem understanding orientation to a
software construction orientation. This is a crucial phase of the soft-
ware production process, during which the solution elements proposed
during preliminary design must be grouped and reorganized into modules
and data abstractions [Parn 72] [Lisk 75]. This reorganization should
be guided by the desire to clearly capture independent solution concepts
in code, and to use standard interfaces to conceal the details of their
implementation. The module specifications are statements of the func-
tional behavior required in order to realize the various design concepts.
Hence they are assertions. The hierarchical decompositions of the high
lTevel modular assertions analogously become assertions specifying the
behavior of the submodules comprising higher level modules. The de-
tailed design process terminates with the creation of specifications
(assertions) such as those shown in Figure 3, which are so detailed
that they can be met withkjust a few 1lines of code.

As already noted, one of the primary reasons for following this
phased approach to software construction is that it affords obvious
opportunities for observing and evaluating progress at intermediate
stages. Extensive reviews are conducted at the conclusion of each phase.
One of the primary goals of such review igvta establish whether or not
the work completed during that phase meets the objectives as enunciated
at the conclusion of the previous phase. Hence the review can quite
reasonably be viewed as a testing and verification procedurs, using the
output of the previous phase as the statement of intent.

These reviews are invariably based upon documentation and
analysis done primarily by humans. It is our contention that they can
be heavily supported by tools and techniques 1ike those described earlier
in this paper. In order to do this the requirements and design specifica~
tions must be stated in terms of a rigorous formalism. Some such formal-
isms have already been devised. Pseudo-code languages and design repre-
sentation languages such as CLU [Lisk 77] are examples of rigorous
formalisms for expressing detailed design. Clearly they can be parsed
and subjectéd to certain types of semantic analysis. Virtually all
forms of static analysis and symbolic execution can be carried out
on them. Hence documentation can be automatically produced and some veri-
fication automatically obtained. If the detailed design and preliminary
design are both complete and rigorous enough it is possible to obtain
formal verification that the detailed design meets its preliminary de-
sign objectives.

It is perhaps more surprising to note that such capabilities can
reasonably be expected for requirements and preliminary design specifica-
tions. Here again the prerequisite is rigor in the specification. A
number of rigorous specification methodologies have been proposed
{e.g., SAMM [Step 78], SADT [Ross 777, PSL/PSA [Teic 771). A1l seem
to be based upon a graphical representation of the requirements and/or
preliminary design.

The SREM methodology [Alfo 777 is the most interesting as it is hand-
somely supported by the RSL/REVS family of tools [Bell 77]. RSL is a lan-
guage which is used to capture a requirements/preliminary design specifica-
tion and recast it into a set of objects and relations stored in a central~-

~06-

ized data base. The contents of the data base can be (and is) Tooked
upon as a collection of annotated graphs, modelling the problem and its
‘5;8poéed solution. The REVS system of analytic tools examines the
data base and produces documentation, analysis and Timited forms of
verification. Each processing element in the design has as part of
its specification its input/output behavior, and a functional descrip-
tion which may be stated as an algorithmic graph sturcture. Hence
input/output behavior can be automatically documented and verified

for consistency. Symbolic execution traces can be created as documen-
tation and for the purposes of verification. It is important to note
that since SREM captures both the requirements and preliminary design
in a natural intertwined fashion, verification of internal consistency
is tantamount to a verification that preliminary design meets require-
ments.

We finally are able to see where the program assertions originate.
The functional descriptions attached to the various processsing elements
of an RSL-like specification are the initial program assertions. If the
specification technique represents the hierarchical decomposition of
these elements, then at each decomposition level functional description
is attached to the processing elements. As these descriptions become
more algorithmic and rigorous, the possibility of rigorous and automatic
verification increases. By the begﬁnning of detailed design they have
evolved into rigorous module sp&cificaticﬂsg and are certainly a suit-
able basis for the automatic verification approaches described earlier.

Some of the documentation, verification and testing techniques
described earlier in connection with code analysis have been applied to
requirements and design representations. It remains to be demonstrated
that the methodology outlined in Section V and its implementation by
the tools proposed can be substantially applied equally well to require-
ments and design. This would establish the feasibility of a single analy-
tic methodology and tool configuration for application at @1l phases of
the software production process.

=27~

VII. Acknowledgments

The author wishes to thank the National Science Foundation and
the U. S. Army Research Office for their support of the research activ-
ities from which most of the ideas expressed here have originated.

Much valuable insight was also gained while the author was on leave of
absence from the University of Colorado Department of Compu#er Science,
and employed by the Space and Military Applications Division of Boeing
Computer Services Company. The ideas expressed here have been shaped
by stimulating conversations with Les Wade, John Brown, Leon Stucki,
Lori Clarke, Bi11 Howden, Bill Riddle, Dick Taylor, Larry Peters and
many others. Finally, the author wishes to thank Harriet Ortiz,
Mildred Farnsworth and Arlene Hunter for their obliging willingness to
type the manuscript and editors Steve Muchnick and Neil Jones for their
patience.

~08-

PROCEDURE AREAS;

DECLARE REAL A(20,20,2), INTEGE
PROCEDURE INIT (H, BJ;
DECLARE INTEGER M, B, I, J, K, REAL XK;
IF > 20 THEN ERROR STOP;

> 20 THEN ERROR STOP;

INTEGER P1, P2, P3:

WO~ OB W —

PROCEDURE LOOKUP (I, J, K)

DECLARE INTEGER I,

CASE

K = 2t

ELSE:

END;
END;

CALL INIT (20,20);

LOOP FOREVER;

J, K;
= 1: PRINT "AREA OF" I,

K="K;

READ P1, P2, P3; *
IF P3 =0 THEN STOP;
ELSE CALL LOOKUP (P1, P2, P3);
END;
END;

FIGURE 1:

An example program

J "RECTANGLE IS" A
PRINT "AREA OF" I, J "TRIANGLE IS" A
PRINT “PARAMETER ERROR:

28w

1 PROCEDURE AREAS;

2 ‘DECLARE REAL A(20,20, 2), INTEGER P1, P2, P3;

3 PROCEDURE INIT (H,B);

4 DECLARE INTEGER H, B, I, J, K, REAL XK;

5 IF H > 20 THEN ERROR STOP;

6 IF B > 20 THEN ERROR STOP;

7 DO FOR T = 1 10 H;

ET TTIF ~(1 <= T <= 20) THEN SUBSCRIPT RANGE ERROR;

E2 TF ~(1 <=1 <= 20) THEN SUBSCRIPT RANGE ERROR;

E3 TF ~(1 <= 1 <= 2) THEN SUBSCRIPT RANGE ERROR;

8 A(I, 1, 1) = 1

9 DO FOR J = 2 TO B;

E4 TTOF ~(1 <= T <= zog THEN SUBSCRIPT RANGE ERROR;
E5 TF ~(1 <= J <= 20) THEN SUBSCRIPT RANGE ERROR;
E6 TF ~{1 <= 1 <= 2) THEN SUBSCRIPT RANGE ERROR;
E7 TF ~(1 <= 1 <= 20) THEN SUBSCRIPT RANGE ERROR;
E8 TF ~(1 <= J-1 <= 20 THEN SUBSCRIPT RANGE ERROR;
E9- TF ~(1 <=1 <= 2) T{EN SUBSCRIPT RANGE ERROR;
]0 His J; -;) A(I }) + I’

11 END;

12 END;

13 K = 2;

14 XK = 2.0;

15 DO FOR I =1 TO H;

16 TTDOFOR J =T TO B

E10 T TF ~{1 <= T <= 20) THEN SUBSCRIPT RANGE ERROR;
E11 TF ~(1 <= J <= 20) THEN SUBSCRIPT RANGE ERROR;
E12 IF ~(1 <= K <= 2) THEN SUBSCRIPT RANGE ERROR;
F13 IF ~(1 <= 1 <= 20) THEN SUBSCRIPT RANGE ERROR;
E14 IF ~(1 <= J <= 20) THEN SUBSCRIPT RANGE ERROR:
E15 IF ~(1 <= K-1 <= 2) THEN SUBSCRIPT RANGE ERROR;
£16 IF XK = 0 THEN ZERODIVIDE ERROR;

17 A1, J, K =A(1, J, K1Y / XK

18 END;

19 END;

20 END;

21 PROCEDURE LOOKUP (I, J, K);

22 DECLARE INTEGER I, J, K

23 CASE;

24 K=1:

E17 IF ~(1 <= 1 <= 20) THEN SUBSCRIPT RANGE FRROR;
E18 IF ~(1 <= J <= 20) THEN SUBSCRIPT RANGE ERROR;
E19 IF ~(1 <= K <= 2) THEN SUBSCRIPT RANGE ERROR;
25 PRINT "AREA OF" I, J "RECTANGLE IS" A(T, J, K):
26 K =2:

E20 IF ~(1 <= I <= 20) THEN SUBSCRIPT RANGE ERROR;
E2] IF ~(1 <= J <= 20) THEN SUBSCRIPT RANGE ERROR;
E22 IF ~(1 <= K<= 2) THEN SUBSCRIPT RANGE ERROR;
27 PRINT "AREA OF" 1, J "TRIANGLE IS " A(1, J, K):
28,29 ELSE: P EBQ&I_”PARAMLTER ERROR: K =" K3

30 END;

31 END;

32 CALLINIT (20,20);

33 LOOP FOREVER;

34 READ PT, ’2 P3;

IF P3 = 0 THEN STOP; ;
ELSE CALL LOOKUP (P1 P2, P3);
END;
END;
FIGURE 2: THE PROGRAM OF FIGURE 1, WITH PROBES FOR ZERO-DIVIDE AND

SUBSCRIPT RANGE ERRORS INSERTED. THE PROBES SHOWN ARE THOSE
WHICH WOULD BE INSERTED BY A NAIVE DYNAMIC TEST TOOL AND
HAVE STATEMENT NUMBERS PRECEEDED BY THE LETTER "E".

-31-

PROCEDURE AREAS;

DECLARE REAL A(20,20,2), INTEGER P1, P2, P3;

PROCEDURE INIT (H, B);
ASSERT NO SIDE-EFFECTS
DECLARE INTEGER H, B, I, J, K, REAL XK;
IF H > 20 THEN ERROR STOP; T
TF B > 20 THEN ERROR STOP;
DO FOR I =T 10 H;
mai 1)""15
DO FOR J = 2 TO B;
A(T, J, 1) = A1
ASSERT A(I, J, 1

$ J“'Es» 1) + I;
) = 1%;

PROCEDURF LOOKUP (I, J, K)3
ASSERT NO SIDE-EFFECTS;
DECLARE INTEGER I, J, K;

J, K);

ASSERT 1. <= 1 <= 20
ASSERT 1 <= J <= 20;
CASE;
K= PRINT "AREA OF" I, J "RECTANGLE IS" A(I, J, K);
K = 2: PRINT "AREA OF" I, J "TRIANGLE IS" A(I,
ELSE: PRINT "PARAMETER ERROR: K = " K;
END; ”
END;

CALL INIT (20,20);

LOOP FOREVER;

READ P1, P2, P3;
IF P3 = 0 THEN STOP;
‘ggég,gggL LOOKUP (P1, P2, P3);
END;
END;

FIGURE 3: THE PROGRAM OF FIGURE 1 AS IT MIGHT BE AUGMENTED BY

ASSERTIONS CAPTURING THE INTENT OF THE CODE

-37-

1 PROCEDURE AREAS; &

2 DECLARE REAL A(20,20,2), INTEGER P1, P2, P3;

3 PROCEDURE INIT (H, B);

4 DECLARE INTEGER H, B, I, J, K, REAL XK;

P1,1 DECLARE INTEGER HTEMP, BTEMP;

P1,2 HTEMP = H;

P1,3 BTEMP = B;

5 IF H > 20 THEN ERROR STOP;

6 IF B > 20 THEN ERROR STOP;

7 DO FOR I =1 10 H;

8 A(T, 1, 1) =1,

9 DO FOR J = 2 TO B;

10 A(T, J, 1y = A(I, J-1, 1) + 1

pP2,1 lf_A(I, J, 1) # 1 *J THEN PRINT "ASSERTION VIOLATION AFTER

1 END; STATEMENT 10" A(I, J, 1), I, J;

12 END;

13 K= 23

14 XK = 2.0

15 DO FOR I =1 TO H;

16 DO FOR J = T TO B

17 AT, J, K) = A(I, J, K-1) / XK;

P3,1 IF AL, J, 2) # 0.5 * A(I, J, 1) THEN PRINT "ASSERTION VIOLATION
AFTER STATEMENT 17" A(I,
Jd, 2), I, J;

18 END;

19 ~ END;

P1.,4 IF H # HTEMP THEN PRINT "SIDE EFFECTS VIOLATION FOR H"™ H, HTEMP;

P1,5 TF B # BTEMP £ﬁ§§_PRINT "SIDE EFFECTS VIOLATION FOR B" B, BTEMP

20 END;

21 PROCEDURE LOOKUP (I, J, K);

22 DECLARE INTEGER I, J, K;

P4, DECLARE INTEGER ITFMP JTEMP, KTEMP

p4a,? ITEMP = I

P4,3 - JTEMP = J;

P44 . KTEMP = K;

P5,1 1E‘~(T <= [<= 20) THEN PRINT "ASSERTION VIOLATION AFTER STATEMENT 22" I,

P6,1 IF ~(1 <= J <= 20) THEN PRINT "ASSERTION VIOLATION AFTER STATEMENT 22" J;

23 CASE;

24,25 K= T1: PRINT "AREA OF" I, J "RECTANGLE 1IS" A(I, J, K);

26,27 K = 2: PRINT "AREA OF" I, J "TRIANGLE IS" A(T, J, K);

28,29 ELSE: PRINT "PARAMETER ERROR K="K;

30 END;

P4.,5 IF I T # ITEMP THEN PRINT "SIDE EFFECTS VIOLATION FOR I" I, ITEMP;

P46 IF J # JTEMP Iﬁgﬂ_ERINT "SIDE EFFECTS VILLATION FOR J" J, JTEMP;

P4,7 TF K # KTEMP THEN PRINT "SIDE EFFECTS VIOLATION FOR K" K, KTEMP;

31 END3

32 CALL INIT (20,20)

33 LOOP FOREVER;

34 READ PT, PZ P3;

-33-

wg

IF P3 = 0 THEN STOP;
ELSE CALL LOOKUP (P1, P2, P3);
END;
END;
~ FIGURE 4: THE PROGRAM OF FIGURE 1 AS IT MIGHT BE AUGMENTED BY PROBES

INSERTED BY AN ASSERTION CHECKING TOOL IN RESPONSE TO THE
ASSERTIONS SHOWN IN FIGURE 3. THE INSERTED PROBES ARE DENOTED
BY LINE NUMBERS BENNING WITH P. LINE NUMBER PI,J IS ATTACHED
TO THE JTH STATEMENT GENERATED AS A RESULT OF ASSERTION AI IN
FIGURE 3.

-3

ref: b
ref: h
def: i
ref: i
def: A
ref: b
def: J
ref: 1.0,A
def: j
déf: i
def: k,xk
ref

def: 1
ref: b
def: j

Figure 5

The flowgraphs of the three procedures in the example program of Fig. 1.
The nodes are numbered by the statement of Figure 1. For each node, the
program variables which are defined there and referenced there are listed.
Note that node 36 represents a procedure invocation with variables as
arguments. Thus the ref and def Tists cannot be completed.

c109fodd uoLionpoad 84eM31J0S © UL SBLILALIO®R
Buirssadoud pue uoLjeWAOLUL JO MO} pajsabbng

[BUUOSUS4
128l 0ud
pue

saabeury

°pod

burysay
OL1PIL}LABA
940U JON SUOLSLO3P
fuoLyealyLoads Jo
wa qodd uL\saburyy

9p0J ja3e84)

s

9 aanbry
\//
| S407RABUBY
aseg ~
e1eg JJao0day 7
weuboud ¥
| R
wy
o
H
m
- U017 RUBWNI0f
mu»:m@m 32Npodd
uoLjedtLti wa pue 3 mw
/ uoL1eAUBULNDO0P
,9p02 pajldsdoe punoi
Y ‘pejadwod AyLaap SA04J4D OU 159 SUOLjJosse

SUOL}JABSSY
uoLysed

SUOLIRILLLO8dS

SALI09Y

punoy

*$59004d uoL1ONpouad 34BMIL0S YT L0 MILA Y

a4nb L4

uoL1ezuauUnd0g uoL3eluswnd0g uoL3eIUBUNIO(uoL1e1usWNd0g
i A o~ A P
O i
(o]
{

butisay
pue
UOLIBDLILUBA UOLIBOLLLJUBA. UOL1eDLLLABA UOLYIBDLILUBA
A2Ua1sLsuo) Aduslsisuo) ADUd3SLSUO) A2Us1sLsU0)
‘ / " : Y D\\/M
| ubrssq ubLsag ., ubLsag ubtrsag uoL1edsy] 1nduj
apo buirpoj [pajle3sq PETNRRETY! RAOULUL [94d | AJRULWL [34d sjuawea Lnbay m 4250
////;;\\\mu UOLTBITS LdBA
UOLIBILLLUABA UOL3RILILUABA ubLsaq

ubLsaq patielaq

Adeu Ll jadd

References

[ALL

[CHE

[CLA

[CLE

[ELS

[FAI

[FLO

[FOS

[HEC

[LON

[OST

[OST

76]

78]

761

78]

72]

75]

67]

76]

75]

75]

761

76a]

F. E. Allen and J. Cocke, "A Program DAta Flow Analysis
Procedure,™ CACM 19, pp. 137-157 (March 1976).

T. E. Cheatham, Jr. and D. Washington, "Program Loop
Analysis by Solving First Order Recurrence Relations,"
Harvard Univ. Center for Research in Computing Technology,
TR-13-78.

L. A. Clarke, "A System to Generate Test Data and Symbol-
ically Execute Programs," IEEE Trans. on Software Eng.
SE-2 pp. 215-222 (Sept. 1976).

G. Clemm, "The FSCAN Lexical Analyzer Generating System,"
Univ. of Colorado Dept. of Comp. Sci., Tech. Rpt.
#CU-CS-128-78 (June 1973). ’

B. Elspas, K. N. Levitt, R. J. Waldinger and A. Waksman,
"An Assessment of Techniques for Proving Program Correct-
ness," ACM Computing Surveys 4 pp. 97-147 (June 1972).

R. E. Fairley, "An Experimental Program Testing Facility,"
Proc. First National Conf. on Software Engineering, IEEE
Cat. #75CH0992-8C pp. 47-55 (1975).

R. Floyd, "Assigning Meanings to Programs," in Mathemat i~
cal Aspects of Computer Science 19 J. T. Schwartz (ed.)

Amer. Math. Soc., Providence, R.I. pp. 19-32 (1967).

L. D. Fosdick and L. J. Osterweil, "Data Flow Analysis
in Software Reliability," ACM Computing Surveys 8 pp.
305-330 (Sept. 1976).

M. L. Hecht and J. D. Ullman, "A Simple Algorithm for
Global Data Flow Analysis Problems," SIAM J. Computing 4
pp. 519-532 (Dec. 1975).

R. L. London, "A View of Program Verification," 1975 Inter-
national Conf. on Reliable Software, IEEE Cat. #75-CH0940-
7CSR pp. 534-545 (1975).

L. J. Osterweil and L. D. Fosdick, "DAVE -- A Validation,
Error Detection, and Documentation System for FORTRAN

Programs," Software - Practice and Experience 6 pp. 473~
486 (Sept. 1976).

L. J. Osterweil, "A Proposal for an Integrated Testing
System for Computer Programs," Univ. of Colorado Comp.
Sci. Dept. Tech. Rpt. #CU-CS-093-76, (August 1976).

(Reif

[Ross

[Scha

[Step

[Stuc

[Tayl

[Teic

751

77]

73]

78]

75]

79]

771

-30-
“
D. J. Reifer, "Automated Aids for Reliable Software,"

Proc. 1975 International Conference on Reliable Software
TEEE Cat. #75-CH0940-7CSR pp. 131-142 (April 1975).

D. T. Ross and K. E. Schoman, Jr., "Structured Analysis
for Requirement Definition,” IEEE Trans. on Software
Engineering SE-3 pp. 6-15 (Jan. 1977).

M. Schaeffer, A Mathematical Theory of Global Program
Optimization, Prentice~Hall, Englewood Cliffs, N.J. 1973.

S. A. Stephens and L. L. Tripp, "A Requirements Expres-
sion and Validation Tool," Proc. 3rd International Conf.
on Software Eng., Atlanta, (May 1978).

L. G. Stucki and G. L. Foshee, "New Assertion Concepts

in Self-Metric Software," Proceedings 1975 International
Conference on Reliable Software, IEEE Cat. #75-CH0940-7CSR
pp. 59-71.

R. N. Taylor and L. J. Osterweil, "Anomaly Detection in
Concurrent Process Software by Static Data Flow Analysis,”
Univ. of Colorado at Boulder, Dept. of Comp. Sci., Tech.
Rpt. #CU-CS-152-79 (April 1979).

D. Teichroew and E. A. Hershey III, "PSL/PSA: A Computer-
Aided Technique for Structured Documentation and Analysis
of Information Processing Systems," IEEE Transaction on
Software Engineering SE-3 pp. 41-48 (Jan. 1977).

