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ABSTRACT

Algorithms are presented for detecting errors and anomalies in programs
which use synchronization constructs to implement concurrency. The algorithms
‘employ data flow analysis techniques. First used in compiler object code
optimization, the techniques have more recently been used in the detection of
‘variable usage errors in single process programs. By adapting these existing
algorithms the same classes of variable usage errors can be detected in
concurrent process programs. Important classes of errors unique to concurrent
process programs are also described, and algorithms for their detection are

presented.
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1.0 INTRODUCTION

Data flow analysis has been shown to be a useful tool in demonstrating the
presence or absence of certain significant classes of programming errors.[l] It is
an important software verification technique, as it is inexpensive and dependably
detects a well defined and useful class of anomalies. Work to this point has been
directed at the analysis of single process pmgrarﬁ:ﬁ. Data flow analysis of
concurrent programs has not been investigated. Concurrency causes difficulty in
the detection of most errors which occur in single process programs; it also
creates the posaibﬂity‘ of new classes of errors.

One of the simplest errors which can occur in both categories of programs is
referencing an undefined variable. (We recognize that this err'or can be
eliminated ‘by requiring that all variables be declared and given initial values at
the point of declaration. Most programming languages do not have this require-
ment, however. Moreover, the presentation and discussion of this error is useful
for pedagogical purposes.) Another programming anomaly which may occur in both
categories is a dead variable definition. This occurs when a variable is defined
twice without an intervening reference, or-if a variable is defined yet never
subsequently referenced. In concurrent software these types of anomalies and
errors can occur in more subtle ways than in single process programs. For
example, within a system of concurrent processes, one process may reference a
shared variable while a parallel process may be redefining it. It is clearly
desirable that such errors and anomalies be analytically detected or shown to be
absent from programs.

In this paper, we show that data flow analysis can reliably demonstrate the
presence of absence of these and other programming anomalies for both single

process and concurrent programs. While the ancmalies are of interest in
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themselves, they are particularly important because experience has shown that
consideration of why they arose in the program's construction often leads to the

detection of significant design errors.

2.0 EXAMPLE AND BASIC DEFINITIONS
2.1 Programming Language Description

In order to clarify the types of errors we are addressing, several examples
are needed. We are interested in designing analytic techniques which may be
applied to a variety of languages supporting concurrent programming, such as
Concurrent Pascal(Z], Modula[B], and JOVIAL. The languages which are currently
used for real-time, concurrent process programming display a variety of techni-
ques to allow synchronization and communication. Some are more error-resistant
than others (to say the least). Still more constructs and techniques are being
proposed. For example, Ada[i{}, the proposed new common higher order language
for embedded applications developed for the Department of Defense, displays a
number of new techniques. We have attempted to avoid language and method-
ology dependence in the development of our analytic techniques, so that they will
not readily be outdated. We have assumed oniyﬁthe existence of a few constructs
common to nearly all contemporary concurrent languages, because tools are
needed now for the languages which a:m already in use. But it appears likely to us
that the techniques designed in creating these tools will not be obsoleted by new
language designs or concurrency constructs.

The programming language which forms the basis for this presentation is
derived from HAL/S, an algorithmic language designed for the pmductiaéﬂ of real-
time flight software[ﬂ, HAL/S was developed for use on the Space Shuttle and is
employed elsewhere within NASA for a variety of tasks[6]. We have extracted a

simple yet powerful subset of this language and altered slightly the syntax and
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semantics of several of its constructs. HAL/S bears many similai;ihties to Algol 60
and PL/I. Hence the ysntax and semantics of these hlanguages can generally be
safely used in understanding the examples in this péper. Of particular interest,
however are the following language constructs with which we will be primarily
concerned in describing our examples and in designing our analysis.
I. Assignment statement. This statement is of the form
variable = expression g
In executing this statement, the expression is evaluated and the result is
then assigned to the variable.
2.  Process declaration statements ( program, task, and close ). The
declaration of each process begins with a declaration statement. The main
program begins with a program declaration statement. Other processes
begin with a task declaration statement. ”fhe end of a process declaration is
marked with a close declaration statement.
3. Schedule statement. The execution of any process cxcept for the main
program is enabled through execution of a schedule statement. Execution of
a schedule does not guarantee that the specified process will begin
immediately, it merely indicates that the process.is ready for execution.
The actual time of initiation of a précess; is determined by the system
scheduler.  Any number of processes may be enabled for concurrent
execution, but a process may not be scheduled to execute in parallel with
itself. The schedule statement explicitly names the process or processes to
be started; run-time determination of processés to be shcedﬁied is not
allowed.
4. Wait statement. This statement causes the executing process to wait

for another process (or processes) to terminate before continuing with its
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execution and no longer resides in the system scheduler's "ready' queue. }!\S
with the schedule statement, the process(es) waited for is (are) namea
explicitly in the deciar;ati.on; run-time determination is not allowed. The
statement may be formulated two ways:
wait for process_name; and process_name, ...

or  wait for process_name, or process_name, ...

When the process names are joined through logical disjunction, the wait is
interpreted as wait-for-any. As soon as one of the named processes has
terminated, the waiting process may proceed. When the process names are

joined by logical conjunction all of the named processes must terminate

before the waiting process may proceed. We shall refer to this as a wait-
for-all statement.

5. Shared variables. Program variables have associated with them Algol-
like scoping rules. This scoping exists at the program level, meaning that
two processes may both access the same variable. We assume that no
protection mechanism exists.

6. Transput. Input to a program is accomplished through a read statement.

Values are output via a write statement.”

2.2 Example
Using the above constructs we now present an example program (Figure 2.2~

1) which contains several anomalies.
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Main: program;

declare integer x,y;

/* x,y are global variables known throughout the main program and all
tasks */

declare boolean flag ;

Tl: task;
write x 3
wait for T3 ;
close T1

T3: tasks
read x 3
close T3 ¢

/* end of declarations */

schedule T1 3 /* first executable statement of Main*/
schedule T2 ;

read flag ;

if flag then x = 8 3
write x g

y=9;

wait for T2 ;

if flag theny = 10
write v ¢

wait for T2 3
schedule T! g

close Main 3

Figure 2.2-1:  Example Program with several data flow and synchronization

anomalies.
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A few of the anomalies are listed below.

1. An uninitialized variable (x) may be referenced at line 5, as task Tl may
execute to completion before task T2 begins.

2. The definitions of y as found in task T2 (line 10) and the main program
(line 20) may be "useless", since y may be redefiﬁed at line 22, before y is
ever referenced.

3. vy is defined by‘ two processes which act in parallel - thus the reference at
line 23 may be to an Yindeterminate" value.

4, Variable x is assigned a value by task T2 (line 9) while simultaneously
being referenced by the main program at line 19.

5. There is a possibility that task T1 will be scheduled in parallel with
itself at line 25 since there is no guarantee that Tl terminated after its
initial scheduling.

6. The wait at line 24 is unnecessary as T2 was guaranteed to have
terminated at line 21, and it has not subsequently been rescheduled.

7. The wait at line 6 will never be satisfied as T3 was never scheduled.

2.3 Event Expressions

Clearly many of these error phenomena are interrelated. Hence a more
precise categorization and definition system is desirable. We shall modify some
notions employed in [7] to gain this precision. In [7] errors were described in
terms of anomalous or illegal sequences of events occurring along a path thmhgh
a program. |

For instance the events, "reference", "define", and "undefine" are the

significant ones in the detection of undefined variable references and dead
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variable definitions. Thus in determining the presence or absence lof these errors
in a given program, the execution of the program is modelled as the set of ali
potential execution sequences of these three evems'happenmg to each of the
program variables. In a single process program any path traceable through the
program's flowgraph is taken to represent a potential execution. Now denote the
events "reference", "define", and "undefine" by r, d, and u, respectively. Then
clearly an undefined variable reference can occur within a program if and only if
there is a path subsequence of the for "ur" for some variable and some potential
execution. Similarly a dead variable definition is indicated by either a "dd" or
"du" path subsequence.

In a concurrent program it is more difficult to determine the potential
executions and hence the potential sequences of events. Different processes may
be executing simultaneously on different CPU's, or in some non-determinable
interleaved order on a single CPU. If these processes operate on shared data,
then the sequence of evemté happening to that data cannot be predicted, even
though the code for each process is known. All that can be safely assumed is that
every interleaving of the statements of all mptﬁsses which can act concurrently

must be considered a potential execution. Hence the set of execution sequences

for a given concurrent program-is the set of all possible sequence of events whcih
could result from a potential execution of the program.

Thus, for example, in Figure 2.2-1, noting that all variables are initially
undefined and that a write is a reference, variable x may have the sequence "urd",
wude, "ud®, "ur", or "u' by the time line 17 is reached. "urd" corresponds to task
T1 acting first, then T2; "udr" corresponds to T2 actually, éxec:;uting before Tl
(there is nothing in the program pmhibi“ﬁing this); "u" corresponds to tasks T1 and

T2 both being ready to execute, but not actually having done so.
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2.4 Error Categorization and Definitions

Using the notation developed above we may now formulate definitions for
the errors in which we are interested. The following are anomalies which we wish
to detect in all programs. Their detection is more complicated in programs using
concurency constructs.

L. Referencing an uninitialized variable. An execution during which this error
occurs will have an event sequence of the form "purp"'}for some program variable,
where p and p' are arbitrary event sequences.

2. A dead definition of a variable. An execution during which this anomaly
occurs will have an ev;%:nt sequence the form "pddp™ for some variable.

The following are errors and anomalies which we wish to detect in
concurrent code. In the following the schedule event will be denoted by an "s",
the wait by a "w". All processes will be assumed to be in state "u", unscheduled,
when not scheduled.

3. \X!aé*t;rag for an unscheduled process. This anomaly is represented by the event
expression "pusp™.

k. Scheduling a process in parallel with itself. This anomaly is represneted by the
event expression "pssp".

5.  Waiting for a process guaranteed to have previously terminated. The
expression "pwwp™ is symptomatic of this condition.

6. Referencing a variable which is being defined by a parallel process. There
exists a schedule, S such that for some variable both the event sequence
"psordp"' and the event sequence “psgdrp"' are possible,

7. Referencing a variable whose value is indeterminate. There exists a wait, W
and two sepérate definition points for a given variable, dl and dz, such that both

the event expressions “pdldzwor” and ”pdzdlwor“ are possible.
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For each of the above errors we will be interested in determining whethe;
they exist in the event expression at a statement (i.e. the event expressions
consisting of the preceding evénts concatenated with the current event) or in the
event expression which represents the transformations undergone after leaving a
statement. In addition we will wish to distinguish between errors which are

guaranteed to occur and those which might occur,
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2.5 Program Representation

At the heart of data flow analysis are algorithms which operate on an
annotated graphical representation of a program. Single process programs may be
represented by a flowgraph [7]. As introduced in reference [8} communicating

concurrent process programs may be represented by a process augmented

flowgraph, or paf. A p‘af» is formed by connecting the flowgraphs representing the
individual processes with special edges indicating all synchronization constraints.
In our example language an edge must be created for each ordered pair of nodes
of the type (schedule p_hame, task p_name) and (close p_name, wait for p_name).
Figure 2.5-1 is a paf for thé example program of Figure 2.2-1. The creation
of the paf for programs in our language is quite straightforward. It is important
to note however that most actual languages incorporate synchronization con- )
structs which greatly complicate the construction of the paf. In fact, it is
impossible to create a fixed static procedure capable of constructing the paf of
any program written in a language which allows run-time determination of tésks

to be scheduled and waited for. These issues will be discussed later in this paper.

L]

10
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? (12) T3: task

$ (13) ref x

o’

&
(14) close T3

s (1) Main: program

(15) schedule T1

(4) Tl: task

¢ (5) Vet x

/ (6) waitfor T3

, (7) close T1

/ (16) schedule T2

¥() T2: task

? (9) def x

® (10) y=6

p (17) def flag

(18) if flag
then K=&

7119) ref x

¢ (20) def

o (21) wait for T2

22) if flag
close T?
TR (24) wait for T2

\wwp (25) schedule T1

8 (26) close Main

Figure 2.5-1:  Process-augmented flowgraph for the program of Figufe 2.2-1.
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2.6 Data Flow Analysis Algorithms

Data flow analysis algorithms arose cut of work in global program optimiza-
tion [9] [10].  Our usage of them has a different objective, however. The
algorithms are described in detail in references [7] and [ 1]. The purpose of these
algorithms is to infer global program variable usage information from local
program variable usage information, and then to infer verification and error
detection results from the global usage results. The local variable usage is
represented by attaching two sets of variables, gen and kill, to each program flow
graph node. The global data usage is represented by attaching two sets, live and
avail, to each node. The algorithms presénted in the references cited assure that,
when they terminate: 1) a variable v is in the live set for node n, if and only if
there exists a path, p, from n to another node n' such that v is in the gen set at n',
but that v is not in the kill set of any node along path p; 2) a variable v is in the
avail set for node n, if and only if, for every path, p, leading up to n there exis‘;s a
node n' on p such that v is in the gen set at n', but v is not in the kill set for any
node between n' and n along p. |

The implications and usage of these algorithms, and the modifications
required to them as a result of concurrency considerations, will become apparent

from considering some examples.
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3.0 DETECTION OF UNINITIALIZATION ERRORS
Before we examine the large example given in section 2.2, consider the

following simple example:

I Main: program;

declare integer x ;
declare boolean flag ;

Lk N3

T1i: tasks
write x ;
close Tl ;

TN\ =

T2: tasks
write x 3
close T2

RO 0o~

10 schedule Tl

i1 read flag ;

12 wait for T!

13 if flag then read x;

14 schedule T2 ;

15 close Main g

The paf for this program is given in Figure 3.0-1. All the nodes are annotated

corresponding to the program statements.

/
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9 ( 1) pmgram

ST (10) schedule T1
(5) writex ¢ (11) readfilag
(12) wait for T1

(6) close T!

¢ (13) if flag
then read x

VA : task .
e L ms‘ (14) schedule T2

b (8) write x

& (15) close main

L (9)close T2

Figure 3.0-1: Paf for program with two uninitialization anomalies.

14
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Let us now consider the uninitialization errors which are present and how they
may be detected. M

Two uninitialization errors are present in the program. When task Tl is
executed the write statement will reference uninitialized variable x. There is no
possibility for x to have been initialized, even by the main program which is
operating in parallel with the task. When task T2 is executed, there exists a
possibility for referencing x as uninitialized. 1f "flag" has the value true, x will
have been initialized and no error will occur. 1f, however, flag is false, x will still
be uninitialized. Thus we have an instance of an error which "must" occur and an
instance of an error which "might" occur. In addition, we may detect each of
these anomalies at two different places: the point of variable reference, or at the
start node. Thus we see that there are four different subcategories of the
uninitialized variable reference error.

The baiance\of this paper will be devoted to specifying algorithms for
detecting the various subcategories of this error and a variety of other errors and
phenomena of interest in the analysis of concurrent software. These algorithms
will, in general, involve the use of the LIVE and AVAIL procedures described in
section 2.6 of this paper. It will be shown that a diversity of diagnostic
algorithms can be fashioned by using a variety of criteria for marking the nodes of
the program flowgraph with gen and kill notations, and choosing suitable criteria
for interpreting the output of the LIVE and AVAIL procedures.

For these reasons, it should be apparent that the algorithms presented here
are much involved with placing gen and kill annotations of flowgraph nodes and

interpreting live and avail annotations that subsequently appear on flowgraph

nodes. This annotation information will be repreﬁented by means of bit vectors,

denoted in the following way.

15
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1f an annotation criterion dictates that a particular variable, say X, is

"gen'ed" at a node n, this will be indicated by seting the value of the function
gen(n,x) to 1. Otherwise the value of gen(n,x) is 0. The function killn,x) is
defined similarly. We shall assume that the program unit being analyzed has v
variables, and that a one-to-one function, f, has been defined mapping the
variables of the program unit onto the integers (1,...,V). Hence a bit vector is
defined by the values ( gme‘_g(n,x}.), ee gg_rl{n_,gi), oo s en(n,xv)) where x; is used to
denote the variable x for which f(x)=l. We use this bit vector as the definition of
the function GEN(n). KILL(n) is defined similarly.

We shall also assume that there exists algorithmic pmcédures, LIVE and
AVAIL, which operate upon a flowgraph containing N+2 nodes, and annotation
functions GEN and KILL defined on the N+2 nodes. We shall always assume that
node 0 represents an initialization action immediately preceding the first execut-
able statement of a program unit. Node N+l represents a termination action
which immediately follows all statements which end execution of the program
unit (i.e. the close of the main program) or end execution of any process which is
not waited for (i.e. all process close nodes which are not joined to any wait nodes.)
LIVE and AVAIL, when executed, csmputely,annotation functions LIVE(n) and
AVAIL(n), respectively, defined on the N+2 nodes. The values of LIVE(n) and
AVAIL(n) are V-bit vectors for n between 0 and N+l. The bits of LIVE(n) and
AVAIL(n) are defined by live(n,x;) and avail(n,x,) respectively, where x; is the
variable x for which f(x)=i. The functional dependencies of live(n,x) and avail(n,)
upon gen(n,x) and kill(n,x) are as described in section 2.6 of this paper.

If live(n,x)=1 then we shall say "variable x is live at node n." If avail(n,x)=1
then we shall say "variable x is avail at node n." |

We now begin by presenting an algorithm for detecting all statements at

which an uninitialized variable reference "must" occur. Referring to the example

16
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in Figure 3.0-1, we see tht this algorithm is designed to detect that fhe reference
to x at statement 5 is a "must" uninitialized reference err‘or. |

For this and subsequent algorithms we will need to define functions REF(n)
and DEF(n) on the nodes of the flowgraph. REF(n) is a V-bit vector whose i-th
component is defined by gg_f_(ngxi). E?ﬂ“vxi) is 1 if and only if the statement
represented by node n involves a reference to the variable x which is mapped by {
onto index value i. Otherwise ref(n,x,) is 0. DEF(n) is defined similarly. def(n,x,)
is 1 if and only if thev statement represented by node n defines the variable x
which is mapped by f onto the index value i. Otherwise g@(rw,xi) is 0. We also
define 0 to be a V-bit vector, all of whose components are 0. 1is a V-bit vector

all of whose components are 1.

ALGORITHM 3.1:
forn:= 1 to N+I do

GEN(n) := 0

KILL(n) := DEF(n) 5
od
GEN(0) := 1
KILL(0) := 0
call AVAIL ;
forn:= 1 to N do

fori:=1toVdo

if ref(n,i) = 1 and avail(n,i) = 1
then print("an uninitialized reference to", f j‘(i),
" must occur at node "y n )
B {8
od ;

It is important to observe that algorithm 3.1 is designed to assure that the

error message will only be generated when a particular variable cannot possibly be

17
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initialized by any execution sequence leading up to the reference at the node to
which the message pertains. In particular it is important for the reader to verify
that this algorithm correctly analyzes the program in figure 3.0-1. Figure 3.0-2
shows the contents of each set ( gen, kill, etc.) at each node upon termination of
algorithm 3.1. Note that variable x is in the avail set at the write node in task Tl.
Also note that x is not in the avail set at the write in task T2. Thus we are assured
that an error message will be produced for the reference to x at statement J, but

not for the reference at statement &.

18
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NODE REF DEF GEN KILL" AVAIL
0 x,flag x,flag
i ' x,flag
2 —— — —— - ——
3 — — e — ——
4 x,flag
3 X x,flag
6 x,flag
, :
8 X
9

10 ' x,flag

11 flag flag x,flag

12 X

13 flag X X b4

14

15

16

Figure 3.0-2: Contents of the data flow analysis sets for the paf of
Figure 3.0-1.

19
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We now present an algorithm for detecting "may" uninitialized variable
reference errors at a node. This algorithm is designed to detect a variable
reference occuring at a statement for which there exists an execution sequence
which leads up to the statement and which does not initialize the variable.
Referring to figure 3.0-1 again, clearly such an error occurs at statement 53, but
of more interest there is also such an error at statement 8. Algorithm 3.1 does
not detect the error at statement 8, but algorithm 3.2 will.

Before presenting algorithm 3.2, we must first discuss a necessary modifica-
tion to the AVAIL algorithm. The AVAIL algorithm is devised to assure that at
termination a variable, x, will be avail at n if and only if for every possible
execution of the program leading up to n, there is a previous gen of x without an
intervening kill of x. For single process programs, AVAIL(n) is computed
correctly at every flowgraph node n provided that the following equality is

achieved at termination of the AVAIL algorithm.

AVAIL(n) = intersect (GEN(n,) union (AVAIL(n,) intersect not KILL(n,)))
all N
immediate
predecessors
of n
For concurrent process programs it is helpful to define a somewhat different
equilibrium condition under certain circumstances. We proceed as follows.
Suppose N, is a flowgraph node which represents a wait statement. In the
paf, G, of the program containing N Ny will be the tail of some edges which are

usual flow of control edges, and the tail of at least one edge whose head

represents the termination activity for a concurrent task. Suppose now that
(fi)rij:I represents the set of heads of usual flow of control edges whose tails are
Nys and that (pi)i1 represents the set of concurrent task termination nodes which
are the heads of edges have N, as their tails. Now create a new graph node nw‘,

20
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delete the edges ( (fl,nw), e (fF’nw) ) and replace them by the edges ( (fl,nw') Y
ey (‘IF,,nW‘), (nw',nw) ). Suppose this is done for every wait node in G. Denote the
resulting graph by G'. Now compute AVAIL(n) as usual, except use the following

equilibrium condition at the wait-for-any nodes of G' only.

, o _ |
(*) AVAIL( ) = mtgrj,{gct AVAIL(p;)) union AVAIL(n )
'i=1

A different equilibrium condition is required at wait-for-all nodes.

(%) AVAIL(nW) = Lmé;)f’;lf\VAIL(pi) union AVAIL(an)
i'i=1

The resulting AVAIL(n) bit vectors will be quite useful to us. Thus let us
denote by AVAIL* the algorithm which employs the starred formulas as the
equilibrium conditions for all of the wait nodes of G'. In all the algoriﬂ-\ms which
follow we assume that graph G' has been created and that the analysis takes place
on that graph. |

We can r%cw state algorithm 3.2,

ALGORITHM 3.2:

for n:= 1 to N+1 do
KILL(n) := 0
GEN() := DEF(n) ;
od ;
KILL(O) := 1
GEN(0) := 0
call AVAIL* ;
forn:=1to Ndo
fori:=11oVdo
it ref(n,i) = 1 and avail(n,i) = 0
then print("an uninitialized reference to“,f“l(i),
"may occur at node", n);
i
od ;
od ;

21
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Using a different algorithm we may indicate to the programmer the event
sequence associated with this anomaly. Unfortunately many such event sequences
are unexecutable. This problem and partial remedies to it are discussed
elsewhere 12. In our éxample here, variable x is not in the avail set at either
write statement in task T1 or T2. Thus the potential for error is reported at both
nodes. In this case the associated event sequences are clearly executable.

We now present an algorithm for detecting at the start node all the "must"”
uninitialization errors. In the example of Figure 3.0-1 we are again interested in
detecting the error which occurs at the reference to x in statement 5, except in
this case the point of detection (and error message generation) will be the start
node of the program.

Analogous to the presentation of Algorithm 3.2 we must discuss a necessary
modification to the LIVE algorithm. T'nev LIVE algorithm is devised to assure that
at termination a variable, X, will be live at n if and only if there exists an
execution sequence beginning at n such that there is a gen of x before there is a
kill of x. For single process programs, LIVE(n) is computed correctly at every
flowgraph node n provided that the following equality is achieved at terminaﬁon
of the LIVE algorithm.

LIVE(n) = union (GEN(ni) union (‘LWE(rzi) intersect not KILL{n.)))

all n, .
immediate
successors
of n
For concurrent programs it is useful to define a different equilibrium condition
which is applied only at schedule nodes.
(*)  LIVE(n) = intersect (GEN(n,) union (LIVE(n,) intersect not KILL(n))
all n.,
immediate

SUCCEessors ;
ofn

22 ‘ %
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We shall denote by LIVE* the algorithm which creates the live sets, employing (*)
at all schedule nodes of G. (A graph G'is not required in this case as a schedule
node only has a single control flow edge leaving it.  All others lead to a task
initialization node.)

ALGORITHM 3.3:

for n:= 0 to N do
GEN(n) := DEF(n) ¢
KILL(n) := REF(n) ;
od
GEN(N+1):=1;
KILL(N+1) := 0 ;
call LIVE*
fori:=1toVdo
if live(0,i) = 0
then print( " an uninitialized reference to ", fhl(i),
" will occur ")
fig '
od;

In the example of Figure 3.0~1 variable x will be missing from the live set at
the start, due to the kill present at line 5. (The live set at the wait node does
contain x, however, as the error in task T2 is dependent on the execution sequence

taken.)

The detection of possible errors is achieved through the following algorithm.
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ALGORITHM 3.4

for n:= 0 to N+l do

GEN(n) := REF(n) ;

KILL(n) := DEF(n) ;
od ;
call LIVE ;
fori:=1toVdo

if live(0,i) = 1

then print (" an uninitialized reference to ", f"i(i),
" may occur ")

fi;
od ;

In our now tired example variable x is in the live set at the start because of
the references in both tasks. (Now note that the wait node has x in its live set -
indicating that there is an execution sequence following which encounters a
reference before any initialization. An error in that execution sequence would
depend on x not being initialized before the wait, which of course it is not.)

To summarize briefly, two basic algorithms are involved. One comnputes live
sets, the other avail sets. With suitably created gen and kill sets attached to the
paf and special rules applied at wéit nodes during the computation of avail and at
schedule nodes during the computation of live, a comprehensive set of

programming anomalies may be detected in concurrent process programs.

We are not out of the woods yet, however.
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4.0 PARCELING OF ANALYSIS ACTIVITIES

Let us now return to the example of section 37, and modify the program
slightly. In that example task T2 performed the same actions as task Tl. There
was no need to declare two tasks, except that it made our -analysis simpler, as we

shall see. Below we show the program written with only a single task declaration.

I Main: program;

2 declare integer X 3
3 declare boolean flag ;

T1: tasks
write X 3
close Tl ;

[ox WA, B =

schedule Tl ;

read flag ;

wait for Tl
0 if flag then read xj
I schedule Tl ;

e s A OO0

12 close Main ;
The paf for this program is given in figure 4.0-1. As before, the nodes are

numbered and annotated with the corresponding statements.
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» (1) Main: program

(&) TI: task

ﬁ?‘“""“

b (7) schedule T1

b (8) read flag

(9) wait for Tl

"

¢ (5) write x

(10) if flag

then read x

(6) close T1 "(11) schedule T1

& (12) -close Main

Figure 4.0-1: Paf for program with two uninitialization ervors, written
with a single task.
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Note that the paf has been drawn with two edges éntering the task's start nodé.
Suppose now that we wish to look for "must" uninitialization errors, and detect
them at the point of reference. We are therefore concerned with computing the
avail sets as described in algorithm 3.1. Using this algorithm on the graph as
shown will result in x not being in the avail set at the reference (at line 5). Thus
we cannot say that whenever this node is executed aﬁ uninitialization error will
result. Indeed this is a correct statement as the second time the task is scheduled
there is only the possibility for an error at this line. This is somewhat
unsatisfactory, thmjgh; as it is clear that the first time Tl is scheduled an error
will occur, regardless of the execution sequence. We may improve the strength of
our analysis in this regard by parceling the paf and detecting the error‘not at the
reference, but at the point where the task is scheduled. One cost of doing this is
that we will not be able to point directly to the statement in the task at which the
error occurs,

Our method for doing this is based on the technique presented by Fosdick
and Osterweil for handling external procedures when performing data flow
analysis on single process programs [7]. Their itechnique abstracts the data flow in
each procedure using the LIVE .and AVAIL algorithms, and attaches this
abstracted information to all invoking nodes for each procedure. Data flow
analysis can then be perfomed on the invoking procedure. We here adapt this
technique to the analysis of tasks for anomalous event sequences. The data usage
patterns within each task are determined using LIVE and AVAIL. These abstrac-
tions are attached to all schedule and wait nodes referring to each task. Analysis
of this remarked ("trimmed") graph then proceeds as described previously.

For the example of Figure 4%.0-1 the analysis will proceed roughly as

follows. The algorithms 3.1, 3.2, 3.3, and 3.4 would be run for the local variables
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in task T1 first. (Since there are no local variable this step is omi{ted.) Next Tl
is annotated as described in algorithm 3.3 for global variables (in this case x). The
LIVE algorithm is run, giving the result that x is live at the task node, &#. We
consequently label nodes 7 and 11 with ref(n,x)=1, indicating that execution of
node 7 or node 11 always results in a subsequent reference to x. We can now run
algorithms 3.1, 3.2, 3.3, and 3.4 for the variables local to Main. Algorithm 3.1
will show that x is avail at 7 indicating an uninitialized reference to x will always
occur as a consequence of executing node 7. Ideally the resulting error message
will indicate that the error actually occurs "somewhere" in the scheduled task.
Determination of the error's precise location would be relegatéd to a separate
(depth-first) scan of the task.

Clearly we could continue passing x}p data usage abstractions through an
arbitrary number of levels of task scheduling. The restriction we have to impose
on the program in order to adopt this technique is that the process invocation
graph be acyclic. In the single process program situation there is an analogous
restriction that the subroutine call graph be acyclic: recursion is prohibited. This
prohibition exists for multiprocess programs as well, but the process invocation
graph is also required to be acyclic. This is a fé;tronger restriction as it is possible
to have a cyclic process invocation graph which does not involve any recursion,
either on the process or the subroutine level. For the moment we are satisfied
that a significant class of programs is nevertheless being addressed, but further

investigation is clearly called for here.
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5.0 ADDITIONAL REFERENCE/DEFINITION ANOMALIES
5.1 Referencing a Variable Whﬂe Defining It in a Parallel Process

Let us now reconsider the example of Section 2.2. At {ine 5, in task Tl, we
have a reference to variable x which, in absence of a "fortunate" sequencing of
events, will be uninitialized when the task is first scheduled. 1f algorithm 3.1 1is
run on the paf corresponding to this program (Figure 2.5-1), an "always"
uninitialization error will be detected at the reference. (We are assuming that
the analysis is carried out in the parceled manner described in the preceding
section, as the second time the task is scheduled the possibility exists that x will
have been defined.) Would it be proper to report this as an always error.? What is
termed a "fortunate” sequence really makes this an anomaly. It is conceivable
that known operating environment conditions guarantee that the initialization
performed by task T2 transpires before the reference in task T1. A "sometimes"
error message is unsatisfactory, though, as such "guarantees" are outside the
domain of the program. This confusion is due to the referencing and defining of a
variable by two processes which may be execm;iﬁg in parallel. This construction,
besides impairing our other analyses in the manner described, seems inherently
dangerous and should be reported as an anomaly in its own right.

This anomaly may be detected in a rather naive manner given that we can
determine which sections of the program may be operating concurrently. Let us
assume that the paf is parcelled into S subgraphs, Gi” Fach section corresponds to
a task or a portion of a task. Briefly, section boundary nodes are program, task,
close, and wait nodes. (Qur notion of a section is roughly equivalent to that of a
task which contains no wait statements.)Let us further assume that we have at our
disposal a boolean function, PARALLEL, which determines which sections can

execute in parallel. That is, PARALLEL defines a function of two variables, i and
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j, such that PARALLEL(i,j) is true if and only if G, and Gj r’ebresent sections
which might execute in parallel. It is important to note that the aigoritﬁrr\ for
determining this is not trivial. Indications of how‘ such an algorithin can be
constructed may be found in references 13 and 14. Based on these assumptions we
can now state an algorithm for detecting the possibility of referencing and
defining a variable from parallel tasks or sections. Suppose the nodes of graph C'i
are numbered from ni,O’ the logical predecessor to the sections start node, to ni,li
the logical successor té the sections final node. For clarity, also assume as before

that f maps all the variables of the program onto the integers 1-V,

30



Taylor and Osterweil: Anomaly Detection in Concurrent S/W

Algorithm 5.1:
fori=1toSdo;

od;

forj=11t0l do
REF(ni,O) = REF(ni,O) union REF(ni’j) ;
DEP(ni,O) i= DEF(ni,O) union DEF(ni,j) ;
od;

fori:=11to Sdo

od;

forj:= 1 toSdo
k]
then if PARALLEL(,]
then if REF(”},O} intersect DEF(ﬁi,D> =1
then print (" the following may be referenced ",
"and defined in parallel by sections", i, "and";j);
for vi=1to Vdo
if Lﬁ(ni,o,v) = | and
S’;‘f‘:i(‘"*i,o"’) = il
then print( £ (v));
fi;
od;
fi;
fi;
fi;
od 3

This algorithm detects the possibility of references and definitions occurring

in parallel. We can also construct an algorithm that determines when this error

must occur, regardless of the execution paths within the processes. The only

change required to algorithm 5.1 is in the creation of the REF and DEF sets at the

nodes n; g The REF sets at n, 4 would be computed by an algorithm similar to
¥ ?

3.3, and the DEF sets by an algorithm similar to 3.1,

3]
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5.2 Unused Variable Definitions

A programming anomaly not truly erroneous but which often indicates the
presence of a design error is that of unused variable definitions. The example of
section 2.2 has such an anomaly in it. Variable y is defined both by task T2 and by
the main program (at line 20). Y is then possibly redefined at line 22, before ever
Seing referenced. (We will examine the anomalous situation which occurs at the
reference to y (line 23) in the next section.) This anomaly may be detected by
techniques very similar to those presented in section 3. Here, as with uninitiali-
zation errors, there are four cases to examine: detecting errors which always
occur through examining all possible event sequences which follow a node,
detecting the possibility of such errors, detecting errors which always occur
through examining all event sequences sbreceding a node, and detecting possible
errors by examining the preceding event sequences. We present here only the
algorithm for determining the anomalous situation where a variable v is defined at
node n, yet on all paths leading to n, v has been previously defined without any
intervening reference. Algorithms for the other three related anomalous situa-
tions should be derivable by analogy. Not that the presence of reference-
definition in parallel anaomalies may impai:ﬁ\xhe quality of the analysis here, like
as was described previously. |

The procedure given here- assumes that the program graph has been
parcelled into task subgraphs. We assume that the process invocation graph is
acyclic and that the labelling used in algorithm 5.1 is used here as well. This
particular error also requires that we define a new equilibrium condition to be
applied during the computation of the AVAIL sets at wait nodes. _ The new

condition is as follows:

(%) A‘VAIL(nW) = in{t;zx)"gmt AVAIL(pi) union AVAIL(n) - in&t;grfgact REFED(pi)
ii=1 i'i=1
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This condition applies at wait-for-anys. At wait-for-alls:
(%) AVAIL(n ) = u(niog AVAIL(p;) union AVAIL(n ') - union REFED(p,)

Pi-1 Py
We shall denote by AVAIL*#¥* the algorithm which employs the double-starred
formulas as the equilibrium conditions for all the wait nodes of G'. REFED(n) is a
V-bit vector defined during the computation of AVAIL** which is used to save the

value of some intermediate AVAIL sets.
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ALGORITHM 5.2:
declare bit vector PROCESSED (1:5) ;
PROCESSED := 0
while PROCESSED £ 1 do
fori:= 1 toSdo
if processec}i = 0 and pmcessedt = | for all tasks, t,
for which C}i waits
then
pmces:'sedin = } H
forj = Itolldo
GEN(ni’j) 1= RE‘F(ni’? ;
KILL(ni,j =0
od ;
KILL(ni,O) =13
call AVAIL*
REFED(n, il ) 1= AVAIL(n, "} ;
ior;*wlmldo 1
GEN(n, ) = DI”F(n )
KILL(n ) = REF’n )
od :
KILL(ni’G) =
call AVAIL*#*
for ji=1 mi do ;
if DE F(n }) intersect Av’A‘ﬂ (n ) £ O
then prmt(“ the definition(s) at node "y, LY
"is always immediately preceded by another",
" definition. The variable(s) is (are): ")
fork:= 1 to Vdo
if def(n, k=1 and avail(n, . K)=1 then print( £ 1)
i

od;
fi;
od;
fis
od;
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5.3 Referencing a Variable of Indeterminate Value

In the above presentation' we deferred discussion of the anomalous data flow
situation existing at the reference to variable y occurring at line 23 of the
example program in section 2.2. Y is defined by task T2 at line 10, by the main
program at line 20, and possibly again in the main program at line 22, If for the
moment we ignore the definition at line 22, then it is .definateiy indeterminate
whether the definition from‘the task or from the main program is referenced at
line 23. If we acknowlecjge the presence of the definition at line 22, depending on
the event sequence (namely wheﬂ';er variable flag is true) the reference at line 23
may be to an indeterminate value.

The algorithm we now pre:seﬁt is designed to detect indeterﬁ'\iﬂate reference
anomalies which will occur regardless of execution sequence. The anomalies will

be detected at the point of indeterminate reference.
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Algorithm 5.3:

declare bit vector PROCESSED (1:5) ; ,
PROCESSED := 0
while PROCESSED £ 1 do

fori:=1toSdo

if processedi = 0 and pr«:}«::essedt = | for all tasks, t,

then

for which C‘i waits

p::'oc:essedi = 1

for j =1to ii do

od ;

KILL(n,
Iy

GEN(n, .) := DEF(n. ,);
1y} 1y}
KILL(n, .} =03
1]

O) = 1

call AVAIL* ;

DEFED(“} ! ) H= AVAIL{IH i ) ;
3 E
for j:= 1 to ii do

od;

1

GEN(n. .) := 0; KILL(n, ,) := DEF(n, .);
] 1y} 1)

for all Wi o walit nodes in Gi do
3

od;

COUNT :=03
for ail predecessor nodes, p. _,,of w, _ do
; i,a,b i,a
COUNT := COUNT vector-add AVAIL(p. _ -);
i,a,G

od j
GEN(Wi,a) 2= {0 3
forviz1toVdo

if COUNTV greater than 1

then GEN(Wi,a’V) i= 13

fig -
od ;

call AVAIL;
for j:= 1 to 1, do

if I‘%&\J'J’J\IL(r’ni j) intersect REF(ni ].) £
] b
then print("indeterminate reference at", n j};
: 3
i
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od ;
AVAIL (n, , ) := DEFED (n, | )3
i,l, i,l.
. i i
fi ;
od;
od;
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6.0 PROCESS SYNCHRONIZATION ANOMALIES

As an outgrowth of our investigation into the detection of data flow
anomalies in concurrent process software it became clear that some forms of
synchronization errors could be detected in essentially the same manner. We have
alluded to the nature of these errors in the introduction. They will now be
considered in detail. Note that in form the synchronization anomalies are
analagous to data flow anomalies. In addition, as with data flow, many of the
anomalies are not strictly errors, but they are conditions which may be interpre-
ted as erroneous in the sense of indicating deeper problems. At the very least
they represent conditions which should be clearly documemed.,
6'.1 Waiting for an Unscheduled Process

This anomaly is perhaps the most apparent, and is closest in form to the
data flow anomalies already discussed. The example of section 2.2 contains such
an error at line 6 in task Tl. Task T3 is never scheduled, yet T1 waits for it. The
analogue is to detection of uninitialized variables. As such we will present
algorithm 3.1 rewritten to detect this anqmaly. Thus we are interested in
detecting anomalies which must occur, and the anomaly is to be detected at walit
nodes. Our notation requires that we introduce functions SCH(n), WAIT ALL(n),
and WAET”ANY(n), All function values are T-bit vectors. We shall assume that
the program unit being analyzed has T processes, and that a one-to-one function,
g, has been defined mapping the process names onto the integers (1,...,T). The i-
th corﬁponem of SCH(n) is defined by _s;g}‘l(n,ti)ﬁ §§_t1(n,ti) is 1 if and only if the
statement represented by node n schedules the task t which is mapped by the
function g onto index vaiée i WAETM_ALL and WAIT_ANY are similarly defined,

for the two types of wait statements in our language.
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Algorithm 6.1

for n:= | 1o N+! do
GEN(n) := 0;
KILL(n) := SCH(n) ;
od
GEN(0) := 1
KILL(O) := 0 ;
call AVAIL ;
forn:=1 to N do
fori:=1to Tdo
if ( wait all(n,i) = I or wait any(n,i) = 1) and avail(n,i)=1
then print (" the reference to process ", g~ j’(i),
“atnode ", n," is to a process which has not been scheduled.");
fi ;
od:
od; ’
In figure 2.5 task T3 will be in the avail set at the node corresponding to line

6, thus the error will be detected.
As may be expected, there is also an analogue to the reference-definition in

parallel condition here. The following program presents such a condition.

ot

Main: program;

2 T1: task;
‘ schedule T2 ;
close Tl g

5w

T2: tasks
/* do something */
close T2

schedule T1
/* do something */
0 wait for T2

N0 0O ~N O W

Il close Main g

In this program there is the possibility that task T2 will be scheduled before

the wait at line 10 is encountered. Our analysis described above will cause an
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"always" message to be generated. Thus we need to perform "schedule/wait in
parallel" analysis to give a complete description of the situation. This would be
performed in a manner analogous to that of reference/definition in parallel

analysis.

6.2 Waiting for a Process Guaranteed to Have Already Terminated

The example of section 2.2 still has additional errors to consider. At line 24
the main program waits for task T2 to complete. Yet the task was already
assured to have terminated at line 21. The second wait is thus superfluous and
possibly misleading. Since our language syntax allows us to specify wait-for-all
and wait-for-any we must be careful to distinguish the errors which we will detect
and the algorithms which apply in each case. To indicate the nature of our
technique we will just consider a single case: looking for constructs which,
regardless of event sequence, assure us that at least one of the processes named
in a wait-for-all has in fact already terminated at a previous wait.
Algorithm 6.2:
for n:= 1 to N+l do

KILL(n) := SCH(n) ;

GEN(n) := WAIT_ALL(n) 3 ,

if the statement represented by node n is a task statement for t,

then ggﬁ(n,ti) = 1

i
od;
GEN(0) := 1
KILL(0) := 0
call AVAIL
forn:=1to N do

fori:=1toTdo

if avail(n,i) = | and wait all(n,i) = 1
then print (" termination has already been ensured for task",

g;l(i), " at node ", n);
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fi;
od;
od;

In figure 2.5-1 task T2 is in the avail scts of all predecessor nodes of the
node corresponding to the first wait (line 21), but is in only one of the avail sets of
the predecessor nodes of the wait at line 24. Thus the first wait is correct, while
the second is anomalous.

The algorithm we have presented may be easily modified to detect the
possibility of anomalies. To detect anomalies occurring at wait-for-anys we must
develop new procedures to account for situations such as:

wait for Tl or T2 ;

®

wait for Tl or T2 ;
In the absence of other synchronization statements the second wait is spurious;

satisfaction of the first wait guarantees immediate satisfaction of the second.

6.3 Scheduling a Process in Parallel with Itself

The last synchronization anomaly wh'ich we shall examine is that of
scheduling a process to execute in parallel with an already active incarnation of
the same process. In the example of section 2.2 there is an instance of this error
at line 25, where task T! is scheduled for the second time (the first being at line
15). At no point in any process, let alone before the second schedule, has T1 been
guaranteed to have terminated.

We will present the algorithm for detecting situations where, regardless of
event sequence, termination has not been assured by the time a gcixedui@ is

reached.
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Algorithm 6.3:
forn:= | to N+l do

GEN(n) := SCH(n) 3

KILL(n) := WAIT_ALL(n) union WAIT_ANY(n) ;
od;
KILL(0) := 1
GEN(0) := 0 ;
call AVAIL* ;
forn:= | to N do

fori:=1toTdo

if schin,i) = 1 and avail(n,i) = 1
then print (" termination of process ", gai(i},

" has never been ensured before the schedule at node ", n) 3

If this algorithm is applied to our example an error will be detected at line

As may be expected, if a schedule may be performed in parallel with a wait
(on the same process) the quality of our analysis is impaired. In particular, if such

a condition exists algorithm 6.3 will detect a "for sure" error, where in fact there

is an event sequence where termination takes place.
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7.0 CONCLUSION
7.1 Summary

In this paper we have presented several algorithms useful in the detection of
data flow and synchronization anomalies in programs involving concurrent pro-
cesses. Data flow is analyzed on an interprocess and interprocedural basis. The
basis of the technique is analysis of a process augmented flowgraph, a graph
representation of a System of communicating concurrent processes. The algori-
thms have excellent efficiency characteristics, and utilize basic algorithms which
are present in many optimizing compilers. A procedure is outlined which allows
analysis to proceed on "parcels" of the subject program. Only the most basic
synchronization constructs have been considered, however.
7.2 Open Problems

Several matters discussed in this presentation clearly warrant further
investigation. The most pressing need now is a consideration of additional
synchronization and communication constructs. These will introduce new classes
of errors and may require that changes be made to the algorithms presented here.

One issue not addressed here is the creation of correct process-augmented
flowgraphs. In our sample language this was a relatively trivial task, but as
additional (real) synchronization constructs are added significant problems are
anticipated. It is not clear at this point if "correct” pafs can always be generated.
The analysis schemes may require alteration to acc:ommc_)date such a situation.

Dynamic determination of synchronization paths has not been considered at
all here, but work has been done in this area [15]. Likewise recusive procedures
and processes have been precluded. Work ‘has been done in data flow analysis of

recursive routines [16], but it appears inadequate for the analysis performed here.
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