Procedural Approaches to Software Design Modelling
William E. Riddle

CU-CS-150-79

[EJ
ﬂ@
\—UJ | University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
SSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE

ACKNOWLEDGMENTS SECTION.

WMTOLTEY BT EY VAN
NU L INLOUL

RSSM/86

PROCEDURAL
APPROACHES TO
SOFTWARE DESIGN MODELLING

William E£. Riddle
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

CU~CS~150-79 April 1979

Abstract

Several approaches to the modelling of a software system during
its design are discussed. Existing software design modelling tech-
niques are categorized and it is concluded that the category of proce-
dural techniques, which utilizes many of the same concepts as program-
ming languages, offers the most promising opportunity for providing an
effective design support system as an integrated collection of tools.

Introduction

In developing a software system which appropriately realizes a
solution to a problem one must pass through many levels of concep-
tualization of the system. During the initial stages of development,
these conceptualizations are oriented toward the user or customer
community. Gradually, during development, the conceptualizations
change to an orientation toward the environment in which the system
will execute.

At every conceptual level, the system is abstractly described
so as to record what is known about the system, allow the recognition
of what remains to be determined about the system, and provide the
ability to answer questions for the purpose of assessing the validity
and reasonableness of the system. Therefore, these abstract descrip-
tions are each, in the full sense of the word, a model of the system.

Software system development is thus a process of model construc-
tion and elaboration. The ease with which this may be done depends
primarily upon the modelling "materials"” provided to software development
practitioners and the tools provided these practitioners to aid in both
the formulation of models using these "materials" and the assessment of
the models. The development process is further facilitated by provid-
ing a support environment in which the model formulation and assessment
tools are highly integrated, cmmp?eﬁenting each other and easily usable
in tandem.

In this paper, we discuss several software design modelling formal-
isms, i.e., approaches to providing modelling "material" to software
system developers during the design phase of development. We then focus
on one particular formalism, characterize a number of existing techniques
for bringing this formalism to design practitioners, and argue that it
provides the best opportunity, of the formalisms discussed here, for the
provision of an integrated collection of tools.

Modelling During Software Design

By design we mean that activity during development which follows
an initial phase of specification (also known as requirements defini-
tion) and precedes the implementation phase. Thus, the system's
required capabilities have been detailed and recorded before the
design activity starts and this record serves as a definition of
acceptance criteria for the design. Also, specific details of the
data processing and organization will be develeoped after the design
phase. The intent during design is therefore to transform the Sys~
tem's overall requirements into specific, detailed requirements for
the system's components.

The goal during design is the preparation of a gross, conceptual
blueprint, or schematic, for the system. One task is therefore to
modularize the system and demarcate its major processing and data
repository components. Another task is to define the interfaces among
the components. The final task is to describe the interactions among
the components.

It is through the description of the interactions that the purpose
of design, the transformation of system requirements into component
requirements, is primarily achieved. The interactions are an embodi-
ment of strategies that the designer has chosen for the component
cooperation necessary to achieve thé policies set forth in the system's
specification. Thus the interaction description may be vaqgue as to the
algorithmic data manipulation that must be performed in support of the
information exchange required by the strategies. But it must be speci-
fic as to the actual information exchange so that it can be determined
that the strategies actually achieve the required policies and so that
the requirements for information preparation and transmission levied
against the components can be determined.

Because the individual components' processing capabilities and
their interactions are the aspects of interest during design, the system
description prepared during the design phase should explicitly describe
the functionality of the system's modules. Focusing upon the explicit
description of functionality generally precludes the simultaneous,

explicit description of other system characteristics; but these other
characteristics should be able to be easily derived from the descrip-
tion. (This sometimes requires that additional information, not neces-
sarily pertinent to the functional characteristics, be provided in the
model.)

Software Design Modelling Formalisms

We have established that the goal of the design phase of software
development is to model the system's modularity and the interactions
among the modules. The aspect of primary interest is functionality and
the audience is primarily the designer but some part of the design is
eventually presented to the implementors as a definition of the func-
tional capabilities of the components which they must prepare. Also,
there is an assessment task, namely to assure that the system as designed
has some chance of producing the required overall system capabilities.
Another secondary audience is therefore composed of those persons, per-
haps identical te the designers, who will assess the design with respect
to the system specification. Before reviewing existing techniques for
software design modelling and making several observations concerning
the various ways in which they satisfy this goal, we introduce, in this
section, some general modelling terms which will help in classifying and
commenting on existing software design modelling techniques.

A model is a description prepared according to the rules of some
modetling formalism. A modelling formalism, itself, consists of three
parts. First there is a basic vocabulary of concepts which are primi-
tive, i.e., well-defined and not (necessarily) definable using the
modelling scheme. Second, there is a set of composition rules which
define the ways in which models may be validly constructed. Finally,
there is a set of derivation rules by which the effect of composing the
primitive concepts in the ways allowed by the composition rules may be
determined -- these rules allow the derivation of the overall properties
of a model itself.

As one example of a modelling formalism, consider a traditional,

sequential programming language. The base vocabulary consists of the
concepts of variables, constants, data types, operations, assignment,
etc. ~-- the base vocabulary is roughly related to the lexicographic,
micro syntax of the language. The composition rules are closely
related to, but not identical with, the Tanguage's syntax; they include
the rules by which execution flow may be controlled, structures of data
may be composed, elements may be selected from data structures, etc.
Finally, the derivation rules are related to, but again not identical
with, the language's semantics. Very roughly, they allow one to deter-
mine the effect of the model in terms of the changes in the values of
variables over time.

As indicated, the concepts of base vocabulary, composition rules
and derivation rules are akin to, but distinct from, the seemingly simi-
lar concepts of lexicographic, syntactic and semantic rules for a lan-
guage. The distinction is that the modelling concepts relate to the
approach that is used to capture the system being modelled whereas the
related language concepts pertain to the statement of the model in some
well-defined description technique. We are thus making a distinction
between the "world view" which is captured in the modelling formalism
and a description technique which provides one way (probably of many)
to state models using this "world view."

To clarify this distinction, consider a Newtonian formalism for
modelling a gas. This formalism has a base vocabulary consisting of
the concepts of moving and stationary objects, composition rules govern-
ing the containment of a collection of moving objects within an organ-
ized and structured collection of stationary objects, and derivation
rules provided by the principles of Newtonian motion and two-body
interaction. This modelling formalism is quite distinct from the many
"Tanguages” which may be used to represent models in the formalism,
languages which range from English to graphical techniques to mathemat-
ical formalisms.

In the remainder of this paper, we use the term modelling technique

when referring to a language by which models may be represented using
some modelling formalism. We emphasize that there are many modelling

techniques corresponding to a particular modelling formalism, just as
there are many algolic languages.

The composition and derivation rules provide the opportunity to
check the validity of a model. The validity of the model's "form" may
be checked by assessing its adherence to the composition rules -- alter-
natively, anything constructed using solely the composition rules is a
Tegally formed model. Considering programming languages, an example of
this type of check is assuring that the type restrictions upon opera-
tions and assignment are not violated. The derivation rules permit a
different type of check, namely one that relates to aspects concerning
the effect of the model. An example from the domain of programming lan-
guages is the check that subscript selection values are within range.
While the distinction between violations of the composition rules and
violations of the derivation rules is not precise, the major difference
is that the composition rules relate to static properties while the deri-
vation rules relate to dynamic properties.

While the composition and derivation rules allow the determination
of the validity of the model with respect to the rules fof the proper
formation of models, they do not, by themselves, allow one to assess the
correctness of the model as a representation of the modelled system.

For this purpose, it is necessary to have an interpretation which relates

the characteristics of the model to those of the modelled system. It is
through the interpretation that a model has meaning with respect to the
system being modelled, and it provides a "window" into the model that
relates some of the characteristics of the model to some of the charac-
teristics of the modelled system. The interpretation is therefore deter-
mined by three things: the modelling formalism, the modelled system and
the characteristics of the modelled system which are of interest.

It is common to use a higher-level modelling formalism to represent
the system characteristics which are of interest, in which case the
interpretation may be captured as a mapping between models, relating the
characteristics of the lower-level model to those of the higher-level
model, and thus the modelled system. In terms of the previous program-
ming language example, the higher-level modelling formalism could be
that for which the lTanguage of predicate calculus may be used as the
modelling technique. In this case, the interpretation consists of the

rules of verification condition generation which allow a model in the
higher-level domain to be extracted from one in the lower-level domain.
For the previous non-software example, a higher-level modelling formal-
ism for gases is provided by thermodynamics and the interpretation is
provided by statistical mechanics.

When an interpretation is captured as a mapping between modelling
formalisms, the role of the interpretation, namely to allow the verifi-
cation of the correctness of the model with respect to the characteris-
tics of the modelled system, is achieved in a two-step process. First,
the formally defined interpretation rules are used to transform the
model from the lower-Tevel formalism to the higher-Tevel formalism, thus
inferring the modelled system's characteristics as they are represented
by the model. Then the composition and derivation rules of the higher-
Tevel formalism are used to check the validity of the higher-level model.
Thus the question of correctness of the model is reduced to the question
of the validity of another model.

Types of Existing Design Modelling Formalisms and Techniques

Using these concepts, it is possible to categorize existing modelling
formalisms and techniques and comment on some of their differences and
similarities. In this section, we form a rough categorization of some
existing approaches to software design modelling to illustrate some of
the possibilities which have been tried. We then focus upon one category,
procedural modelling formalisms, and subdivide it so as to be able to
make some observations about various techniques that have been used.

Our observations concerning the various techniques appear in the next
section.

A dichotomy of existing software design modelling formalisms can
be made on the basis of the formalism's basic vocabulary. One broad
category of formalisms, called event-based formalisms, relies upon the
idea of significant events which occur during system operation and the
use of sequences of events to relate system behavior. These formalisms
are reviewed elsewhere [ShaA79].

tional formalisms, uses the concepts of data processing and storage

components and control and accessing relationships among them. These
formalisms are quite natural for the modelling of software systems as
they use concepts similar to well-defined ones from the implementation
phase -- in some instances the techniques have been obtained by the
generalization of programming languages.

This category may be refined by considering the primitive concepts
used to denote the coupling among the entities in the system. One set
of formalisms, which can be called relational formalisms, uses the formal

notion of a relation to describe the data usage, data organization and
control interactions among the components of a system. Some of these
formalisms (e.g., ISDOS [TeiD77], SREM [DarC77]) were developed for

use during the specification phase of software development. But they
allow the system's modularity and interactions to be exposed and so are
equally useful during the design phase. Others (e.g., TELL [HebP79],

MIL [Dref76]) were developed expressly for the purposes of design. Regard-
less of their genesis, these techniques all require that the inter-rela-
tionships among the entities in the system be modelled by the use of
(predefined or user-defined) relations such as "contains", "uses", "acti-
vates", "causes", etc.

A second subcategory, called functional formalisms, relies upon the

concept of function composition in order to denote coupling. Entities
are considered to be represented by functions and system modularity,

both of a physical and logical nature, is represented by the composition
of these functions. Some techniques falling in this subcategory are
described in [SmoS79], [TonA77], and [ZavP79]; most of them are based
upon the same general principles as those underlying the Lisp programming
language.

The third, and last, major subcategory, called procedural formal-

isms, is similar to the second but utilizes the concept of procedure
activation to reflect component interactions, and hence coupling. These
are perhaps the most natural for use by designers who are experienced
programmers. Techniques falling in this category are currently the most
numercus and are the ones of interest in the remainder of this paper.

One major class of techniques useful for this formalism subcategory

are oriented towards the modelling of sequential programs. Some of
these are notations which may be used to highlight the control flow
(e.g., PDL [CaiS75]) or the data flow (e.g., HIPO [KatH76]) through the
system. These generally consist of a small "programming" Tanguage which
retains the pertinent constructs from traditional sequential programming
languages but allows the designer to express processing details in
English.

Other techniques falling in this class are based on the concept of
data abstraction. These force the designer to structure the model into
collections of procedures which serve, as unit, to define an abstract
data type in terms of the operations that can be performed upon it and
the effect of theseé operations both in isolation and in conjunction with
each other. Many of these techniques (e.g., CLU[LisB77], Alphard
[WuTW75]) have been developed as extensions to traditional programming
Tanguages, but have resulted in the elevation of these languages to
the realm of design because they allow the focus of attention to be
directed toward the interactions between modules and away from process-
ing details.

The third set of techniques within this class are closely related
to the second as they, too, rely upon the notion of data abstraction.
But these also include the concept of the state of the system's compo-
nents. This additional concept makes these techniques less like program-
ming Tanguages and more clearly modelling languages. Some of these
(e.g., Parnas' method [ParD72], HDM [RobL75]) recounize a dichotomy of
procedures into those which change the state of objects and those which
merely inspect the state of objects ~- these are quite similar to tradi-
tional programming languages. Others (e.g., TOPD [HenP75] and STESD
[BakT78] incorporate the additional notation of state transitions in
order to allow the direct description of pre-conditions and post-condi-

tions upon procedure invocation and the effect of procedure invocation
itself.

The other major class of techniques falling within the procedural
modelling formalism subcategory are those which are oriented toward the
description of concurrent systems. This orientation requires that

the techniques provide for the description of synchronization among

asynchronous components as well as the sharing of data repositor-

ies. (Provision of constructs for the modelling of shared data is
theoretically not necessary as it can usually be modelled by use of the
synchronization interaction constructs; but less obscure models gener-
ally result from the inclusion of constructs specific to shared data.)
The basic vocabulary of these techniques (e.g., DREAM [RidW787, SARA
[AmbA77] and Gypsy [Caml78]) generally include the concepts of processes
and monitors, or concepts very similar. The most popular means of
describing synchronization interactions is by message communication and
this is a primitive concept in most techniques. Some include the con-
cept of collections of processes so that entities which are capable of
internal parallelism may be directly represented.

It is interesting to note that, until recently, these techniques
where clearly for the purposes of modelling as they used a synchroniza-
tion mechanism, namely message transmission, which was sometimes ineffi-
cient for use in the actual system. But, recent proposals ([AndG79],
[BriP78], [Feldnd], [HoaC787) for concurrent programming Tanguages
useful in the domain of distributed systems have used many of the same
notions and thus it is no longer as clear where modelling stops and
programming begins. '

Some Observations Concerning Procedural Modelling
Formalisms and Techniques

Having categorized various formalisms for software design modelling
and very roughly classified some techniques in terms of the basic vocab-
ularies of the procedural modelling formalisms upon which the techniques
are based, we turn to some observations concerning the nature of proce-
dural modelling techniques.

The first is that what is good for modelling is not necessarily
good for programming. Given recent developments in programming langua-
ges, it is perhaps more accurate to say that what is good for modelling
may be good for programming but that usefulness for programming is not
an important goal when developing a modelling technique. Instead,
there are two more important goals which are often in conflict with
those goals present during the development of programming techniques.

-10-

One of these goals is that the models be projective representations

of the modelled system. A basic attribute of a model is that it is
abstract, meaning that it suppresses some detail in order to high-
1ight other detail. Thus, it is important that a modelling technique
utiltize a set of primitive concepts that allows the succinct and natu-
ral expression of the details which are to be highlighted and the sup-
pression of unnecessary details. As an example, non-determinism is an
important concept in the modelling of software systems, but is gener-
ally held to be an anathema with respect to programming techniques.

Another goal is that the modelling technique permit descriptions
which are non-prescriptive with respect to the details of the modelled
system. This is generally hard to achieve for procedural modelling
techniques, because many of the basic concepts have strong connota-
tions in the realm of programming. Take, for example, the use of
message transmission to represent synchronization within concurrent
systems. The recent proposals for distributed system programming lan-
guages indicate that this synchronization mechanism is one which can
plausibly and profitably be used in the actual system implementation.
But it may also be used to represent synchronization which is perhaps
more effectively accemplished, during implementation, by other mécha-
nisms such as semaphores.

Because of the fact that there are differing goals for modeliling
and programming, the use of concepts and constructs in a modelling
technique which are similar or identical to those found in programming
languages results in a confusing similarity between the model and the
system it models. This confusion is, however, in the eye of the
beholder and can generally be clarified by consideration of the differ-
ing aims of modelling and programming. On the other hand, the confu-
sion can be capitalized upaon, as done in HDM and, to some extent, in
Gypsy so that the act of model construction results in the development
of control algorithms to be used, verbatim, in the eventual system.

Another observation is that there is a difference between the
organization of the model's description and the organization of the
model (and the modelled system) itself. Algolic languages suffered
from the lack of this distinction with respect to variable accessibility
and hierarchical organization of program text using begin...end blocks.

17 -

Recently, languages (such as Mesa [GesC777) have been developed in
which the hierarchical structure of the text implies nothing about the
accessibility of the variables declared at various levels of the hier-
archy.

The goal in developing a modelling technique for use during soft-
ware design should be to allow hierarchically organized descriptions
that can be easily prepared incrementally. The hierarchical structure
of the textual description tends to foster an approach to design which
relies upon the gradual evolution of the model. The abitity to incre-
mentally develop the text supports the general, and natural, tendency
to "jump around" the system during design. Taken together, the result
is the ability to prepare an organized description as a result of a
somewhat disorganized process.

For procedural modelling formalisms, however, there seems to be
general agreement that the technique, and the formalism which it repre-
sents, should permit the development of hierarchical models. In some
cases, for example HIPO , there is the restriction that the model
hierarchy coincide with the hierarchical structure of the text of the
model description. 1In most cases, however, there is some provision
for organizing the model itself differently from the organization of
the model's textual description. There is also general agreement
that the organization of the model should coincide with the organiza-
tion of the modelled system -- whicﬁ is reasonable given that the intent
is to capture the modularity of the system.

A final set of goals that can be extracted from considering exist-
ing software modelling techniques concern the ability to perform assess-
ment during design. First, the modelling technique should be based upon
a well-defined, unambiguous underlying formalism so that the rules for
composition, derivation and interpretation are well formulated. For
procedural modelling techniques, this is relatively easily achieved
because of the similarity to programming Tanquages and thus the ability
to utilize simulation and analytic techniques already developed for the
validation and verification of programs. But other underlying formal-
isms exist and have been used in some techniques, for example SARA
and DREAM.

Another goal related to the ability to perform analysis is that

] -

the procedural modelling technique should be closely related to some
higher-level modelling technique so that questions concerning the
correctness of the model can be handled by "reducing" them to questions
concerning the validity of a higher-level model obtained algorithmically
from the model expressed in the procedural technique. Most of the pro-
cedural modelling techniques cited above are related to higher-level,
usually event-based, formalisms.

Models, Tools and Methods

Modelling formalisms and their associated representational tech-
niques form a basis for a variety of software design tools:

® bookkeeping tools provide aid in preparing, augmenting and
modifying a model's description,

€ supervisory tools enforce design methods, principles and
guidelines which are deemed beneficial,

® management tools allow the assessment of the extent of pYro-
gress and the determination of how best to allocate design
team efforts so as to speed progress,

® decision-making tools help designers determine the validity
and reasonableness of design decisions as well as identify,
and rank order, decisions yet to be made.

In addition to their purpose, tools may vary according to the extent
to which they incorporate knowledge about the details of the modelling
technique and the modelling formalism upon which they are based. A text
manipulation bookkeeping tool, for example, may be independent of the
modelling technique and formalism and view descriptions solely as unstruc-
tured sequences of characters; or the tool could be highly dependent on
the technique and formalism and utilize knowledge of the organization of
models and their descriptions to guide or monitor the text manipulations.
Note, however, that some toels cannot be defined independenhtly of the
modelling technique and formalism - the above 1ist of tool types is
arranged in terms of increasing dependence of the tools upon the model-
1ing techniques and formalism.

Variance among tools may also stem from the design method, i.e.,

the approach used to elaborate a model's textual description. Supervisory

-13-

tools generally, as a class, exhibit a high degree of dependence upon

the design method as they typically are the embodiment of the method.

But a supervisory tool which enforces the information hiding design prin-
ciple [ParD71] is totally independent of the design method. Similar
variance may be found in the other tool classes defined above.

Finally, there is a variance among tools stemming from the design
methodology, or approach to model construction, which they reflect. The
"rules" which constitute the methodology, such as "check the validity of
each model elaboration before proceeding to the next elaboration,” not
only place specific capability requirements upon the tools but also gen-
erally require that there be certain interrelationships among these capa-
bilities.

Tool Integration

Collections of tools may be characterized according to the breadth
of their collective coverage of the spectrum of functional capabilities
and the extent to which they are collectively dependent upon a particu-
lar modelling formalism, modelling technique, design methdd, or desiagn
methodology. Before assessing the effectiveness of the procedural model-
Ting formalism for allowing the development of a highly integrated and
effective collection of design tools, we demarcate two major categories
of tool collections and comment on the quality of the aid which can be
delivered by collections in these categories.

In the toolbox category, major emphasis is placed on achieving a
breadth of functional capabilities which Tittle or no dependence upon
any particular approach to modelling or to design. Collections in
this category are akin to operating systems in that they are able to
support a variety of languages, and therefore modelling techniques
and formalisms, and place very few restrictions upon the sequence in
which the various tools may be used.

In the other broad category of tool collections, called support
systems, there is a high degree of dependence of the tools upon a spe-
cific approach to modelling or design, or both. In this type of collec~
tion, one particular language is emphasized, namely the language of the

-14-

modelling technique. If the support system is additionally dependent
upon a particular design method or methodology, there are also restric-
tions upon the manner in which the tools may be used either in isola-
tion or in tandem.

These categories are not exhaustive of the possibilities. Rather,
they are at the end-points of a spectrum defined by the degree of rela-
tionship between the tools in the collection and the modelling or
design approach being supported.

Toolboxes are retatively more easy to prepare because of the high
degree of independence of the tools; because the tools are not oriented
toward any particular modelling or design approach, each may be a "stand
alone" module. This allows the toolbox to be organized relatively
loosely and means that the command language which allows the user to
activate the individual tools may be relatively simple.

Support systems, on the other hand, are harder to prepare because
of the need to account for the modelling or design approach in both the
system's organization and its command language. The payoff for this
increase in effort is higher quality help to the users. While tool-
boxes can be utilized according to some modelling or design approach
which the users impose upon themselves, in a support system there can
be tools specific to the modelling or design approach being used and
these can provide effective help more directly related to the tasks
being performed.

The point is that while the restrictions which are part of a partic-
ular modelling formalism or design methodology complicate the task of
developing a support system, they also facilitate the preparation of a
design and thus the Tevel of aid provided by the collection of tools.

Conclusion

We have discussed the strong relationship between software design
and software modelling, developed a framework for discussing alternative
software design modelling formalisms and techniques, used the framework
to roughly categorize existing software design modelling formalisms and
techniques, and made some general observations about the nature of one

-15-

particular modelling formalism, the procedural modelling formalism.
We then turned to the issue of providing an integrated collection of
software development tools, noting the dependencies of the tools upon
both the modelling formalism and the design methodology and arguing
that higher quality help can be provided, at the cost of additional
effort, by a support system where the orientation of the collection
of tools is toward a particular modelling formalism or design method-
ology. The question addressed in this final section is: What model-
Ting formalism is best to adopt as the basis for a software design
support system?

The answer is that, at this point, the procedural modelling for-
malism seems best suited to providing high quality support systems.
The major reason is that more techniques upon which to base tools are
available because of the similarity of procedural modelling formalisms
to programming formalisms. This does not necessarily hold with respect
to bookkeeping tools because of the relative independence of this type
of tool from the underlying formalism even in the case of support sys-
tems. But for supervisory tools, the extensive body of knowledge con-
cerning the rules by which clear, succinct, modifiable descriptions
should be evolved can be utilized directly in controlling the prepara-
tion of procedurally-defined design‘mode1s. And in the realm of deci-
sion-making and management tools, both analytic and simulation techniques
which have been developed for the assessment of programs may be used for
the assessment of designs. For none of the other formalisms discussed
here are both the rules governing good structure of a model or its
description and the techniques for assessment as extensively developed.

A second reason is that the procedural formalism provides a set of
primitive concepts which are quite natural for describing system modu-
Tarity and module interactions.

It also appears that this conclusion is not just an artifact of
the current state of the art. Because the procedural formalism has a
direct and obvious relationship to detailed, program-level description
formalisms and there are well-defined techniques for interpreting pro-
cedural models in terms of characteristics of interest, these formalisms
appear best suited for use in stating descriptions which fall "mid-way"

-16-

between user-oriented specifications and machine-oriented programs.
The other formalisms discussed here perhaps admit more easy interpre-
tation but are "farther away" from the realm of programming and thus
not as easily related, algorithmically or non-algorithmically, to the
eventual program which is the product of design.

We venture the summary conclusion, therefore, that the procedural
modelling formalism is, and will continue to be, the most adequate
basis for effective design support systems.

Acknowledgements

Many "audiences" have been subjected to somewhat rambling discour-
ses while I was formulating and honing the ideas presented here, and I
am appreciative of their patience and help. 1 would Tike to acknowledge
the particularly beneficial comments by Jack Wileden and the students in
my graduate-level software design workshop course.

-17-

References

AmbA77

AndG79

Bakd78

BriP78

CaiS75

CamlI78

Dav(C77

DReF76

Feldnd

GesC77

HebP79

HenP75h

Hor(78

Ambler, A.L. Good, D.I., Browne, J.C., Burger, W.F., Cohen,
R.M., Hoch, C.G., and Wells, R.E. Gypsy: A language for
specification and implementation verifiable programs.
Software Engineering Notes, 2, 2 (March 1977), 1-10.

Andrews, G. Synchronizing resources. Dept. of Comp. Sci.,
Cornell Univ., February 1979.

Baker, J.W., Chester, D., and Yeh, R.T. Software develop-
ment by step-wise, evaluation and refinement. SDBEG-2,
Software and Data Base Engineering Group, Dept. of Comp.
Sci., Univ. of Texas, Austin, January 1978.

Brinch Hansen, P. Distributed processes: A concurrent
programming concept. Comm. ACM, 21, 11 (November 1978),

938-947.

Caine, S.H., and Gordon, E.K. PDL - A tool for software
design. Proc. 1975 National Computer Conf., June 1975,
pp. 271-276.

Campos, I., and Estrin, G. SARA aided design of software
for concurrent systems. Proc. 1978 National Computer Conf.,
Anaheim, Calif., June 1978, pp. 325-336.

Davis, C.G., and Vick, C.R. The software development system.
IEEE Trans. on Software Engineering, SE-3, 1 (January 1977),
69-84.

DeRemer, F., and Kron, H. Programming-in-the-Targe versus
programming-in-the-small. IEFE Trans. on Software Engineer-
ing, SE-2, 2 (June 1976), 80-86.

Feldman, J. A programming methodology for distributed
computing (among other things). TR9, Computer Sci. Dept.,
Univ. of Rochester, n.d.

Geschke, C.M., Morris Jr., J.H. and Satterwaite, E.H.
Early experience with Mesa. Comm. ACM, 20, 8 (August 1977),
540-553.

Hebalker, P.G. and Zilles, S.N. TELL - A system for graphi-
cally representing software design, Proc. Compcon Conf.,
San Francisco, 1979.

Henderson, P., Snowdon, R.A., Gorrie, J.D. and King, I.I.
The TOPD System. Tech Report 77, Computing Laboratory,
Univ. of Newcastle upon Tyne, England, September 1975.

Hoare, C.A.R. Communicating sequential processes. Comm. ACM,

21, 8 (August 1978), 666-677. LU

KatH76
LisB77

ParD72

ParD71

RidW78

RoblL75

ShaA79

SmoS79_

TeiD77

WulW75

YonA77

ZavP79

-18-

Katzen, H. Systems Design and Documentation: An Introduc-
tion to the HIPO Method. Van Nostrand Reinhold, New York,
1976.

Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C.
Abstraction mechanisms in CLU. Comm. ACM, 20, 8 (August
1977), 564-576.

Parnes, D.L. A technique for software module specification
with examples. Comm. ACM, 15, 5 (May 1972), 330-336.

Parnas, D.L. Information distribution aspects of design
methodology. Proc. IFIP Congress 71, Ljubljana, August
1971, pp. TA3/26-TA3/30.

Riddle, W.E., Wileden, J.C., Sayler, J.H., Segal, A.R.,
and Stavely, A.M. Behavior modelling during software
design. IEEE Trans. on Software Engineering, SE-4 4 (July
1978), 283-292.

Robinson, L., Levitt, K., Neumann, P., and Saxena, A.

A formal methodology for the design of operating systems
software. In Yeh, R.T. (ed.) Current Trends in Programming
Methodology, Vol. I, Prentice-Hall Inc., Englewood CTiffs,
N.d., 1977.

Shaw, A. Expression-based approaches to software description.
Appears 1in this volume.

Smoliar, §. Using applicative techniques to design distri-
buted 'systems. Proc. Specification of Reliable Software
Conf., Boston, April 1979.

Teichroew, D., and Hershey, E.A. PSL/PSA: A computer-aided
technique for structured documentation and analysis of
information processing systems. IEFE Trans. on Software
Engineering, SE-3, 1 (January 1977), 41-48.

Wulf, W.A., London, R.L., Shaw, M. Abstraction and verifi-
cation in Alphard. In Schuman, S.A. (ed.), New Directions
in Algorithmic Languages, IRIA (1975).

Yonezawa, A. Specification and verification techniques for
parallel programs based on message passing semantics.
MIT/LCS/TR-91, Lab. for Computer Sci., Mass. Inst. of Tech.,
Cambridge, December 1977.

Zave, P. Functional specification of asynchronous processes
and its application to the early phases of system develop-
ment. Dept. of Comp. Sci., Univ. of Maryland, March 1979.

