Developing Modular Software for Unconstrained Optimization

Robert. B. Schnabel

CU-CS-148-79 January 1979

I
bqéﬁUniversity of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

DEVELOPING MODULAR
SOFTWARE FOR UNCONSTRAINED
OPTIMIZATION

Robert B. Schnabel
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado U.S.A.

Abstract. In this paper we support the use of modular software
in constructing medium to large size numerical algorithms or
systems of algorithms. First we discuss the advantages of mod-
ular numerical software, which include ease of development, test-
ing, use and modification. Then we suggest a way of progressing
from the initial high-level design of the modular system to the
computer code through a series of descriptions which also serve
as an important aid to understanding the system. As an example
we use our recently developed system of quasi-Newton algorithms
for unconstrained optimization. Our final pre-code description
stage causes us to be interested in programming languages which
allow user specification and efficient execution of basic data
operations.

1. INTRODUCTION

This paper discusses the modular development of a system of algorithms for uncon-
strained optimization written recently by the author as part of a forthcoming book
by Dennis and Schnabel [2]. The purpose of the paper, however, is not to talk
about this specific numerical application, but rather about the issue of modular
development of numerical software, its advantages, and some interesting considera-
tions which arise when developing modular numerical software. The issues we dis-
cuss have been recognized and discussed by computer scientists and numerical ana-
lysts in the last ten years, but the application of these ideas to numerical soft-
ware is still rather Timited, and we hope to add a little impetus.

The activity we discuss, modular development of numerical software, precedes the
performance evaluation of numerical software which is the topic of these Proceed-
ings. However, we will point out that two important advantages of modular develop-
ment are that it greatly facilitates controlled testing, and that it leads natu-
rally to good documentation. Thus modular development enhances performance eval-
uation although its advantages are not limited to this.

Our paper is divided into two sections. In the first (Section 2) we describe what
we mean by a modular system of algorithms, and discuss the important advantages of
modular development. As an example we use the system of quasi-Newton algorithms
developed by the author for the unconstrained minimization problem

min f: R" » R

X € R") (1.1
in the case when f is assumed twice continuously differentiable. However, it is
important to realize that most of our discussion applies equally well to most

other complex numerical problems, especially to other iterative alaorithms such as
0. D. E. solvers. In Section 3 we discuss the communication (to implementors and

-l

users) and computer implementation of a modular system, again using our system as

an example. There are interesting questions concerning how to describe a modular

system so that others can understand, code, use or modify it. We propose develop-
ing a description at two Tevels, a system description and an algorithmic descrip-

tion, before generating the actual code. Our algorithmic description leads us to

be interested in facilities for defining primitive data operations, which are now

available in a number of research computer languages but not yet in any production
tanguage.

2. DESCRIPTION AND ADVANTAGES OF THE MODULAR SYSTEM

In this section we describe the structure of our modular system for unconstrained
optimization, and use it to illustrate the advantages of modular numerical soft-
ware in general.

To discuss our modular system, one needs to know just a little bit about algorithms
for problem (1.1). A user employing software to solve a particular unconstrained
optimization problem will supply the function f, a starting point Xo» and various

tolerances. OQur system is concerned with the common case when f is also twice
continuously differentiable, although the user may or may not be able to supply

vf or v2f. (For simplification in this paper only, we assume vf is available.)
The type of algorithm favored for such a problem is a "quasi-Newton" algorithm,
which we view as having the following form. (For background on quasi-Newton meth-
ods, see Dennis and Moré [1].)

Algorithm 2.1 -- Quasi-Newton framework for unconstrained optimization

I. Initialization
II. TIteration
given: X; € Rn, vf(xi), sz(xi) or an approximation to it

find: X341 eR" a better approximation to the minimum
1. Calculate "Newton-ish step" Pp
using an appropriate local model of f(x)
Using Py calculate Xi 41 ("Global strategy")

Decide whether to Stop; if not

Calculate or approximate vzf(xi+1)

The structure of Algorithm 2.1 is all we wished to say about unconstrained optimi-
zation algorithms themselves -- just the fact that the algorithms have an initial-
ization step followed by an iterative step with four distinct parts. But we should
mention immediately that some researchers in unconstrained optimization take issue
with our type of description, because they feel the pieces within the iteration
cannot be completely separated. Their beliefs preclude a modular system. However,
if one accepts the above (or any similar structure) a modular system follows eas-
ily. We give a diagram of our entire system of algorithms for the iteration step
below.

R

Fig. 2.2 -- Modular iteration for unconstrained optimization

Newton step Global step Stop? Calculate or approximate vzf
_or or or or or Q
LIN lopT | \OpTl Vopt | UNC USER} | FINJ | FIN V| SEC| |{SEC
ALG "1 InT ! VINT) ! INT 8] OPT |—— 2 DIFF| |DIFF{} Ta 1b
"y V213 STOP vof] 2
} I I v
GLos| faLos LIN
DRIV} DRIV A%G
1 2

linear algebra v
optimization interface
global driver

global module

finite difference

secant method

¥ Y LIN ALG
;\\ // :}\\ OPT INT
__zfg” an GLOB DRIV
GLOB GLOBI |GLOB| |GLOB GLOB MOD
M M M
?D 8D gD MQD FIN DIFF
v

- SEC
v/ v v

|1 T B { N TR 1

The four sections in Figure 2.2 correspond to the four steps in Algorithm 2.1. The
solid boxes are modules. The Newton step and stopping criteria correspond to two
and one rather simple modules, respectively. The other two parts are more interesting,
and serve to illustrate some capabilities of modular numerical software. For the
global step our system provides three alternative strategies, as there is a real
difference of opinion in the field as to which is the best way to proceed. The
first two are "model trust region" strategies which are seen to be related because
they share a module. They each use a driver which does little more than call the
two modules (1 and 2, or 3 and 2, respectively) alternately until a satisfactory
next point is found. (The dashed "interface" box is explained at the end of this
section.) The third strategy is a line search. What is important to note is that
in a particular run of our system, a certain one of these three strategies would be
selected and used exclusively. However, a software system developed from our de-
scription could contain all three with the user choosing one at run time, or it
could contain just one of the three strategies if the implementor has a strong
personal preference. C
vzf” step are used a bit differently. The
choice of which to use depends on whether vzf is provided analytically, and if not,
on how expensive calculation of f and vf is. Therefore a system of algorithms
should contain all five; again, a particular run will choose just one.

The five alternative modules for the "

From this description, the advantages of modular development become evident. Ue
identify them in three categories:

a) Development: A modular structure allows naturally for top-down development,
that is, starting at the highest level and successively adding levels of detail.
This has become acknowledged by most computer scientists as the most effective man-
ner to develop code. In Section 3 we will see that another advantage of our manner
of top-down development is that it leads naturally to good documentation at any
early stage.

b) Testing and research: A modular system is generally preferred for testing or
verifying a large system, as it allows this to be done in manageable parts. It is
also excellent for research, because it provides a controlled environment for test-
ing alternative strategies. For example, in unconstrained optimization research one
often wants to compare a new global strategy (Step 2, Alg. 2.1) or a new derivative
approximation strategy (Step 4) to an existing one. If one changes only this por-
tion of a system like Fig. 2.2, the differences in performance are cliearly attrib-
utable to the new strategy. This is in sharp contrast to many test results reported

ks Sl

today, where the two strategies being compared are embedded in two different codes,
severely confusing the interpretation of the test results. (A common difference
between codes which is acknowledged to often hinder the drawing of conclusions from
test results is different stopping criteria.)

c) Software library: A modular system provides two additional advantages when
used as part of a software library. One is the convenient provision of alternative
capabilities or algorithms, as was discussed above. The second is that routines
for related problems may share many of the same modules. Indeed, this was a prime
motivation in our development of a modular system for unconstrained optimization.
We have concurrently developed a modular system for solving systems of nonlinear
equations,

given F: N R", find xe¢R" such that F(x) =0 (2.3)

which are also solved by a quasi-Newton algorithm with the same four-part iteration
as Alg. 2.1. It makes use of the ten modules indicated by checks (V) in Fig. 2.2,
including all the global modules which are the bulk of the system. Thus the devel-
opment of the second system is far less work than the first. This also explains

the purpose of the three interfaces in Fig. 2.2: while the systems for unconstrain-
ed optimization and nonlinear equations use the same global modules, they call these
modules with parameters particular to their application. The interfaces simply
give the correspondences of the calling sequences of the main programs to the
parameter sequences of the modules.

3. COMMUNICATION AND COMPUTER IMPLEMENTATION OF THE MODULAR SYSTEM

At this point one may be convinced of the advantages of a modular system, but wary
of the difficulty involved 1in transforming it into code, and in supplying documen-
tation which will make it reasonably easy for an outsider to use, and for a numer-
ical analyst to understand or modify. In this section we discuss the resolution of
these problems in a medium to large size numerical system such as ours. We show
that we are led rather naturally to two intermediate descriptive steps between the
modular diagram of Fig. 2.2 and the ultimate code: a "system description” and then
an "algorithmic description." The Tatter leads to an interesting consideration in
programming language design.

Perhaps the best way to start is to ask what our final optimization system corre-
sponding to Fig. 2.2 will consist of. The modules will probably each be subrou-
tines or procedures, each with certain specified input, output and global variables.
Note that the main driver (which along with the initialization module was omitted
from Fig. 2.2) is itself such a module, with its input and output going from and to
the user respectively. The interfaces will essentially disappear, having specified
calling sequences in the code. The documentation which will be required is: the
modular diagram Fig. 2.2 and guidelines on how to choose between its options, the
input requirements and guidelines on specifying the input, and perhaps guidelines
on interpreting the output. It is important to note that this is alZl the documen-
tation required.

The question remaining is how the modules are gotten to fit together. Toaccomplish
this easily is one reason why we suggest a system description as the next stage
after the modular diagram of Fig. 2.2. Two related reasons are that this is sensi-
ble top-down development, and that it leads to a very understandable high-level de-
scription of the system.

By a system description we mean a level of description specifying the purpose and
arguments of each piece of Fig. 2.2, and also describing how the entire system is
to be used. Ours consists of three parts: high level module descriptions, .inter-
faces and guidelines. Each module description at this Tevel is simply a list of
input, output and global variables used by the module, and a very brief statement
of its function. An example is the top third (down to "Qutput") of Fig. 3.1. Each
interface is just a list matching the parameter sequence of a module with the

-5~

calling sequence it will be invoked with. The guidelines are precisely those for
module selection, input and output mentioned above. Note that this amount of in-
formation completely specifies the linkage and use of our system. In addition, the
documentation has naturally been completed at an early stage of system development.

What remains is to specify the algorithm of each module. One could of course just
go and code each one. However, we believe a second intermediate stage is highly de-
sirable, both in the initial development, and so that afterwards people can learn
about the algorithms without having to go immediately to the code. Therefore we
have produced a description of the algorithm of each module before the actual code.
This level added to the system description forms our algorithmic description.

We have actually decided to describe the algorithm of each module in two stages.

The first is a rather brief (typically 5-10 line) description in prose or outline
form which relates the main points but not all the details of the algorithm. An ex-
ample is the "Description" in the middle of Fig. 3.1 But the most interesting part
is that then, rather than going directly to the code as would be expected, we have
specified each algorithm in complete detail in "PASCALish" code, the first few lines
of which for one module are shown below (under "Implementation"). We now discuss
the reasons for this.

Fig. 3.1 -- Description of global module 3

Global variables: DS - diagonal scaling matrix for x, (described in Guideline 2)

Input: neR, XE:Rn, ge:Rn, Tower triangular L(;Rnxn, pNs:Rn (where Py é-M']g,

MALLD), seR

Find: x+_eRn which approximates the solution to

min flx,) = £(x) + (x, = x)Tg + Fx, =) Mlx, - x)

subject to || Dg(x, -x)]| = s.

(by finding the x, which solves this problem among all points on the double
dogleg curve)

Qutput: X, aRn, 8§ eR.

Description: If || DSpN”2 $8, x, = x ¥ py (py 1s the Newton step to the minimum

of the quadratic model). Otherwise X, 1s chosen to be the (unique) point on the
double dogleg curve such that 1[DS(X+-X)H = §. The double dogleg curve consists
of the three Tine segments connecting x, x + pc, X + Py» X + npy> where x + Pe is
the Cauchy point, the minimum of the quadratic model in the Cauchy (steepest decent)
direction -Dgzg, and n < 1 (see Ch. 6).

Implementation:
Newtlen := HDSpNHZ;

if Newtlen < §

then begin (* x, is Newton point *)

+
Xp 1= X+ pys
§ := Newtlen
end
else begin (* Newton ftep4too long -- x,_ on dogleg curve *)
Il 0" gl v
.) 2 T, -2 2 T, -2 -2
p = - ; (* J|lL'D< “gl, © = g D “MD *)
I LTog™ %]l F (9" py) s ol s s 3

—6-

Our PASCALish code is algorithmically complete, and syntactically correct with three
exceptions:

a) mathematical variables (Greek, sub or superscripted) are allowed.
b) input and output statements are informally specified.
c) basic mathematical and linear algebra operations are allowed.

The big advantage of this description over actual code is that it is very readable
and understandable, whereas removing a or ¢ (and to a lesser extent b) renders it
much harder to understand. In addition, it is almost trivially translatable into
any programming language of interest. Our students have programmed much of the
system in FORTRAN and its dialects WATFOR and FLEX, as well as PASCAL, with great
ease; PL/1 and ALGOL would be equally easy. The reason PASCAL was chosen for the
descriptive language is that it is an algorithmic language designed for readability
and easy understanding. (PL/1 or ALGOL would also have been appropriate.) Our de-
scriptions do not make use of any features of PASCAL which are not readily convert-
ible into all languages of interest, including FORTRAN.

The PASCALish code completes the algorithmic description of our modular system.
However, there turns out to be an interesting consideration in programming language
design which arises in converting this description to code. Note that all that has
to be done is to translate the PASCAL statements to the corresponding statements in
another language if necessary, and eliminate exceptions a, b and ¢ above. Excep-
tions a and b are trivial to rectify (e.g., & probably becomes DELTA). Exception c
is also quite easy, but what we would really like is for ¢ to be allowed by the
programming language. This turns out to be an issue that is well recognized by re-
searchers in programming language design.

Notice that what we have done up to the algorithmic description level is form top-
down a modular system, underlying which are certain data types (integer, real,
vector, matrix) and a small number of basic data operations on these types. This
is shown in Figure 3.2.

Fig. 3.2 -- Overall structure of the software system

main driver

interfaces
sub-drivers

modules

data operations

data objects: .
] real numbers, vectors, matrices

In our whole system, the data operations turn out to be
0 T
L oy, max{o,8}, minfe,B}, v ¢ [a,8], v w, Ivilos AsBy Ay
i=1

where a, 8, YeR, v, WEZRn, A, B e RN The two-part hierarchy of Fig. 3.2 (al-
gorithms and data) has become recognized as the form which arises from developing

almost any medium or large system (in non-numeric systems the underlying data types
and operations are often far more complex than in numeric systems), and there are

Y B

starting to be ways to actually write the system so that the underlying data opera-
tions can be primitives in the code which are also efficiently executed.

Of course the data operations can simply be made procedures, which is what has usu-
ally been done in coding our system. While this is a convenient solution, it is
less efficient than we would like due to the cost of procedure Tinkage. A more ef-
ficient solution is the use of a macro-generator, which allows one to specify sim-
ple procedures which are then compiled and executed as in-line code with the proper
parameter substitution. This permits the basic data operations to be executed ef-
ficiently. (For an example, see Myers [4].) Perhaps better still, there are sev-
eral research programming languages which not only enable the expression and effi-
cient use of basic data operations, but also are oriented to supporting a system
with the formof Fig. 3.2. These include SIMULA, MODULA and EUCLID; for a good ref-
erence to the work in this field, including references to all of these languages,
see Goos and Kastens [3]. Since it is clear that most numerical algorithms or sys-
tems of algorithms, if they are developed modularly, will take a form similar to
Fig. 3.2, we believe that the numerical software community should be interested in
programming languages which allow the specification and use of basic data opera-
tions, and perhaps which are also oriented to supporting such modular systems.

Acknowledgement

My thanks to P. Zeiger (Dept. of Computer Science, University of Colorado at
Boulder) for first pointing out the basic data operations issue in my algorithmic
descriptions, and to L. Osterweil (same department) and W. Waite (Dept. of Electri-
cal Engineering, University of Colorado at Boulder) for informing me about some of
the work in this area. ‘

Boulder, Colorado January, 1979
References

[1] J. E. Dennis and J. J. Moré, "Quasi-Newton methods, motivation and theory",
SIAM Review 19 (1977) 46-89.

[2] J. E. Dennis and R. B. Schnabel, “Quasi-Newtoh methods for nonlinear problems",
manuscript in preparation.

[3] G. Goos and U. Kastens, "Programming languages and the design of modular pro-
grams", in: P. G. Hubbard, S. A. Schuman eds., Constructing Quality Software,
Proceedings of the IFIP TC2 working conference on constructing quality soft-
ware (North-Holland, Amsterdam, 1978).

[4] E. Myers, "The BIGMAC user's manual", report no. CU-CS-145-78, Department of
Computer Science, University of Colorado, Boulder, Colorado (1978).

