ABSTRACT MONITOR TYPES

by

William E. Riddle
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

CS-CU-143-78 October, 1978

This work was supported by a grant from Sycor, Inc.

Abstract

A technique 1is presented for the description of data repository
modules which are shared among a community of concurrent, asynchronous
processing modules. The technique is designed to be of use in prepar-
ing models of a software system during the architectural phase of its
development, when modules, module interfaces and module interactions
are being defined. The rigor and precision of descriptions using the
technique offers the opportunity to perform analysis during design and
several approaches to analysis afforded by the technique are discussed.

I. Introduction

Several systems have been proposed as vehicles for the delivery
of computerized support to software system developers ([AmbA77],
[BakJ78], [Caml78], [DavC77], [EstG78a], [EstG78b], [GooD77], [HenP75b],
[MorM77], [PeaD73], [RidW78d], [RobL75], [TeiD77], [VHoE78]). Though
diverse, these systems share two characteristics. First, each provides
a software system description language by which models may be prepared
which reflect the system under development to an almost arbitrary level
of detail. Thus, these support systems foster a modelling approach to
development in which the system description gradually evolves as a
series of abstract models. Second, the systems provide tools for
analyzing models at any point during development. Thus, they allow the
integration of analysis and synthesis so that system developers may
incrementally develop confidence in a system's appropriateness in
parallel with incrementally developing the system itself.

For our own software development support system, called the Design
Realization, Evaluation And Modelling (DREAM) system [RidW78d], we have
focused upon the architectural design phase of software development.
This is that phase which follows the definition of a system's functional
performance and economic requirements and precedes the development of the
detailed data organizations and processing algorithms to be used in the
system. The task during this phase is to specify both a system's gross
organization, usually as a hierarchy of subsystems, and a system's over-
all behavior, usually in terms of the user-perceivable attributes used
to express the system's requirements. Descriptions prepared during
this phase therefore demarcate modules and indicate their hierarchical
organization, their interfaces and their interactions.

In developing the DREAM system we have also focused upon the de-
sign of concurrent software systems, that is, those which may be per-
ceived as having components which operate asynchronously and in parallel,
even if the eventual system executes in a uniprocessor environment. Not
only is the design of this class of software systems notoriously diffi-
cult, but viewing a system as decomposible into parallel parts greatly
facilitates a "divide-and-conquer" approach to its development.

To allow the specification of models of concurrent software

systems during the architectural design phase of their development, the
description language provided by DREAM, called the DREAM Design Notation
(DDN), provides three major sets of description constructs. The first
of these allows the non-procedural specification of a system's intended
behavior and, thus, the expression of the system's requirements in terms
that relate to the system's evolving design. These constructs are intro-
duced in [RidW78c] and discussed in depth in [Wi1J78]. The second set
of constructs provide for the description of collections of sequential
processes (these collections are called subsystems in the nomenclature
of DDN) which reflect the system's processing strategies and which are
perceived as coordinating each other's operation by the interchange of
messages. These constructs are also introduced in [RidW78c] and are
described in greater detail in [RidW77] and [RidW78b]. The final set of
constructs provided in DDN allows the specification of repositories of
data which are shared among subsystems and which are therefore subjected
to a stream of parallel, and potentially conflicting, demands. These
constructs are the subject of this paper.

In the following sections we introduce the data repository de-
scription facilities of DDN by a series of examples and indicate the
ways in which we have amalgamated and extended the concepts of abstract
data types [LisB78] and monitors ([HoaC74], [Howd76]) in order to pro-
vide a practical technique for modelling shared data repositories. We
also discuss the approaches to analysis admitted by these DDN descrip-
tion constructs. In the conclusion, we give a brief discussion of the
relationship of our work to the work of others and summarize our own
assessment of our work.

IT. Basic Description Constructs

A model of a data repository module may be constructed with re-
spect to either of two different perceptions of the module's participa-
tion in the overall functioning of the system. First, there is the
external view, appropriate when defining the support the module lends to
other modules, which leads to a definition of the repository's perceiv-
able behavior, generally in terms of its responses to external stimuli.
The alternative, internal view is appropriate when defining the re-
pository's manner of operation and involves the definition of the

control algorithms used in the creation of the observable behavior.

In this section we ignore the fact that a data repository may re-
side within a community of concurrent subsystems. The focus is therefore
upon those constructs available in DDN for preparing external and in-
ternal descriptions of those aspects of data repositories which do not
pertain to the synchronization needed to handle multiple, overlapping
external stimuli. These DDN constructs are in essense those developed
for the Tools for Program Development (TOPD) system [HenP75b].

IT.1. External Descriptions when Concurrency is not Considered

Data repository components are described generically, using the
currently popular notion of class that was first introduced in the
Simula language [Dah066]. 1In Figure 1, a class, called [datun], of
monitor-type objects is defined using the syntax of the DDN Tanguage.
An object belonging to a class, also called an instance of the class,
may be declared and named using the declaration phrase:

sx OF [y]

which associates the name x with an object which is an instance of the
class [y]. Note that an identifier is always enclosed in [...] when
used to name a class.

Attributes and characteristics of the objects belonging to a
class are defined by additional description fragments (called textual
units) embedded within the textual unit defining the class. An ex-
ample is given in Figure 2 where the embedded textual units define
operations which may be invoked upon instances of class [datum]. A1l
textual units have a header with a keyword indicating the type of the
textual unit and a trailer which marks the end of the unit. Nesting of

1. The distinction of the roles of these two description orientations
is not always as clear cut as that which we use here. Programs in
non-procedural programming languages, for example, are external,
behavioral descriptions which are prepared in order to define, albeit
implicitly, the operation needed to create the behavior. On the
other hand, in other parts of the DDN Tanguage ([RidW77], [RidW78b])
we have provided constructs by which a seemingly internal, operational
description may be prepared in order to describe behavior.

textual units is used to indicate the scope of whatever information
they declare.

Figure 2 indicates that the operations which may be invoked upon
instances of a class are defined as procedures. Parameters for these
procedures are declared as objects belonging to classes, thereby indicat-
ing their characteristics as those defined for these classes, and param-
eter passing mechanisms are denoted as in the AlgolW Tanguage [BauH69].
Invocation of an operation upon an object is denoted by the syntax:

x.p(a],az,...,an)

where p is a procedure defined for the class of which x is an instance
and the a arguments are instances of the classes of the corresponding
parameters. Each object has its own copy of the procedures defined for
the class of which it is an instance and, to refer to the copy of a pro-
cedure associated with a particular object, we speak of that procedure
owned by the object.

To allow the definition of the observable effect of invoking a

procedure, objects may be considered to be in some state at any point

in time and the effect of procedure invocation may then be described

by defining the state transition caused by the procedure's execution.

In DDN, the possibly infinite set of states for an object is modelled

by specifying a finite set of subsets of the object's state space. An
example is shown2 in Figure 3 for the class [datum]. The set of names
for the state subsets constitutes a set of "checkable" attributes for .
an object in the sense that processing may be conditioned upon the state
of an object by referencing state subset names in logical expressions.

The effect of procedure invocation is defined by a set of transi-
tions. Each transition defines one of the possible effects in terms of:
1) a condition upon the state of the parameter objects and the object
owning the invoked procedure, and 2) a specification of the state of
these objects after the procedure's execution. In the example of

2. To avoid having to repeat all of the previously defined information
when adding new information to a class definition, DDN allows a textual
unit to be "inserted" into a class definition by prefacing it with a
quoted sequence of identifiers which indicates the textual unit's posi-
tion within the hierarchy of textual units defining the class.

Figure 4, the transitions for the assign procedure indicate that the
state subset of the object owning the invoked procedure is referenced
by merely referencing one of the state subset names.3 Thus:

new value = defined » defined

means "if the object new value is in a state within the defined state
subset at the beginning of invocation, then the state of the owning
object is in the defined state subset at the end of invocation." The
fact that new value is a value parameter further implies that the state
of the argument corresponding to new value does not change. Also, not
referencing the object upon which the procedure is invoked within the
transition's left-hand side implies that it may be in a state which
falls in any of the state subsets. Note that the set of left-hand
sides of the transitions defines pre-conditions for the legal invoca-
tion of the procedure, and the right-hand sides define post-conditions
corresponding to each pre-condition.

I1.2. Additional Comments

Before turning to the basic DDN constructs for internal descrip-
tions, we give some additional examples of external descriptions and
use these examples to introduce more details concerning the DDN con-
structs for external description.

In describing objects generically it is frequently desirable to
be able to parameterize the description so that specific details may
be fixed at the time that an instance is declared. This facility is
provided in DDN by qualifier textual units, as indicated in Figure 5,
in which identifiers are defined which may be used in the class defini-
tion and receive values when an instance is declared. For example:

index OF [integer range(10)]

would declare an instance in which high should be read as 10 wherever
it appears in the [integer range] class definition.

Figure 5 also indicates that an ordering may be specified among

3. Alternatively, this transition could have been expressed as:
new value = defined -~ ME = defined
using the reserved identifier ME to reference the owning object.

the state subsets so that the usual complement of relational operators
may be used in conditions upon the state of object. The state ordering

textual unit in Figure 5 also indicates that state subsets are not neces-
sarily disjoint. (With non-disjoint state subsets, it is possible that

a state ordering is internally inconsistent; the DREAM system will con-
tain an analyzer which checks the consistency of state orderings.)

The transitions for the <ncrement procedure indicate that they
may be nondeterministic. This greatly facilitates the specification of
abstract models since it allows the suppression of detail. It does, how-
ever, allow an impreciseness which is potentially detrimental. For ex-
ample, the name increment connotes that the procedure is to increase
the "value" of the [<nteger range] object by one, but the transitions
describe many other implementations of the procedure. However, suppose
it can be shown that if the procedure's implementation produces the
effect defined by the transitions then any algorithm which uses the
procedure will function appropriately. Then, any implementation which
produces the effect would be acceptable, irrespective of the English-
language semantics of the identifier used to name the procedure.

In Figure 6, we indicate that state subsets may be defined
through a coordinatization expressed in terms of a set of state vari-
ables. This is allowed since it generally makes the task of state sub-
set definition easier. Additionally, it allows the explicit descrip-
tion of the overlap among state subsets. Potential problems again
arise because the definition of a state subset may not exactly match
that implied by the English-Tanguage semantics of the state subset's
identifier. But, it is again true that this is not a problem as Tong
as it can be shown that the definitions lead to the delivery of ex-
pected or required behavior.

IT1.3. Internal Descriptions When Concurrency is not Considered

In an internal description, the intent is to represent the manner
in which an object is composed of other objects and to describe the al-
gorithms by which the effects of procedure invocation, as described in
the external description, may be created by sequences of procedure

invocations upon the internal objects.

In Figure 7, we give an external definition of a class named
[search_routine] augmented by a textual unit defining the internal com-
ponents (in this case, there is only one) which comprise each instance
of the class. Also in Figure 7 are two definitions of classes referenced
within the definition of [search routine]. With the class [search routine]
we are specifying a class of objects which are data manipulation objects
rather than data repository objects. In this class definition, the DDN
description constructs are used to define the class of functions which
search an array for a specified item, indicate by their value whether or
not the item was found, and return the index of the item in the case -
that it is found within the array. This class of functions could alter-
natively have been defined as a procedure for that class of data re-
pository objects which are the arrays being searched, or as a procedure
associated with the class of indices returned, or in a variety of
other ways. But it is not necessarily natural to associate it with any
of the classes of objects upon which it operates.

Being essentially a processing module, the internal objects for
the [search routine] class are solely those needed during processing
rather than those needed to save values between invocations. In this
case, all that is needed is a single object for use in controlling the
search of the array and in indicating whether or not the sought-for
item was found.

The algorithm used to do the searching is described by giving a
body textual unit for the procedure as indicated in Figure 8. The al-
gorithm controls the sequencing of the invocation of operations upon the
parameters and internal objects and the controlling conditions are
specified as tests upon the states of these objects. DDN provides a
full set of control constructs for the go-to-less specification of
procedure bodies.

Our presentation of examples has been "bottom-up" in that we
have first presented "primitive" classes, like [datum], which have no
internal components and then presented "higher-level" classes whose
instances are composed of instances of the primitive classes. This is
an artifact of our order of discussion of the features of DDN. In

actually using DDN to prepare a description during architectural de-
sign, class definitions would more 1ikely be prepared in a top-down
manner since it is most effective to first define the need for a par-
ticular class of objects and delineate the procedures required to man-
ipulate objects in the class, and then subsequently define internal
objects and actual control algorithms for this class of objects.

IIT. Consistency Checking

When both an external and an internal description of a class ex-
ists, the question naturally arises: "Do the procedure control al-
gorithms produce the effect described by the transitions?" This ques-
tion as to the consistency between the internal and external descrip-
tions may be answered by a technique developed in conjunction with the
TOPD system [HenP75a]. 1In this section, we briefly explain the TOPD
consistency checking technique since we wish later to discuss the
feasibility of extending it to the case of concurrent activation of
procedures. We also make some observations about the value of the tech-
nique when used in conjunction with a top-down design method.

Central to the TOPD consistency checking technique is an algorithm,
called the finite state testing algorithm, which is able to derive the
state-transition effect of a procedure body's execution, given an
initial state for all of the objects manipulated by the procedure. This
algorithm requires transition definitions for each procedure invoked
during the execution of the procedure body being analyzed. (And because
it uses this information and does not "look inside" the invoked pro-
cedures, the algorithm is quite fast.) The algorithm determines the
set of possible states for manipulated objects at the termination of
the procedure under the assumption that it does terminate. There is a
set of possible final states both because there are, in general, branches
within the algorithm and because the transitions for the invoked pro-
cedures are, in general, nondeterministic.

Consistency checking for a procedure 1is performed by using the
finite state testing algorithm as follows. Each unique left-hand side
for the transitions of the procedure being checked is considered in
turn. Using information that relates the state of the owning object to

the states of its internal objects, a (set of) initial state(s) is de-
rived. The finite state testing algorithm is then used to find the set
of final states which the procedure would produce when invoked with the
parameter and internal objects in (one of) the derived initial state(s).
The right-hand sides for the transitions involved at this step of the
consistency check are then also translated to states upon the parameter
and internal objects. Then this set of allowed final states is checked
against the set of final states found by the finite state testing al-
gorithm to assure that there is at Teast one terminal state correspond-
ing to each right-hand side and no terminal states which do not corre-
spond to any of the right-hand sides. If this condition doesn't hold
then there is an inconsistency; if it holds for all the unique left-hand
sides then consistency has been demonstrated.

As an example consider the consistency checking of the find pro-
cedure for the class [search routine]. For the left-hand side item =
undefined the set of initial states may be found directly since there is
no reference to the owning object. (The rule for indicating the state
of an array is that the array is in state subset s if at least one of
its element is in state subset s.) Applying the finite state testing
algorithm will produce a set of terminal states such that in every
state in the set, found flag will be in the state subset fglse. Con-
sidering the right-hand side of the transition and the equivalency
information given in Figure 9, it may be concluded that there are no
disallowed terminal states and at Teast one terminal state which
corresponds to the right-hand side. Similar reasoning involving the
second transition Teads to the conclusion that it too accurately de-
scribes an effect of invoking the procedure. Hence, it may be con-
cluded that the transitions and the body are consistent.

Used in conjunction with a top-down design method, the con-
sistency checking technique affords the opportunity to integrate analy-
sis and synthesis during design. If each synthesis step consists of
preparing one or more procedure bodies as well as transition defini-
tions for any as-yet-undefined procedures invoked by these procedures,
then it may be followed by an analysis step in which the consistency
of the new procedure bodies and their corresponding transitions is

-10-

checked. If consistency is shown then the designers may proceed to
the next synthesis step with increased confidence. If consistency
cannot be shown, then the designers may correct the description before
proceeding.

IV. Description When Concurrency is Considered

When instances of monitor classes are shared by a community of
concurrent subsystems, there is the need to coordinate the multiple, and
potentially conflicting, activations of procedures upon each shared ob-
ject. With respect to internal descriptions, a variety of coordina-
tion mechanisms have been proposed and we adopt that defined by Hoare,
as the name "monitor class" implies. There are nof, however, any ex-
tant solutions for the problems arising with respect to external descrip-
tiohs and so we have developed extensions to the basic DDN external
description constructs. We discuss these issues in this section and
then, in Section V, suggest that we have preserved the ability to do
consistency checking and allowed other types of analysis.

As a basis for our examples in this section we choose the tradi-
tional readers/writers problem. We hypothesize a class of objects
called [region], with states we have already defined in Figure 6. We
view each [region] object as partitioned into segments, some of which
are private to the [region] object and some of which are shared among
[region] objects. Read and write requests may be asynchronously and
concurrently directed toward the individuals in a collection of [region]
objects by invocation of read and write procedures. A [datum <d] param-
eter to each of these procedures identifies the Tocation which is to be
read or written. We wish first to develop internal descriptions of
these procedures which exhibit the usual desired characteristics, namely
that: 1) writing of a shared segment may not be concurrent with any
other operation upon the shared segment, 2) within any single [region]
object, reading or writing of shared or private segments may not be
occurring simultaneously, and 3) across a collection of [region] ob-
Jjects, reading or writing of shared or private segments may otherwise
occur to any degree of concurrency. Additionally we wish to develop
demonstrably consistent external descriptions of these procedures and

-11-

be able to rigorously argue that the internal descriptions give rise to
the desired characteristics stated above.

IV.1. Internal Description when Concurrency is Considered

As a first step in our description of the class [region], we give,
in Figure 10, a DDN description of the class of [segment] objects. In
this description we have used the instantiation control facilities of

DDN to indicate that the Zocator subcomponent is unique across all in-
stances of the [segment] class. Though perhaps artificial, this allows
us to explain how the monitor mechanism is used to control execution.
Suppose the read segment procedure for some [segment] object is invok-
ed. When execution reaches the invocation of the find procedure for the
locator object, then execution of the read segment procedure is first
suspended. If an invocation of the find procedure is already in prog-
ress (because of an invocation from within a procedure owned by some
other object) then knowledge of the invocation is saved on a list of
invocations waiting to be done upon the procedures owned by the Zocator
object. When the in-progress invocation terminates, control is return-
ed to the procedure which Todged that invocation and one of the waiting
invocations is chosen, at random, to be activated.

The internal description of [region] objects may then be expressed
as in Figure 11. The major subcomponent is the array data of [segment]
objects. The associated array segment status of [boolean] objects is
used to indicate which of the [segment] objects is shared with at
Teast one other [region] object; the values in the segment status array
are presumably initialized or otherwise set to accurately indicate shar-
ing. The <ndicator object is used to encode the operation being per-
formed at any point in time. And the segment number object is used in
accessing the appropriate [segment] object.

Control of reading and writing of shared segments is effected
through the waiting and commutator objects. In the solution indicated
here, commutator is an object shared by all the [region] objects (as in-
dicated by the instantiation control textual unit) as well as by some

supervisory object (as would be described by an instantiation control

-12-

textual unit in some other, unexhibited part of the description). The
value of commutator is used to give one of the [region] objects permis-
sion to operate upon a shared [segment] object.4

The [cowpITION] object called waiting provides the ability to
suspend an invocation of either the read or write procedure should the
[region] object want to operate upon a shared [segment] object but not
have permission. Invocation of the WAIT operation upon waiting suspends
execution until a SIGNAL operation is invoked upon the waiting object.5
When such a SIGNAL operation is performed, then all suspended invocations
(associated with the [cowDITION] waiting) are transferred to the list of
invocations awaiting activation (or re-activation), taking priority over
any invocations which have never been activated.

IV.2. External Description when Concurrency is Considered

In the external description of a class of objects, the intent is
to describe the state transition effect of each procedure's invocation.
As far as the object which invoked the procedure is concerned, the only
visible effect is the before/after state subset change since the activa-
tion of the invoking procedure is suspended until the invoked procedure
terminates. Other concurrently operating objects may, however, make a
state inspection during a procedure's activation and the external descrip-
tion must in general, therefore, relate the sequence of state subsets
occurring between a procedure's invocation and its termination.

The DDN facilities for external descriptions which reflect state
subset transition sequences occurring during procedure activation are
illustrated in Figure 12. The concept of pre- and post-conditions is
retained but the notation '+' is augmented by the ability to specify
a set of state subset sequences, with the implication that any one of

4. Thus we are describing a solution in which there is some central-
ized control allowing only one [region] object to be operating upon
a shared [segment] object at any point in time. This solution may
not be ideal, but does provide us with an illustrative example.

5. The suspension effect of a WAIT operation propagates up through a
hierarchy of procedure invocations. We have chosen this solution
to the problem raised in [LisA77] because its effect cannot other-
wise be described within DDN.

-13-

them may occur during procedure activation. The facilities for describ-
ing sets of state subset sequences consist of a set of prefix operators
for describing the concatenation of sequences (SEQUENCE), the choice of
alternative sequences (OR), the unbounded repetition of a sequence
(REPEAT), the arbitrary interleaving of sequences (SHUFFLE), and the
arbitrary interleaving of an unbounded number of copies of a sequence
(REENTRANT). The set of sequences described by the second transition
in the Figure 12 example is:
{ unoccupied reading shared unoccupied,
unoccupied stalled unoccupied reading shared unoccupied,
unoccupied stalled unoccupied stalled
unoccupied reading_shared unoccupied, ... }

and which of these sequences actually occurs depends on the number of
times procedure activation is suspended. In the first transition of
Figure 12, we retain the '»' with the implication that any sequence of
states can possibly be observed during procedure activation.

We do not include the internal and external descriptions of the
write procedure since they are directly analogous to those given for
the read procedure.

To close the discussion of this section we want to clarify a
perhaps confusing point brought up by our example. The use of the mon-
itor mechanism to assure that only one activation of a procedure is in
progress at any point in time gives rise to the following question:

"Why is all the machinery of Figure 11 necessary when the indivisibility
of the read segment and write segment procedures assures the correct
manipulation of shared [segment] objects?" A superficial answer is

that is is really more than just the activation of these procedures that
has been coordinated and that the non-current execution of sections

of the read and write procedures has also been assured. A more accu-
rate and instructive answer is that it is really only subcomponents of

[segment] objects that are shared between [region] objects, as would
be described by instantiation control textual units not exhibited in

our examples. Thus there are multiple copies of the read segment and
write_segment procedures which can manipulate the shared subcomponents
and we are coordinating the activation of these copies since the mon-
itor mechanism does not, in and of itself, effect coordination between

-14-

copies of procedures.

V. Analysis When Concurrency is Considered

With the addition of the ability to describe state subset
sequences occurring during procedure activation, we have complicated
the checking of the consistency between internal and external descrip-
tions, but we have not eliminated the possibility of performing consist-
ency checking. First, the finite state testing algorithm can be modified
to derive, when the effect of suspension is ignored, a regular expression
(over state subset names) describing the sequences of state subsets
arising from execution of the procedure. Second, use can still be made
of state equivalence information, such as illustrated in Figure 13, to
transform the specification of a set of state subset sequences to the
level of internal and parameter objects. As Tong as the result of this
transformation is also a regular expression (i.e., it does not involve
the use of the REENTRANT operator [RidW78e]), then the comparison neces-
sary to check consistency may, in theory at least, be performed.

But the feasibility of consistency checking depends on three
conditions implied in the last paragraph's discussion. First, the
computational complexity of performing comparison must be reasonable.

We feel that the full power of a general algorithm is not necessary

and that Tess-general algorithms, having acceptable complexity char-
acteristics, will suffice. However, it is only through additional ex-
perience with DDN that we can determine the types of expressions

which occur in describing state subset sequences, and thereby the
validity of our intuitive feeling. Second, the REENTRANT operator may
not appear. We have not needed it in the descriptions we have prepar-
ed so far ([Cund77a], [Cund77b], [RidW78a], [SegA77], [StaA77], [Wi1d77]).
Indeed, since it corresponds to reentrant activation, and state subset
sequences pertain to a single activation, it is unlikely that it will
ever be required. But, again, only more experience will allow us to
determine the validity of this conclusion. Finally, there is the con-
dition that the effect of suspension be ignored. The finite state test-
ing algorithm could potentially be applied recursively, to assure that
all procedures return the object to the state subset it was in at the

-15-

point of suspension, but there is an unpleasant increase in the amount
of analysis necessary. We are continuing our research into ways to
efficiently analyze in the face of this problem.

Assuming that consistency checking can be effectively and efficient-
1y performed, there remains the problem of assuring that global prop-
erties, such as the non-concurrent reading and writing of shared
[segment] objects, are exhibited by a proposed internal operation. The
approach provided by DDN to solving this problem is based upon event
expressions ([RidW78e], [Wi1J78]) and event expression analysis
[RidW78f] and would proceed roughly as follows. First, the finite state
algorithm would be used to derive an expression for the state subset
sequences produced by each procedure which affects the property being
assessed. In this derivation, special symbols would be used to mark
the points of suspension, reflect re-activation via SIGNAL operations,
and indicate procedure activations. Then an expression for the state
subset sequences may easily be formed by using the notation of event ex-
pressions to indicate that an overall state subset sequence consists of
the interleaving of an arbitrary number of copies of the individual state
subset sequences for the procedures. The special symbols constrain the
otherwise arbitrary interleaving to reflect the semantics of SIGNAL and
WAIT operations and procedure invocations. Then the resulting expression
would be projected onto an alphabet of event names using the state
equivalence information and information about the correspondence of an
event to a state subset sequence that has been expressed by the event
definition facilities available in DDN ([RidW78c], [Wi1J78]). The re-
sulting expression would then be compared to the statement of the prop-
erty, as expressed in similar notation by the desired behavior defini-
tion facilities of DDN ([RidW78c], [Wi1J78]), to determine whether or
not all of the event sequences resulting from system operation are also
desired.

There are several problems in the use of this approach. First,
a general algorithm for projecting an expression describing the state
subset sequences onto the event alphabet probably does not exist.
Second, the comparison problem is known to be undecidable in general
[RidW78F]. However, it is our feeling, reinforced by our experiences

-16-

in using DDN, that the full power of the event expression notation is
not needed. We therefore believe that efficiently decidable subcases,
that span a wide variety of typically occurring situations, can be
identified. We are continuing our research on this topic.

VI. Conclusion

We have proposed a technique for the description of data repos-
itory modules which are shared among a community of concurrent, asyn-
chronous processing modules. The technique allows the description of
both a module's internal, operational aspects and a module's external,
behavioral characteristics. Descriptions using the technique are ab-
stract models of the actual modules and the technique may be beneficially
employed during the architectural design phase of software development.
The technique provides facilities which lend support to a variety of
design methods, most especially top-down methods. The rigor and preci-
sion of the descriptions offers the opportunity to perform analysis and
this analysis may furthermore be integrated with design, thus providing
the opportunity for early error detection. We have suggested several
approaches to analysis and identified the problems to be solved in
order to produce efficient and effective analysis algorithms.

In this work, we have amalgamated and extended the work of others
in order to produce a data repository description technique consonent
with the techniques we developed for the modelling of collections of
sequential processes ([RidW77], [RidW78b], [RidW78c]) and the description of
software system behavior ([RidW78c], [Wi1Jd78]). We have accepted the
philosophy behind the concept of abstract data types, relied heavily
upon the TOPD description technique which was developed for modelling
sequential programs, and used the concept of monitors to provide a
coordination mechanism. We have also adopted the TOPD approach to
analysis as a basis for some of the analysis techniques we envision.
Farther back in the ancestry of our work is the work of Parnas [ParD72]
on module description. Our major departure from his work is to not
require that state inspection be performed via a procedure and thereby
be coordinated with other operations upon a module. We have taken this
departure because we feel that modelling is much more easily and con-
veniently performed under the assumption that (a projection of) the

-17-

state of a module is visible to other modules.

We feel confident that the concepts underlying our description
technique are important and useful for the modelling task which arises
during the architectural design of software. We also feel that the tech-
nique provides a basis for a design support system which will deliver
beneficial aid to software system design practitioners and that the
most effective aid will come from analysis techniques such as discussed
here.

-18-

VII. References

AmbA77 Ambler, A.L., Good, D.I., Browne, J.C., Burger, W.F., Cohen,
R.H., Hoch, C.G., and Wells, R.E. Gypsy: A language for spec-
ification and implementation of verifiable programs. Software
Engineering Notes, 2, 2 (March 1977), 1-10.

BakJ78 Baker, J.W., Chester, D., and Yeh, R.T. Software development
by step-wise evaluation and refinement. SDBEG-2, Software and
Data Base Engineering Group, Dept. of Computer Sci., Univ. of
Texas, Austin, January 1978.

Baid69 Bauer, H.R. Introduction to AlgolW programming. Computer Sci.
Dept., Stanford Univ., California, July 1969.

CamI78 Campos, I., and Estrin, G. SARA aided design of software for
concurrent systems. Proc. 1978 National Computer Conf.
Anaheim, Calif., June 1978, pp. 325-336

Cund77a Cuny, J. A DREAM model of the RC 4000 multiprogramming system.
RSSM/48, Dept. of Computer and Comm. Sci., Univ. of Michigan,
Ann Arbor, July 1977.

Cund77b Cuny, J. The GM terminal system. RSSM/63, Dept. of Computer
and Comm. Sci., Univ. of Michigan, Ann Arbor, August 1977.

Dah066 Dahl, 0., and Nygaard, K. SIMULA - An Algol-based simulation
language. Comm. A.C.M., 9, 9 (September 1966), 671-678.

DavC77 Davis, C.G., and Vick, C.R. The Software development system.
IEEE Trans. on Software Engineering, SE-3, 1 (January 1977),
69-84,

EstG78a Estrin, G., and Campos, I. Concurrent software system design,
supported by SARA at the age of one. Proc. 3rd International
Conf. on Software Engineering, Atlanta, Georgia, May 1978,
pp. 239-242.

EstG78b Estrin, G. Application of machine descriptions to design of
concurrent systems. In Moneta, J. (ed.), Information Technol-
ogy, JCIT3/North Holland Pub. Co., 1978.

GooD77 Good, D.I. Constructing verified and reliable communications
systems. Software Engineering Notes, 2, 5 (October 1977), 8-13.

HenP75a Henderson, P. Finite state modelling in program development.
Proc. 1975 International Conf. on Reliable Software, Los Angeles,
April 1975.

HenP75b Henderson, P., Snowdon, R.A., Gorrie, J.D., and King, I.I.
The TOPD System. Tech. Report 77, Computing Laboratory, Univ.
of Newcastle upon Tyne, England, September 1975.

HoaC74

Howd76

LisA77

LisB75

MorM77

ParD72

PeaD73

RidW77

RidW78a

RidW78b

RidW78¢c

RidW78d

RidW78e

RidW78f

-19-

Hoare, C.A.R. Monitors: An operating system structuring
concept. Comm. A.C.M., 17,10 (October 1974), 549-557.

Howard, J.H. Signaling in monitors. Proc. 2nd International
Conf. on Software Engineering, San Francisco, October 1976,
pp. 47-52.

Lister, A. The problem of nested monitor calls. Operating
Systems Review, 11, 2 (July 1977), 5-7.

Liskov, B.H., and Zilles, S.N. Specification techniques for
data abstractions. IEEE Trans. on Software Engineering, SE-1,
1 (March 1975), 7-19.

Moriconi, M.S. A system for incrementally designing and
verifying programs. ICSCA-CMP-9, Certifiable Minicomputer
Project, Inst. for Computing Sci. and Computer Applications,
Univ. of Texas, Austin, December 1977.

Parnas, D.L. A technique for software module specification
with examples. Comm. ACM, 15, 5 (May 1972), 330-336.

Pearson, D.J. CADES - Computer aided design and evaluation
system. Computer Weekly, (July/August 1973).

Riddle, W.E. Abstract process types. RSSM/42, CU-CS-121-77,
Dept. of Computer Sci., Univ. of Colorado at Boulder,
December 1977 (revised July 1978).

RiddTe, W.E. DREAM design notation example: The T.H.E.
operating system. RSSM/50, Dept. of Computer Sci., Univ.
of Colorado at Boulder, April 1978.

Riddle, W.E., Sayler, J.H., Segal, A.R., Stavely, A.M., and
Wileden, J.C. A description scheme to aid the design of
collections of concurrent processes. Proc. 1978 National
Computer Conf., Anaheim, Calif, June 1978, pp. 549-554,

Riddle, W.E., Wileden, J.C., Sayler, J.H., Segal, A.R., and
Stavely, A.M. Behavior modelling during software design.
IEEE Trans. on Software Engineering, SE-4, 4 (July 1978),

283-292.

Riddle, W.E., Sayler, J.H., Segal, A.R., Stavely, A.M., and
Wileden, J.C. DREAM - A software design aid system. In
Moneta, J., (ed.), Information Technology, JCIT-3/North-
Holland Pub. Co., August 1978.

Riddle, W.E. An approach to software system behavior descrip-
tion. To appear: J. of Computer Languages.

RiddTe W.E. An approach to software system modelling and
analysis. To appear: J. of Computer Languages.

RobL75

SegA77

StaA77

TeiD77

VHoE78

Wild77

Wild78

-20-

Robinson, L., Levitt, K., Neumann, P., and Saxena, A. A for-
mal methodology for the design of operating systems software.
In Yeh, R.T. (ed.) Current Trends in Programming Methodology,

Vol.I, Prentice-Hall Inc., Englewood Cliffs, N. J., 1977.

Segal, A.R. DREAM design notation example: A multiprocessor
supervisor. RSSM/53, Dept. of Computer and Comm. Sci., Univ.
of Michigan, Ann Arbor, August 1977.

Stavely, A.M. DREAM design notation example: An Aircraft
engine monitoring system. RSSM/49, Dept. of Computer and
Comm. Sci., Univ. of Michigan, Ann Arbor, July 1977.

Teichroew, D., and Hershey, E.A. PSL/PSA: A Computer-aided
technique for structured documentation and analysis of informa-
tion processing systems. TEEE Trans. on Software Engineering,
SE-3, 1 (January 1977), 41-48.

Van Horn, E.C. Software evolution using the SEER data base.
Digital Equipment Corp., Maynard, Massachusetts, June 1978.

Wileden, J.C. DREAM design notation example: Scheduler for a
multiprocessor system. RSSM/51, Dept. of Computer and Comm.
Sci., Univ. of Michigan, Ann Arbor, October 1977.

Wileden, J.C. Behavior specification in a software design
system. RSSM/43, COINS Tech. Rep. 78-14, Dept. of Computer
and Info. Sci., Univ. of Massachusetts, Amherst, July 1978.

