HYPACK: A SUBROUTINE FOR A HYPERBOLIC
SYSTEM COUPLED WITH A SINGLE ELLIPTIC EQUATION.

by

John Gary
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

CU-CS-142-78 August, 1978

The work reported here was supported by NSF Grant #ATM75-17036.

1. Introduction

We will describe a Fortran subroutine package intended for the
solution of an initial value problem possibly coupled with an elliptic
equation. Examples from fluid mechanics are certain vorticity-stream
function models, theNavier-Stokes equations for incompressible (or com-
pressible) flow, and certain anelastic cloud models. An explicit method
is used to solve the initial value problem, therefore the method is
inefficient for parabolic or heavily dissipative problems. It is better
for hyperbolic problems. A rectangular domain in cartesian coordinatnts
is assumed. The user can choose a second or fourth order finite
difference approximation over the two diminsional retangular domain
for both marching and elliptic variables. A third order Runge-Kutta
method with step size control is used for the integration of the
marching equations in time. Several types of boundary conditions are
permitted including periodic, symmetric, Dirichlet, Neumann or mixed.

In addition boundary conditions based on characteristic variables for
hyperbolic equations can be set up. The code can be run with arrays

in central memory or in bulk memory (LCM or ECS). It can also be run
with arrays on a disk, although data buffering is not ideal in this case.
Spherical or cylindrical geometries cannot be solved with this package.

The elliptic equation is solved using a subroutine package
developed by Paul Swartztrauber, Roland Sweet and John Adams at the
Mational Center for Atmospheric Research.

The remainder of this users manual is a description of the type
of problem which can be solved, along with a description of user
supplied data and subroutines. Much of this information is also con-
tained in comments in the code.

2. Statement of the mathematical problem.

The differential equations for the marching variables are assumed
to be in the form

3t ox © ay
2 2
J d 9

a(x)=F + b(x)5r + c(x)p + d(y)*F + e(y)gh + Fly)p =
X ay '

Here u = u(x,y,t) is a vector of unknowns u = (u],uz,...,um) and the

elliptic unknown p = p(x,y,t) is a scaler function. The functions on

the right side of the first equation are vector functions of order m

fi = fi(x,y,t,w) 1 <i<m
g; = 95 (x,y,t,w)
hi = hi(X’y’t’W’Wx’Wy’wxx’wxy’wyy’wx4’wy4)

Here w is the vector of unknowns w = (u],uz,...um,p) and W wy, etc.

denote partial derivatives Wy = azw/axz, W, = a4w/ax4. The elliptic
X

variable p and its equation may be absent, in which case we have an
ordinary initial value problem.

In order to define the equation it would be sufficient to have
only the function h; the functions f and g allow an alternate representa-
tion in "conservation" form. The use of conservation form will sometimes
prevent nonlinear instability which can occur in certain hyperbolic
equations. Therefore we allow an alternate representation of equations

Tike the following (we drop the y-direction here). The equation

du/st = udu/ox can be represented by f(u) = 1/2 u2 and h = o, or

f =0 and h(u,u) = uu_.
X X

The domain must be rectangular in cartesian coordinants.
Irregular domains, or spherical or polar coordinants whose domain
contains the singularity at the pole, are not permitted. The user
must input arrays X; and Yy which define the mesh used for the finite
difference approximation. The mesh spacing need not be uniform,
thus XomXy # Xa=X, is allowed. The number of mesh points in each
direction(NX and NY where 1 < i < NX, and 1 < j<Ny) are input
parameters. '

Several types of boundary conditions can be used. The variables

may be periodic in x, or y, or both. In the case of a periodic boundary
in x with the second order difference scheme an additional point is
added at the left and also the right side of the mesh. This is done so

that Xq7Xg = XNX‘XNX_] NX+1-XNX = XpmXy NX+]

the additional points. The periodicity condition then yields

Wy - HNX—l for all variables. Using these values at the added points,

and x where Xq and x are

the finite difference approximation to the derivatives can be computed

at xy and x The fourth order scheme is treated in the same way. If

NX~
the periodicity is used it must apply to all the variables Ups Uss

.9 um9 p’

A symmetry or skew-symmetry condition can also be used in x, or vy,
or both x and y. In this case the additional points satisfy the

condition x,-x, = Xp=Xq and x The values of the

17%0 DGR PO
variables at the additional points are defined by Uy = U for symmetry

and Ug = for skew symmetry. In the case of the elliptic variable p,

-U
the symmetr§ condition is transformed into the Neumann condition

ap/9n = 0 where 3p/on denotes the normal derivative and skew symmetry
transforms into p = 0 at the boundary. This allows the use of the
SEPELI elliptic equation solver. If the symmetry or skew symmetry
condition is used one or the othér must apply to all variables, each
variables is symmetric, or skew symmetric. A Dirfchiet.type‘boundary,
u =g, can be specified for any of the variables. Also a mfxéd type of
condition 8u/3n+tau = g can be specified. Of course, the 1attér’is not
proper for a hyperbolic equation, but it is reasonable for a parabolic
or elliptic equation,

An additional type of boundary condition is intended for hyper-
bolic equations. To determine these boundary conditions it may be
necessary to count the number of "incoming" characteristics. This
gives the number of equations, say q, which can be specified at
the boundary. Each of these equations usually involves a linear
combination of the variables (u]""um)' The finite difference
scheme requires an additional m-q equations at the boundary. These
can be the differential equations for the m-g "outgoing" characteristic
variables. Perhaps we can clarify this by using the example of the

wave equation written as a system in one space dimension,namely

au ou

1 - 2
3T - o 0=x=t
ot X

The characteristic variables for this system are Wy = u1+u2 and

Wy = Uy=Uss and the characteristic equations are

oW ow

1 1 _
5T " S 0
oW ow

2 2 _
5t T o3 0

These equations imply that W, should be specified at the left boundary,
and W, at the right, that is

wy (1,t) = gy (t)
Wy(o,t) = g (t)

where go(t) and g](t) are boundary data. This gives the boundary
conditions '

u](W,t) + u2(1,t) =

i
Q
—
—~
ct
~—

uy(0,t) - uy(o,t) = g (t)

for the original problem. These are not the only boundary conditions
which yield a properly posed mathematical problem. For example, we
might use

up (0,t) = g, (%)

up (1,t) = g, (t)

The mathematica]iproblem is properly posed for the latter boundary
conditions, but the finite difference scheme we have used, and all
others that we are aware of, are unstable for this boundary condition.
It is better to specify the incoming characteristic variables at each

boundary. We will indicate how this can be done in the example in
section 3.3 below.

3. User supplied input data.

In this section we will describe the input data which the user
must supply in the form of arguments to the RKFPDE subroutine. These
parameters are also listed in the program comments in the order in
which they appear in the argument Tist. Here we will group the arguments
by their functions.

3.1 The following parameters are used to define the differential equation.

NV - the total number of dependent variables including p, that is
(u],...qu_],p) or (u],,;.uNV) are-the dependent variables.

NVP - this input variable is NVP = 1 if the elliptic variable p is
present, otherwise NVP = 0.

3.2 The mesh domain is defined by the following parameters.

NX - the number of mesh points in the x-direction. The number of
intervals is NX-1. If the elliptic equation is present
(NVP=1), then NX must satisfy NX > 7, otherwise NX = 3 for a
second ordeh’scheme (NORDER=1) and NX = 5 for a fourth order
scheme (NORDER=2).

NY - the number of points in the y-direction. NY is subject to the
same restrictions as NX.

XPTS(NX) - a real input array containing NX values giving the Tocation
of the mesh points in the x-direction. These points need not
have a constant spacing, however, the conditions
XPTS(I) < XPTS(I+1) must be satisfied.

YPTS(NY) - a real input array containing NY values giving the Tocation
of the mesh points in the y-direction. It is subject to re-
strictions similar to XPTS.

3.3 The following arquments define the difference scheme and boundary

conditions.

NORDER - an integer input parameter. If NORDER = 1 a second order
difference scheme for spatial derivatives based on a three point
stencil is used. If NORDER = 2 a fourth order scheme based on
a five point stencil is used. Near the boundary one sided finite
differences may be required. This is discussed below in the

section which describes the numerical method. If NORDER = 1
the fourth derivatives WX4 and WY4 can not be computed since a
five point stencil is required.

NBTYP(NV,4) - an {integer input array of dimension (NV,4). This array
determines the type of boundary used on each side of the rec-
tangular domain. The value of NBTYP(M,NSIDE) gives the boundary
condition of the M-TH variable on the side NSIDE where 1 =M < NV
and 1 < NSIDE < 4. Here NSIDE = 1 for the right side, NSIDE = 2
for the top, NSIDE = 3 for the left side and NSIDE = 4 for the
bottom side of the rectangular domian. The values of NBTYP rance

from 1 to 6 with the following meaning.
NBTYP = 1 for perijodic boundary. If NBTYP(M,71) = 1 then the con-
dition NBTYP(M,3) = 1 must also hold.

NBTYP = 2 for a symmetric boundary (see the discussion in section
2 for the precise meaning of symmetry). If 2 < NBTYP(M,1) < 3,
then the condition 2 < NBTYP(M,3) < 3 must hold for 1 < M < NV.

NBTYP = 3 for a skew symmetric boundary (see the discussion in
section 2 and above for NBTYP = 2).

NBTYP = 4 for a Dirichlet type of boundary. If NBTYP(M,1) = 4,
then the values of the M-TH variable along the right boundary
at X = XPTS(NX) are given by the user supplied function GBDY,
that is U(M,NX,J) = GBDY(T,XPTS(NX), YPTS(J), NSIDE,M) where
NSIDE = 1 and 1 < J < NY.

NBTYP = 5 for a mixed boundary condition. On the right or left
boundary (NSIDE = 1 or 3) this condition is
du/ox + a(t,x,y)u = g(t,x,y,) where x = Xy OF X = Xy and
on the top or bottom (NSIDE = 2 or 4) it is
au/ay + a(t,x,y)u = g(t,x,y) where y = Iy OF Y =9 The
real functions a(t,x,y) and g(t,x,y) are supplied by the user as
FUNCTION ABDY(T,X,Y,NSIDE,M)
FUNCTION GBDY(T,X,Y,NSIDE,M)
The same functions are used for all four sides 1 =< NSIDE < 4
and all the variables 1T <M < NV including the elliptic

variable if it is present. For the elliptic variable (M = NV)
ABDY must not be dependent on X or Y. The values of T, X, VY,
NSIDE, M are all input parameters to these functions. The
values of X and Y will always be mesh point values XPTS(I)

or YPTS(J) for 1 <1 <NXor 1 <J < NY.

NBTYP = 6 for a time derivative boundary condition. This condition
is intended for hyperbolic equations. The motivation for its
use is given in section 2. If NBTYP(M,1) = 6, then the time
derivative of the M-TH variable on the right side will be com-
puted from the differential equation using one sided differ-
ences. For example, consider the one dimensional problem

ug + u = 0. The right boundary at x = Xy, is an outflow

boundary and thus the value of u at the boundary must be
obtained from the interior values thru the differential
equation. If a second order spatial discretization is used,
a method of lines approximation for interior points is

dUi/dt + (Us,,(t) - U, ;(t))/2ax = 0.

j-1'
At the outflow boundary a one sided first order difference

J+1

is used
dUNx/dt + (UNX(t) - UNX—1(t))/AX =0

A first order approximation is used here for stability. At
the left boundary the value U1(t) is specified by

U1(t) = go(t). At this boundary we can use the condition
NBTYP(1,3) = 4 (M = NV = 1 for this problem) and supply

go(t) thru the function GBDY. At the right boundary the con-
dition NBTYP(1,1) = 6 is used, The NBTYP = 6 condition is
used in conjunction with a user supplied subroutine called
UTBDY. If NBTYP = 6 then the value of the time derivative of
each marching variable on the given side is given to the
UTBDY routine as an input parameter. The user routine can
change the values of these time derivatives before they are
used by the Runge-Kutta time integrator. In the case of the
present simple example, the time derivative at the right side
obtained from one sided differences should be returned un-
altered. The routine UTBDY has no

function in this case. The boundary condition at the left
for this example could be NBTYP(1,3) = 6. In this case the
UTBDY routine should return the time derivative of the bound-
ary function go(t) (U](t) = go(t)). The calling sequence for
UTBDY is

UTBDY(T,X,Y,NSIDE,NV,W,UT)

The input values (U1’U2""UNV—1’P) or (U1’U2""UNV) are
stored in the array W. On input the array UT contains the

approximations of the time derivatives (U']""U'NVU-T)’

where NVU = NV - NVP, obtained from the differential equa-
tion using one-sided spatial differences. The UTBDY routine
can correct these values and return the corrected values as
the output in the array UT. In this example, the value

ut(1) = dgy/dt would be returned. (In this example, we have
ignored any y-dependence). In this example the use of .
NBTYP(1,3) = 6 at the left boundary is an alternative to the
use of NBTYP(1,3) = 4. Either will do. The use of
NBTYP(1,1) =6 on the right (outflow) boundary is quite trivial
in this example. The wave equation discussed in section 2
provides a less trivial example. Here the boundary condition

at the right boundary is imposed on the characteristic variable
U(E,T,NX) + U(t,2,NX) = gy (t)

Here U(t,1,NX) approximates Ul(t’XNX) and we have again

dropped the y-dependence. From the differential equation we

have the time derivative of Uy and Uy which we can use to
approximate the outflow characteristic Uy =Uy. These time deriv-
atives are supplied to UTBDY in the input array UT. We thus have

U'(t,1,NX) - Us(t,2,NX) = UT(1) - UT(2)

The inflow characteristic equation can be differentiated to
yield

U (E,T,NX) + U (t,2,NX) = g'T(t)

If these two equations are combined we obtain the following
code to correct UT.

-10-

UTT = .5%(UT(1)-UT(2)+DG1(T))
UT2 = .5%(UT(2)-UT(1)+DG1(T))
UT(1) = UT
UT(2) = UT2

Here we assume DG1(T) = dgj/dt. This method introduces the
boundary conditions imposed on the characteristic variables
(U]+U2) and (U1—U2) into the differential equation written in
terms of U] and UZ'

3.4 The following parameters control the time integration

T - on input, this parameter gives the starting value for the time
integration. On output it contains the final value of the time,
usually this final value is that of TOUT.

TOUT - an input parameter giving the end point of the time integration.

IFLAG - the value IFLAG = 1 on input indicates this is a new run and
variables should be initialized. The value IFLAG = 2 on input
indicates a continuation of a previous run. In this case vari-
ous internal variables will not be initialized, instead the old
values will be used. For example, the old time step can be used
as the initial gquess for the next time step, rather than making a
new time step estimate independent of past history. If IFLAG = -]
on input, then only a single step will be taken regardless of the
value of TOUT. On output the value of IFLAG will be 2 if the TOUT
was reached, or will be -2 if IFLAG = -1 on input. If IFLAG > 2
on output then an error was detected by the RKFPDE package. In
this case an error message will be printed by the package.

EPSABS - a real input array of dimension NVU (where NVU = NV-NVP is
the number of marching variables). The array sets the absolute
error tolerance used by the Runge-kutta method. This method will
choose the time step so that the estimated error in the M-TH
variable per step (not per unit step) is bounded by

EPSREL(M) * |[U(M)]| + EPSABS(M).
Here 1 <M < NVU = NV-NVP.

-11-

EPSREL - a real input array of dimension NVU (where NVU =_NV-NVP
is the number of marching variables). The array sets the rela-
tive error tolerance used by the Runge-Kufta method.

3.5 The work arrays. The contents of-these-arrays should not_be
altered between a call of RKFPDE and a second call (with IFLAG = 2)
which continues the integration started with the first call.

WORK - a real work array of dimension NDWK.

NDWK - an integer input parameter giving the dimension of the array
WORK. An approximate minimum value for NDWK when NVP = 1 is (using ECS)
200 + (30+18*NV)*NX + (3§+LO@2(NY))*NY + Z*NX?NY. '

Without ECS “increase this by A*NV*NX*NY
IWORK - an integer input array of dimension NDIWK. '

NDIWK - and integer input parameter giving the dimension of IWORK
which must be at least 6*NV+24

3.6 Intermediate output. By setting the parameter NBUG, various inter-
mediate results can be obtained. The parameter NBUG is declared

in common block
COMMON /RICOM/ MOUT ,NBUG

This parameter is set in a DATA statement in the RKFPDE routine.
On some systems this DATA statement should be moved to a BLOCK
DATA subprogram. The intermediate data obtained from internal
print statements for NBUG = 0 was used to debug the HYPACK pack-
age. The only printout which is likely to be of much use to
~most users 1is obtained when NBUG = 2. This value causes the
‘current' time step H = At and the normalized estimated error
(maximum of estimated error relative to
EPSREL(M)*|JU(M)|| + EPSABS(M)) to be printed on each time step
attempted.

The parameter MOUT is the device number on which diagnostic
messages are printed.

4. User supplied subroutines.

These subroutines define the differential equation and obtain
the results of the integration. There are ten of these subroutines.

-12-

Even if they are not used, a dummy version may have to be supplied to
satisfy the loader. The user supplied subroutines are the following.
Examples of their use are given later.

SUBROUTINE F(T,X,Y,NV,W,FM)

This subroutine defines the term fm(t,x,y,w) where
W = (U],...U
is an integer input, W is a real input array of dimension NV,

NV»T’P)' T, %, and y are real input parameters, NV

and FM a real output array of dimension NV. The values fm are
returned as FM(M) where 1 <M < NVU and NVU = NV-NVP. The values
T,X,Y,NV, and the vector W(M), 1 <M < NV are input. If this f_
term does not appear in the equation it is necessary to set

FM(M) = 0 unless the logical array element ISWDR(5) 1is set to
.FALSE. . This array is set by a data statement in the RKFPDE
routine. Some computing time can be saved by setting the ISWDR
elements .FALSE. for unused terms in the equation.

SUBROUTINE G(T,X,Y,NV,W,GM)

This subroutine defines the term gm(t,x,y,w) similar to sub-
routine F described above. If this term is not present in the
equation, then GM(M) should be set to zero. In order to avoid
calling G at all the internal array element ISWDR(10) can be set
.FALSE. within the RKFPDE routine.

SUBROUTINE HU(T,X,Y NV, W, WX, WY, WXX,WXY WYY, WXA, WY4 , HUM)

This routine returns the values of the term hm as HUM(M). Here
T,X, and Y are real input parameters, NV an integer input, W, UX,
WY, WXX, WXY, WYY, WX4, and WY4, are real input arrays of dimen-
sion NV and HUM is a real output arfay of dimension NV. The

partial derivatives of W = (U],..U P) are supplied as input.

Here WX = (aur/ax.auz/ax,...,ap/8x§Y ;nd similarily for the re-
maining terms. The fourth derivatives are available only if a
five point difference stencil is used (NORDER = 2). The fourth
derivative approximdtions are intended for use in artificial
viscosity terms. The element HUM(M) is the M-th component of

the term h(t,x,y,w,wx,wy,wxx, xy’WynyX4’WW4)' If one of the

W g W 4) is not required to
Xy

W

arguments (Wx’wy’wxx’wxy’wyy

-13-

compute h then the corresponding element in the array ISWDR can
be set .FALSE. in the RKFPDE routine. These corresponding ele-
ments are (2,6,3,9,7,4,8). Resetting the ISWDR array is not nec-
essary but it may reduce computational cost.

SUBROUTINE HP (T, X, Y NV, W, WX, WY, WXX, WXY, WYY, WX4,WY4 ,HPM)

This routine computes the right side r of the elliptic equation
for p. The input parameters (T,X,Y ,NV,W,WX, WY ,WXX,WXY,WYY,WX4,
WY4) have the same meaning as in the HU routine. However, the
output parameter HPM is a real scaler in this case. The logical
array ISPDR can be used to avoid computing unused arguments of
the HP routine is the same way that ISWDR was used for the HU
routine. The elements (2,6,3,9,7,4,8) of ISPDR correspond to
(Wx’wy’wxx wxy’wyy’wx4’
RKFPDE routine.

W 4). The ISPDR array is also set in the
Yy

b

FUNCTION GBDY(T,X,Y,NSIDE,M)

This real function has real input parameters T, X, and Y and
integer input parameters NSIDE and M. It returns the value of
the right side g of the boundary condition u = g or U, +au=4a
for the M-TH variable on side determined by NSIDE (1sNSIDE<4)
at the point (X,Y) at time T. The point (X,Y) will be a bound-
ary point on the mesh (XPTS(I),YPTS(J)). Here 1T <M < NV.
BEWARE. The elliptic equation solver may not work unless the
second order finite difference matrix is diagonally dominant.

FUNCTION ABDY(T,X,Y,NSIDE,M)

This real function has the same input as the GBDY function. It
returns the value of the coefficient a in the mixed boundary con-
dition described in section 2, namely su/on + a u = g. It will
only be called if the type of boundary condition is
NBTYP(M,NSIDE) = 5. For the elliptic variable (M=NV), this
coefficient must be independent of the coordinants (X,Y). It

may depend on T.

SUBROUTINE UTBDY(T,X,Y,NSIDE,NV,W,UT)

This routine is called if NBTYP(M,NSIDE) = 6 for one

-14-

the variables. Its use is described in section 2 with further
examples in section 6, below. Normally, if NBTYP(M,NSIDE) = 6
for some M, then NBTYP = 6 for all M along that side, however,
this is not necessary. The integer input parameters NSIDE and NV
give the boundary side and the dimené%on of W. The vari-

ables T, X, and Y are real input parameters, giving the time

and the spatial coordinates, W is a real input array containing

the variables (U;sUys.. Uy 5P) or (Up,.. Uy,) if NVP = 0.

On input the real array UT contains the approximation to the time
derivatives (UTI""’UINVU> where NVU = NV-NVP. The array UT

can be corrected as indicated in section 3 to account for char-
acteristic boundary conditions for a hyperbolic equation.

SUBROUTINE UINIT(T,X,Y,NV,U)

This routine is used to supply the initial values of the march-
ing variables (U1""UNVU) where NVU = NV-NVP. The real input
parameters T, X, and Y give the time and spatial coordinants.

The integer input NV is the dimension of the array U which is

the same as the number of variables. The output array element
U(M) gives the value of the M-th initial variable at T, X, and Y.
If the elliptic variable is present (NVP=1), then the initial
value of P (which is stored in memory as U(NV)) is not given by
this routine, but is computed from the elliptic equation. This
routine is required because the variables may be stored in bulk
memory (ECS or LCM) rather than in a central memory array. There-
fore there is no array U of dimension U(NV,NX,NY) which contains
the solution in central memory. Hence this subroutine is required

to set the initjal values in bulk memory.
SUBROUTINE PCOFX(X,A,B,C)

This routine sets the coefficients A(X),B(X),C(X) of the elliptic
equation for p, namely o '

A(x)PXX + B(x)PX + C(x)P + D(y)Pyy + E(y)Py + F(&)P = r,

Here X is a real input parameter and A, B, and C are real output
parameters.

-15-

BEWARE: The elliptic equation solver may not work unless the
second order finite difference matrix is diagonally dominant.

SUBROUTINE PCOFY(Y,D,E,F)

This routine sets the coefficients D(Y), E(Y), F(Y) of the
elliptic equation for p, namely
A(x)PXX + B(x)PX + C(x)P + D(y)Pyy + E(y)Py + F(y)P = r

Here Y is a real input parameter and D, E, and F are real out-
put parameters.

5. Obtaining the output from the integration.

As mentioned in the discussion of the UINIT routine, there
may be no central memory array which contains the solution, instead
the solution is stored in bulk memory (ECS, LCM, or disk). Therefore
the solution can not be returned to the user as an array argument to
the RKFPDE routine. Instead each variable in bulk memory can be
written into a two dimensional central memory array containing NX*NY
values. To obtain these values the user must call the GETW sub-
routine as described below.

SUBROUTINE GETW(NV,NX,NY,M,W,NXD,NYD,WORK,NDUWK)

The integer input variables NV, NX, NY, and M give the number

of variables, the number of mesh points in X and Y, and in-
dicate that the M-th variable is to be output. The NX*NY values
of the M-th variable are written into the real output array W
which has dimension W(NXD,NYD). The integer input variables

NXD and NYD define these dimensions for the GETW routine. The
work array WORK and its dimension NDWK must be the same as
supplied to the RKFPDE routine. If bulk memory is not used, then
the solution is stored in the array WORK along with intermediate
results.

6. Examples of the use of this package.

First we will consider a simple hyperbolic equation on the unit
square 0 < x,y, < 1.

-16-

We assume the values of u are specified for all t = O along the left
and bottom sides of the unit square. If the initial conditions are
u(0,x,y) = cos(x+y) and the boundary conditions along the bottom and
left side are u(t,x,y) = cos(x+y-2t), then the solution of differential
equation is u(t,x,y) = cos(x+y-2t). To obtain a solution for 0 <t <1,
the input parameters might be

T=20
TOUT = 1
IFLAG = 1
NX = 8
NY = 8
NV = 1
NVP = 0

EPSREL(1) = 0.001

EPSABS(1) = 0.001

NBTYP(1,NSIDE) = (6,6,6,6) 1 < NSIDE < 4
NORDER = 2

XPTS(I) = (I-1)/7.

XPTS(J) = (J-1)/7.

il

The user supplied functions might be the following.

SUBROUTINE F(T,X,Y,NV,W,FM)

REAL W(NV), FM(NV)

FM(1) = -W(1)

RETURN

END

SUBROUTINE G(T,X,Y,NV,W,GM)

REAL W(NV), FM(NV)

GM(1) = -W(1)

RETURN

END

SUBROUTINE HU(T,X,Y NV, W, WX, WY ,WXX,WXY WYY, WX4 , WY4 ,HUM)

REAL W(NV), WX(NV), WY(NV), WXX(NV), WXY(NV), WYY(NV), WX4(NV),
WY4(NV), HUM(NV)

HUM(1) = O

RETURN

END

-17-

SUBROUTINE UTBDY(T,X,Y,NSIDE,NV,W,UT)

REAL W(NV), UT(NV)

IF (NSIDE .GE. 3) UT(1) = 2.*SIN(X+Y-2.*T)

RETURN

END

SUBROUTINE UINIT(T,X,Y,NV,U)

REAL U(NV) |

U(T) = COS(X+Y-2*T)

RETURN

END

The routines GBDY, ABDY, HP, PCOFX, AND PCOFY are just dummy routines
in this case. We could also use the boundary type NBTYP(1,NSIDE) =
. (6,6,4,4). 1In this case the GBDY and UTBDY routines would be the
following. The UTBDY routine is only called on the outflow bound-
aries in this case, and it simply returns the UT value unaltered.

FUNCTION GBDY(T,X,Y,NSIDE,M)

GBDY = COS(X+Y-2.*T)

RETURN

END

SUBROUTINE UTBDY(T,X,Y,NSIDE,NV,W,UT)
REAL W(NV), UT(NV)

UT(1) = UT(1)

RETURN

END

