DAVE-HAL/S: A SYSTEM FOR THE STATIC DATA FLOW
ANALYSIS OF SINGLE-PROCESS HAL/S
PROGRAMS

by

Carol Drey
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

CS-CU-141-78 November 1978

This work was supported by grant NSG 1476 from NASA- Lanq]ey Research
Center and NSF Grant Number MCS77-02194.

Abstract

The application of data flow analysis algorithms to improve
the reliability of single-process HAL/S programs is described. These
algorithms evolved from the development of a system, DAVE, designed
to analyze Fortran but are basically language-independent and there-
fore adaptable to HAL/S. An overview of the DAVE-HAL/S system is pre-
sented and features of HAL/S requiring special attention are discussed.
The anomalies detected by the system are Tisted, followed by a high-
Tevel description of the system components. Since concurrency is a
major feature of HAL/S, the last section indicates work in progress
to adapt the analysis to handle concurrent-process as well as single-
process programs.

Introduction

DAVE-HAL/S is a tool for the static data flow analysis of
HAL/S programs. The system described here is . designed to detect the
presence of data flow anomalies in single-process programs and is
patterned after the DAVE system for FORTRAN [1]. DAVE-HAL/S, how-
ever, employs the faster, more efficient algorithms described in the
Fosdick-Osterweil article, "Data Flow Analysis in Software Reliabili-
ty" [2], which were developed after the completion of DAVE-FORTRAN.
The term "DAVE" will be used here to refer to those elements of the
analysis which are language-independent, while "DAVE-FORTRAN" and
"DAVE-HAL/S"™ will be used to refer to specific DAVE systems.

This report first presents a summary of the ideas behind a

DAVE system. For a more detailed description of the algorithms, the
reader is referred to [2]. Section II discusses special features of
HAL/S which affected the design of DAVE-HAL/S. The third section 1ists
the anomalies detected by DAVE-HAL/S and their relationship to error
conditions detected by the Intermetrics HAL/S compiler [3]. The fourth
section consists of a high-level description of the data flow analysis
system and the final section looks at work in progress to extend the
analysis to concurrent process programs.

[. Concepts and Capabilities

DAVE-HAL/S is designed to detect anomalous data flow patterns,
symptomatic of programming errors, not only along paths within function
and procedure blocks but along paths which cross block boundaries as
well. The algorithms used to detect these patterns of variable usage
employ two types of graphs to represent execution sequences of a program.
The first, a flow graph, is used to represent the flow of control from
statement to statement within a subprogram unit. Since nodes in a flow
graph reflect the control structure of a program, there may not be a
one-to-one correspondence between nodes in the flow graph and the
source statements in a unit. The correspondence between HAL/S state-
ment and node types is discussed in [4]. Note that while a statement con-
taining a procedure or function invocation is represented as a single
node, that node actually represents all the data actions which occur in-

side the called block. Because of the order in which DAVE processes
subprogram units, the data flow information in the called unit can be
passed across the block boundary without placing its control structure

at the point of invocation in the caller. To utilize the flow graph,
DAVE's analysis requires the following information for each node:

(1) its predecessors; (2) its successors; (3) its node type; (4) a repre-
sentation of the statement or statement part associated with it; and

(5) an index specifying the sequential number of that associated state-
ment.

The other type of graph used is the call graph, which has the
same form as a flow graph, but its nodes represent subprogram units and
its edges indicate invocation of one unit by another. The call graph is
used to guide the analysis of the units comprising a program in an or-
der referred to as "leafs-up." The leaf subprograms, which invoke no
others, are processed first; then those units which invoke only processed
units are analyzed in a backward order with the main program block being
processed last. In order to use this Procedure, the call graph must be
acyclic. Therefore, before DAVE-HAL/S begins analysis, it checks the
call graph for cycles, indicating recursion, which is illegal in HAL/S.
If it finds any cycles, it issues a message and terminates.

At the core of the data flow analysis is the idea of sets of varia-
bles called "path sets," which are associated with nodes in the flow graph.
Membership of a variable in a path set for a node indicates that a particu-
lar sequence of data actions on that variable occurs at the node. The
three possible actions are reference, define, and undefine. For state-
ments containing no procedure or function invocations, determination of
path set membership is straightforward. For instance, for the assignment
statement, o = o + g, associated with a node n, o and g will be placed in
those path sets which represent a reference as the first data action at
n. o will also be placed in those path sets representing an arbitrary
sequence of actions followed by a definition. A variable v. appearing in
the same subprogram, would be placed in the path set representing no
action upon the variable at node n. N ‘

Let us consider a leaf subprogram. Once the path sets have been

determined for the nodes in its flow graph, the path sets for the unit
as a whole can be constructed using the aigorithms described in [2].
The same procedures are followed whether analyzing variables declared
in the unit or global to it. For formal parameters and global varia-
bles, the path sets are used for passing variable usage information
across block boundaries and are saved in a master table as each unit is
analyzed. At the same time as these path sets for the unit as a whole
are created, additional path sets are formed for each node reflecting
what sequences of data actions occur entering and Teaving that node.
By intersecting path sets representing sequences of actions entering (or
leaving) the node and occurring at the node, anomalous data flow pat-
terns are detected. The three types of anomalies found in this manner
are:

(1) a reference to an uninitialized variable

(2) two definitions of a variable with no intervening
reference

(3) failure to subsequently reference a variable after
defining it

When a non-Teaf subprogram is analyzed, path set membership is de-
termined as for a leaf with this exception: When a function or procedure
invocation is encountered at a node, path set information must be passed
from the invoked block to this node. First the path sets for the invoked
block as a whole are retrieved from the master table. Then the actual
arguments are placed in the same path sets as their corresponding formal
parameters. This is also done for any global variables which are members
of the path sets for the invoked block. Thus, the data actions which
occur in the invoked procedure are reflected in the path sets for the
node containing the invocation. Other than this, the analysis follows
the same steps as outlined for a leaf unit.

In addition to the aforementioned anomalous path deteet%on? the
analysis performed by DAVE provides information which may be used for pro-
gram documentation. This includes the order in which code blocks may be in-
voked, which variables need to be assigned values before entry to a
block and which variables are assigned values there, as well as the side
effect data flow of global variables as a result of an invocation of the
block.

Although DAVE-HAL/S was designed for the HAL/S language, there

should be no problem in employing it to analyze HALMAT code. Since
HALMAT contains the same data and control flow information as HAL/S,

it can be mapped onto the same type of flow graph as HAL/S and the

same type of variable usage information can be gathered from it ---the

two basic requirements for the operation of DAVE.

I1.

Special Considerations for HAL/S

Some special features of HAL/S and their impact on the design

of DAVE-HAL/S are discussed in this section.

1.

Data types: Three types of subscripting - array, structure,
and component - may be applied to the HAL/S data
types MATRIX, CHARACTER, VECTOR, ARRAY, STRUCTURE.
As in DAVE-FORTRAN, any action performed upon one
element of a subscripted data item is considered to
be performed on the data item as an entity.

Temporary variables within DO...END statement groups: We assume
that each data item contains a unique entry in a sym-
bol table. Therefore, the name of a temporary data
item may be treated as a local variable for the block
containing the DO...END.

In-line functions: Since a data item declared in an in-line

function will have a unique symbol table entry,
it may be treated as local to the containing
block.

% macros and REPLACE: We assume that DAVE-HAL/S works on the ex-
panded text of a program.

SUBBIT pseudo-conversion function: This is the only conversion
function which may appear in an assignment context
as well as in an expression. When used in an
assignment context, its argument is assigned a value
as a result of its invocation. When used in a refer-
encing context, its argument is considered referenced,
as with the other conversion functions.

6. (a) NAME facility: When a NAME data item is used as an ordinary
data item (indirect accessing), all one can
say i1s that it is being referenced, and noth-
ing at all about the data item it points to.

(b) NAME pseudo-function: This function is used to reference or

modify pointer values. In a referencing con-
text, if the argument is an ordinaty data item,
one or more pointers to it are created. For
DAVE's purpose, this is not considered a refer-
ence to the ordinary data item. If the argu-
ment is a NAME data item, it is considered
referenced. The appearance of a NAME pseudo-
function in an assignment context causes the
argument, which may only be a NAME data item,
to be defined.

ITI. Anomalies Detected by DAVE-HAL/S

0f those anomalies detected by DAVE-FORTRAN that are not FORTRAN
specific, there are two that are detected by the Intermetrics HAL/S
compiler: (1) the mismatch of actual arguments and formal parameters
in type or dimensionality, and (2) an indication of variables which
are declared but never used.

Anomalous data flow which DAVE-FORTRAN does detect which the HAL/S
compiler does not are, as described earlier:
(1) a reference to an unitialized variable

(2) a definition of a variable followed by another definition
of that variable with no intervening reference

(3) a definition of a variable with no subsequent reference to
that variable

These three conditions are language-independent and their detection is
useful for verifying HAL/S code.

The HAL/S compiler does detect an uninitialized variable reference
but only if the variable never appeared in an assignment context. It
does no path analysis. Neither does it do any analysis across procedure
boundaries, as DAVE does. It will flag a formal input parameter which

is never referenced inside its block but it misses the fact that an

actual input argument corresponding to that parameter is also not refer-

enced at the point of invocation: Because it is an input argument, the

compiler considers that a referencing context. For the same reasons,

the compiler will also not detect several forms of side effects, e.g., an

actual input argument being assigned a value via its global name inside

an invoked procedure. A complete list of the anomalies detected by

DAVE-HAL/S follows:

1. An input argument which is never referenced inside the called func-
tion or procedure is detected at the point of invocation.

2. An assign argument which is never assigned a value inside the called
function or procedure is detected at the point of invocation.

3. A reference to a variable which has not been initialized on some or
all paths to the reference. This anomaly is reported for all pro-
gram variables.

4. Two definitions of a variable with no intervening reference on some
or all paths between the definitions. This anomaly is reported
only for simple local and global variables.

5. A definition of a variable occurring as the last action upon the
~variable in the program unit. This is reported for local variables
declared AUTOMATIC in procedure or function blocks and for all local
and COMPOOL variables at the main program level.

6. The non-usage of a variable is detected in the block containing the
variable's declaration. Either the variable is never used or the
variable name appears as an acutal argument to a function or proce-
dure but is never actually referenced or defined there. The HAL/S
compiler cannot detect the second condition because it does no path
analysis; it can only detect a variable which is declared but never
appears again.

7. Possible side effect situations, which may occur when:

NOTE: None of these situations is illegal in
HAL/S, but the results obtained are
either dependent upon the parameter passing
mechanism of the implementation as in (a)

and (b), an unusual data usage (c), or the
order of evaluation of an expression (d).

(a) the same data item appears both as an input argument and as

(b)

an assign argument in a procedure invocation, e.qg.,

CALL PéOC(A)ASSIGN(A); PROC:PROCEDURE (X)ASSIGN(Y);
. DECLARE INTEGER,X,Y,Z:

1

X3

[HE

N <<

Since the HALS/S lLanguage Specification [5] states that
input arguments may be call-by-value or call-by~-reference,
the value that will be assigned to 7 in this example is im-
plementation dependent.

a global variable, appearing as an actual input argument is
also assigned a value as a global variable by the invoked
procedure or function, e.g.,

P:PROGRAM; C:PROCEDURE(X)
DECLARE INTEGER,A,B; DECLARE X INTEGER;
CALL C(B); B = B+1;

. A= X

Note that if a global variable is an actual assign argument
and is referenced by that name inside the invoked block, the
result is well-defined since assign arguments are specified
as call-by-reference. However, it may still be useful to
document this type of data flow.

the same variable appears more than once in the Tist of assign
arguments in a procedure invocation, e.g., CALL PROC ASSIGN (A,A).
Again, the result is well-defined because assign arguments are
call-by-reference, but the user should be made aware of the side
effect.

evaluation of a function alters the value of a data-item
which appears elsewhere in the expression, right-hand-side
of an assignment statement, or CALL statement in which the
function invocation appears, e.g.,

DECLARE INTEGER,A,B,X, FUN:FUNCTION INTEGER(X);
' . DECLARE X INTEGER;

I =

HoH

:‘4-‘
A+FUN(X); gETUgN1§+T;

CLOSE FUN;

8. A statement which is not a RETURN but whose execution immediately
precedes the CLOSE statement in a function block. This is only
reported if there exists a path from the start node to this state-
ment.

9. The presence of recursion in a HAL/S program.

IV. Design of DAVE-HAL/S

This section contains a high level description, written in
PDL[6], of the flow segments comprising the DAVE-HAL/S data flow
5na1ysis system. These segments require access to certain data
aggregates described in Section I: a call graph, a flow graph for
each subprogram unit, and a master table containing an entry for each
unit. In addition, these segments assume the availability of a symbol
table containing a unique entry for each data item in the program and
lTists of local variables and global variables for each subprogram unit.

-10-

Tree of Inter-Segment References

Page Segment

11. Data flow analysis driver

12.
13.
14.
15.
19.
22.
23.
24.
26.

27.
31.
32.
33.
34.
35.
36.
38.

Process call graph for cycles and Teafs-up ordering
Depth first search(v)
Form path sets for template
Build path sets
Place (expression variables) in (X) path sets
Pass path set membership of (parameter) to (argument)
Report non-usage of (argument)
Report side effects involving (argument)
Pass path set membership of global variables over block
boundary
Determine path sets for entire block
Number flow graph in postorder
Search and number(v)
Execute LIVE on graph
Execute AVAIL on graph
Report local anomalies
Determine anomalous paths of type ur, dd, du
Find a path that contains anomaly (direction, xy,
frequency, node) for (variable)

-11-

SEGMENT Data Flow Analysis Driver

Process call graph for cycles and Teafs-up ordering
IF cycles are present in call graph
Output message ("I1legal recursion in program")
Stop

ENDIF

DO for each block in leafs-up order
IF block is specified by template
Form path sets for template
Make entry in master table
Output message ("Template used for (block name)")
ELSE

Get flowgraph for block
Build path sets
Report Tocal anomalies
Report global anomalies
Make entry in master table
ENDIF
ENDDO

END

“12-

SEGMENT Process call graph for cycles and leafs-up ordering

dkkkkkkdokkokkkkkkkkdokkdkkdokkokdokkokkkkkdokkdkkkdhkkhkhhhkhkhhkhkhkkkkkkkkhkkkkkhkhkkhkk

This segment determines the presence of‘cycles in the call graph
(indicating recursion) and determines the postorder numbering of the
call graph, which is the Teafs-up order in which the subprogram units

3 S 3 Ao o 3 o Aok Xk %

will be analyzed.

%*
ERR R S s R R e R L L e T R R e R e R S Y T e Y e S S L L L

2 0 S o S oo 2 5

Initialize TREE to 9

DO for all nodes v in call graph
PREORDER(v) = 0

ENDDO
i=0
j=20

Depth first search(entry node)
x Check for backedges ***
cycles = false

DO for each node v in graph
DO for each node w on v's exit list
IF edge (v,w) ¢ TREE
IF w<v <w+DESCENDANTS (w)
cycles = true
ENDIF
ENDIF
ENDDO
ENDDO

END

-13-

SEGMENT Depth first search(v)

kkkkdokkdodkokdkkdokkdokkhkfkkkkhkkhkdkkhkhdhhkhkhhhhkhrhkhrhhkhhhkhkkhrhhhkrihkrirhk

This segment performs a depth first search on a directed graph,
numbers the nodes in preorder and postorder and determines the depth
first spanning tree and the number of descendants for each node in
that tree.

kkkkkkdkkkkhkkhhkhdkkhhkkdekkhhkkdhkhhhhkkhhkhkhhhkhkhhkhkdhhhkhkhhkkhkrkhkkkhhkhkhkrdrxrdk

A b 36 2 o o e 5008 o A e O
b 3 3 e S o 2 ok b b 5

i=d+1
PREORDER(v) = i
DO for each node w on v's 1ist of exit nodes
IF PREORDER(v) = 0
Add (v,w) to TREE
Depth first search(w)
ENDIF

ENDDO

DESCENDANTS(v) = i - PREORDER(v) + 1
J=3+1
POSTORDER(v) = j

END

-14-

SEGMENT Form path sets for template

Fekdkdodokkokdkkkkdodkokdokkkkkkkkkdkkkkhkkhkkdhkhkhkiokkhhhhkhkhkhkhkhkhkhkhhkhhkhkihkikhhkhhithk

This segment places all input parameteré in referencing path sets
and assign parameters in defining path sets for procedure and function

blocks represented by templates.
%*%*********k****************

33 3k ok e o o o o o
o o e o o o e

. . PO . .) 3 { =
Set up and initialize path sets: AX,EstX,JX,EX,FX,G,I for x = r,d,u

DO for each input formal parameter
Enter (parameter) in (Ar)
Enter (parameter) in (Cr)

ENDDO

DO for each assign formal parameter
Enter (parameter) in (Dd)
Enter (parameter) in (Fq)
Enter (parameter) in G

~15-

SEGMENT Build path sets

Injtia]jze G(graph) = @ kkkkdkkdkkhhkhhkhhhkhhkikrdhkhhhhrkhhhhkhkhhhhkihk

Path set G has been added to the path
sets described in [2] to be able to
identify variables which are defined
anywhere in the unit.

o 3 Sk AN AN

DO for each node in flow graph

Initialize SIDEFCT = REF

i

*

*

* Used for detection of side
DEF = *
*

*
Fededede ke ke dede ke dededodedeoke hokodedededeoded deokdekkok

Set up and initialize path sets: Ax(node), Bx(node),
Bx(node), Cx(node), Dx(node), Ex(node),
Fx(node), I(node) for x = r,d,u

DO case of node type

Assignment:
Place (right-hand-side) in (referencing) path sets
Place (left-hand-side) in (defining) path sets

CALL:

Place (arguments) in (referencing) path sets

DO initialization:
Place (loop variable) in (defining) path sets

Place (variables in initial value expression) in (referencing)
path sets

DO successor:

Place (variables in successor expressions) in (referencing)
path sets

Place (loop variable) in (referencing) path sets
Place (loop variable) in (defining) path sets

kkkkkkkhhkRkkkhdkhhkhkhkkhhkkhhhhhkdkhkhkihk

Fdkdkkdkkdkhkdkhkkhhkhhhkkrhkikk

% 2 5 2 2k o 2 o 2 o % 06 %

*
*
*
*
*
*
*
*
*

-16~

DO test:

Place (variables in conditional expression) in (referencing)
path sets

DO case:
Place (variables in expression) in (referencing) path sets

IF:

Place (variables in conditional expression) in {referencing)
path sets

Program entry:

DO for all variables declared in program block
IF variable appeared with initialization attribute
Place (variable) in (defining) path sets
ELSE
Place (variable) in (undefining) path sets
ENDIF
ENDDO
DO for all COMPOOL variables
IF variable appeared with initialization attribute
~ Place (variable) in (defining) path sets
ELSE
Place (variable) in (undefining) path sets
ENDIF

ENNDO

Procedure or function entry:

DO for all variables declared in this block
1F variable appeared with initialization attribute
Place (variable) in (defining) path sets
ELSE
Place (variable) in (undefining) path sets
ENDIF
ENDDO

-17-

CLOSE program:
DO for all variables declared in program block
Place (variable) in (undefining) path sets
ENDDO
DO for all COMPOOL variables
Place (variable) in (undefining) path sets
ENDDO

CLOSE procedure or function:
DO for all variables declared AUTOMATIC in this block
Place (variable) in (undefining) path sets
ENDDO

RETURN:
Place (variables in expression) in (referencing) path sets

READ:
Place (expression variables) in (defining) path sets

WRITE: 4
Place (expression variables) in (referencing) path sets

FILE input:
Place (variable on left-hand-side) in (defining) path sets

Place (variables in right-hand-side file expression) in (referenc-
ing) path sets

FILE output:
Place (variables in left-hand-side file expression) in (referenc-
ing) path sets

Place (variables in right-hand-side expression) in (referencing)
path sets

-18-

Other:
Ignore
ENDDO
Cx (node) = CX (node) u AX (node)
FX (node) = FX (node) v DX (node)
I (node) = {all variables} - (AX (node) u BX (node)

u CX (node) v DX (node) u EX (node) u FX (node))
G (graph) = G (graph) v Cd (Node) u Fd (node)
IF SIDEFCT =~ empty
DO for each variable in SIDEFCT
Output message ("A possible side effect has been detected in
this statement involving (variable)")
ENDDO
ENDIF
ENDDO

Determine path sets for entire block

END

-19-

SEGMENT Place (expression variables) in (X) path sets

%******************’k****'k*w**ﬁ‘****%**w*******f** *“k*?c***********k**ﬁ***k**z
z This recursive segment processes data item tokens -- which may %
z be variables or references to procedures or functions -~ in expres- z

*
% sions and places the variables in the appropriate path sets. f
% X is either referencing, defining, or undefining %
'k******************'k***‘**k******’k*'k**1\:"k'k*:k**'k**if*VE*k****W***%*******’k***k*:

DO for each token in expression
Initialize TEMPREF, TEMPDEF to g
DO case of token type
Built-in _or conversion function {other than SUBBIT) name:
DO for each argument

Place (argument) in (referencing) path sets
ENDDO

SUBBIT pseudo-conversion function:
IF X is referencing
Place (argument) in (referencing) path sets
ELSEIF X is defining
Place (argument) in (defining) path sets
ENDIF

NAME pseudo-function
IF X is referencing
IF argument is NAME data item
Place (argument) in (referencing) path sets
ELSEIF X is defining
Place (argument) in (defining) path sets
ENDIF

User-defined function or procedure name:

DO for each argument
IF argument is an expression other thana singie data item

Place (arqument) in (referencing) path sets

~20-

*********************************%**********:
Argument is single data item -

3 op b 2 ok X

*
*
subscripted or unsubscripted variable name %
e e e e e s e ke ok e s Re ke e ok e e e ke ke ke ke e de e e e e e e e e ke ke e e e ke e de de de de e
IF argument is subscripted variable
Place (variables in subscript) in
(referencing) path sets
Get the formal parameter corresponding to argument
Pass path set membership of (parameter) to (argument)
Report non-usage of (argument) corresponding to (parameter)
Report side effects involving (argument)
ENDIF
ENDDO

Pass path set membership of global variables over block boundary
Output message (documentation information on global variable usage in
invoked block)

Unsubscripted or subscripted variable:

IF X is referencing or undefining
Enter (variable) in (AX) path set
Enter (variable) in (DX) path set
IF X is referencing
Enter (variable) in (TEMPREF) path set
ENDIF
ELSE
Enter (variable) in Dd) path set
IF variable is already in Ar or D,
Remove variable from Dr

ELSE

Enter (variable) in (Ad) path set
ENDIF

ENDIF
IF subscripted variable

Place (variables in subscript) in (referencing) path sets
ENDIF
Other:

Skip token
ENDDO

-20-

*
*
>
%
*
)(,
b g
*
>(.
;Q.
*
*.
*
)(_
*
*
*
*
*
st
*
#
*
*
*
;‘.
b
*
o
3+
’é‘
)(..
)(.
e
ke
*
%
;f.
b
*
*
4
*
)e.
*
;(.
*
*
x_
*
*
*
*
*
#*
;(.
*
*
*
*
%
x.
*
*
*
*
*
*
*
*
*
*

Check for side effects. A side effect occurs if evaluation of a
function alters the value of any other element within the expres-
sion, right-hand-side of assignment stateménﬁ, or CALL statement

in which the function invocation appears. Sets TEMPREF and TEMPDEF
are used to contain variables which were classified referenced or
defined while processing this token (variable or procedure or
function reference). Sets REF and DEE contain variables which
were referenced or defined in that part of the statement analyzed
up to this token.

k30253 3 5 3 5 o3 2ok o o o S oo o o e
b o o e 35832 6 oo 6 2 o 3 o 565 e o

*
*
o
*
}(..
#
*
%
*
*
*
*
;(.
S
*
)‘.
*
*
X‘
%
PR
»*
x.
o
%
-
*
%
e
*
o
o
*
%
*
%
)@.
*
*
¥
>(.
*
e
gé.
-
*
*
*
%
#*
*
s
%
;{.
%

A
;(-
*
*
*
*
*
sk
)(..
*
X%
%
5
;‘.
*
*

SIDEFCT = (TEMPREF n DEF) u SIDEFCT
SIDEFCT = (TEMPDEF A"REF)} v SIDEFCT
REF = REF u TEMPREF
DEF = DEF u TEMPDEF

ENDDO

END

-7~

X O R o e o A 2 A A

QQ'for PATHSET = AXs BX, st st Exa an and I for x = v, da u
IF parameter e PATHSET (graph_.iq.4)
Enter (argument) in (PATHSET(node
ENDIF
ENDDO

cai1er)) path set

IF parameter e G(graphca?ied)

Enter (argument) in (G(graphca]1er)) path set
Enter (argument) in (TEMPDEF) path set
ENDIF

IF parameter ¢ Cr (graph

) or Fw (graph)

called called

Enter (argument) in (TEMPREF) path set
ENDIF
END

e ke ke de e ke gk dode ook de ke e de e dode deode dokoodede ke dede ke edokeode ke dedok ke de e dode ke kg kedede ek dodeoke ke dede kek ke kede ke ok

This segment passes the path set membership of a formal para-
meter in an invoked procedure to the corresponding actual arqu-

ment in order to reflect data flow across procedure boundaries.
e e e oo v vk e v e e oK R ke e e e e ke e e e e e de do e de e e e deke e ke e de e ke de e de e e de e e sk e de e dede e ke e e ke ke ke e ke de ke ke

52555 S ok 3 ok

“D3u
SEGMENT ~ Report non-usage of (argument) corresponding to (parameter)

IF argument is input argument

IF parameter e I(graphca1]ed)
Output message ("(Argument) specified as input argument is
not referenced in (called)")

ENDIF

ELSEIF parameter g G (g?aphca1]ed}

Output message ("(Argument) specified as assign argument is not
assigned a value in (called)")

ENDIF

END

2l -

SEGMENT ~ Report side effects involving (argument)

bk
*
*
x.
*
b3
*
*
*
*
;(.
b3
*
*
x_
o+
*
*
*
i-
*.
*
*
*
x_
*
*
3
*
¥
>(~
'
x-
'
-
»*»
o+
*
*
s
3
%
*
*
*
*
s
*
b
s
>§.
*
*
%
*
*
*
%
*
*
*
*
*
%
x.
*
P
*
*
&

(1) Detect side effect in which input argument is used by
its global name and assigned a value in called block, as well as
being associated with a formal input parameter.

*
*
*
*
¥
*
*
*
i
&***********w**********

Ao o b %

IF argument is input argument

IF argument ¢ G (graph called!

Output message (“Side effect condition - actual input argu-
ment is used by its global name in (called block) and is de-
fined there.")

ENDIF
ENDIF

*
3 (2) Detect side effect in which assign argument is used by
*
% 1ts global name in called block.

dodo e

o 336 O S o e 2 ok

*
sk
)‘.
*
%
*
*
*
S
*
*
)(.
*
*
*
*
;{.
%
+
b3
*
%
b3
&
;(.\
St
*
*
%
k3
)‘.
o+
kS
4
b3
*
S
*
*®
*
*
;(.
%
;{.
b
%
*
*
>
4
)§.
*
£
e
-+
o4
4
*
'
;(.
%
3
b
*
kS
*
%
*
b3

IF argument is assign argument
IF argument ¢ AX, BX’ CX’ DX’ Eyo FX or G for X = v, d, u
Output message ("Side effect condition - assign argument
is used by its global name in (called blocky.")
ENDIF

ENDIF

k**%*************%******

*
*
*
* (3) Detect side effect in which an argument appears both as
*
Y an input and an assign argument in the same call.

*

*

Ok o A b ob ok o 4 %

IF argument is assign argument and also appeared as an input -argument
Output message ("Side effect condition - same data item appears
both as an input argument and an assign argument.™)

ENDIF '

*
*
*
*
b d
*
*
)(.
*
*
*
;(.
*
*
*
*
;f-
H
*
*
*
*
%
*
*
*
*
*
*
%+
#*
*
)6
*
*
*
*
*
){-
%*
*
*
*
%
g
*—
*
*
*
*
*
*
*
*
#*
3{.
%
*
*
*
*
;“’-
*
*
*
*
*
*.
>€'
*

: *

(4) Detect side effect in which an assign argument appears X

*
more than once in the 1ist of assign arguments. o
*
®

**

Rk o o ko

25

IF argument is assign argument and appears elsewhere. in assign argu-
ment Tist

Output message ("Side effect condition - .argument appears more
than once in assign list.")

ENDIF
END

-26 -

SEGMENT Pass path set membership of global variables over block boundary

D0 for each variable var in 1ist of global variables for called block
DO for PATHSET = AX’ Bys Cys Dy Ey>» Fys and I for x = v, d, u
IF var e PATHSET (graph called)

Enter (var) in (PATHSET (node
ENDIF
ENDDO
IF var ¢ G (graph

))

caller

ca?]ed)
Enter (var} in (G(graph ca]Ter)) path set
Enter (var) in (TEMPDEF) path set

ENDIF

IF var ¢ C (graph

) or F. (graphca1}ed)

called
Enter (var) in (TEMPREF) path set
ENDIF
ENDDO

END

-27-

SEGMENT Determine path sets for entire block

Number flow graph in postorder

DO for each node in the flow graph
Set up and initialize sets: NULL, KILL, GEN, LIVE, AVAIL, Ax(n——>),
Cx<n“*>) DX(*->H)’ FX(””>ﬂ), X =1, da u

ENDDO

Set up and initialize path sets: Ax(graph), Bx(graph), Cx(graph),
D (graph), E, (graph), F (graph), I(graph), x = r, d, u

DO for x = r, d and u

DO Case of x
X=r:
y =d
z=u
x=d:
y=r
z =u
X=y
y=or
z =d
ENDDO kR Rk bk ok ko
‘ * Determine Ax(graph) and ¥
DO for each node in the flow graph ol ; o
— ¥ Ax(n—~>) *
i*‘k'k’k***********************z

IF Node type is not exit
NULL(node) = I(node) u Bx(node)

KILL (node) = Ax(node)
GEN(node) ={all variables}- (KILL(node) u NULL(node))

ELSE

NULL (node) = 8

KILL(node) = @

GEN(node) ={all variablesy
ENDIF

ENDDO

Execute LIVE on graph

Ax(graph) ={all variables}- LIVE(entry node)
DO for each node in the flow graph
Ax(n~—>) ={all variables} - LIVE(node)

ENDDO

-8~

DO for each node in the flow graph
GEN(node) = Cx(node)

KILL{node) = (Ay(node) u Az(node)) ,

NULL(node) ={all variables}- (GEN(node) u KILL(node))
i******************************%*#**
¥ Determine Cx(graph) & Cx(n—->)
i***%*****%*********%***************

ENDDO

b2 2 4

Execute LIVE on graph

Cx(graph) = LIVE(entry node)

DO for each node in the flow graph
Cx(n——>) = LIVE(node)

ENDDO

Fhkdkkkkkhhkikhkkkhhkkhkhkh it

*
¥ *
i Determine B, (graph) ¥
k3
*k

%
Fekd gk dedokokk hkhdehkkkkhkkkkk

DO for each node in the flow graph
NULL(node) = I(node) u Bx(node)

KILL(node) = Ax(node)
GEN(node) ={all variables}- (KILL(node) u NULL(node))
ENDDO

Execute LIVE on graph

Bx(graph) = ({all variables}- LIVE(entry node)) n ({all variables}-
A, (graph)) n C (graph)

ek e g vhede Fook Fe ke e Sk o e de K ke kek ke e e ek
Determine Dx(graph) and

D, (-->n)

e e et do ke dede ek de do ke e e dedede dededede dedeokode dede de

3 ot o e
b ok o o

DO for each node in the flow graph
GEN(node) = Dx(node)

KILL(node)= (Fy(node) U Fz(nade))
NULL(node) = {11 variables}- (GEN(node) u KILL(node))
ENDDO

Execute AVAIL on graph

Dx(graph) = AVAIL(exit node)

DO for each node in the flow graph
DX(~—>n) = AVAIL(node)

ENDDO

-26.

i****************************
DO for each node in the flow graph % Determine Fx(graph) and %
* *
* - —
IF node type is -v entry X Fx(>n) %
*

ek Fededke dedededededeodode sk deok dek ok kekeke e deoke ok

GEN(node) = Dy(node) u Dz(node)

KILL(node) = Fx(node)

NULL(node) ={all variables}- (KILL(node) u GEN{node))
ELSE

GEN(node) ={all variables}
KILL(node) = @
NULL(node) = 9

ENDIF
ENDDO

Execute AVAIL on graph

Fx(graph) ={all variables}- AVAIL(exit node)
DO for each node in the flow graph
FX(-»>n) ={all variables}~ AVAIL(node)

ENDDO
x***********************z
DO for each node in the flow graph ¥ Determine Ex(graph) X
IF node type is — entry e ok ook ke ok e e e
GEN(node) = Dx(node)
KILL(node) = Fy(node) u Fz(node)
NULL(node) ={all variables}-(GEN(node) u KILL(node))
ELSE
GEN(node) ={all variables}
KILL(node) = 9
NULL(node) = 9
ENDIF
ENDDO

Execute AVAIL on graph
Ex(graph) = AVAIL(exit node) n (fall variables}- Dx(graph)) n Fx(graph)
ENDDO

-30-

Determine I(graph)

";" ’ i ? ;W‘/ RSSO Ree 5 et s
I(graph) <~~§a11 variables? < .

DO For each node in the flow graph

IF node type — (entry or exit)
I(graph) = I(graph) n I(node)
ENDIF

ENDDO
END

SEGMENT Number flow graph in postorder

*

This segment performs a depth first search on a flow graph and num-
bers the nodes in postorder by invoking recursive segment "Search
and number".

***************************#*************************************%%*k

22 3 o o 2 S 2 e
32 3 ok o o 5% ok b e ok

DO for all nodes n in flow graph
Indicate n "unmarked"

ENDDO

i=0
Search and number (entry node)

END

o 3D -

SEGMENT Search and number (v)

i************* ek o e de ke ke e de e dede e de e e Jeode dede ke e fede e de dedede Je Je de de Kk dede dok Yode keok e de ek Kok ek kek ***I

¥ This recursive segment numbers nodes ina directed graph in postorder. ¥

* : *
ek ok deok dedk s ok T e Rk R e e e ok e e ok ok ok e sk ok sk ok ek ook ek ook ok ke ok ek Rk ok ke k ko ke ke ke

DO for each node w on v's Tist of exit nodes
IF w is unmarked
Mark w
Search and number(w)
ENDIF
ENDDO

i=14+]
POSTORDER(v) = i

END

-33-

SEGMENT Execute LIVE on graph

n = number of nodes in flow graph

hkdkkkk G"‘aph ‘iS numbe‘ped -in pOStOY‘der‘ ke de e ek de e dede de dedede ek dekek ek dedke e de e ek e

DO for j =1 ton
LIVE(j) = ¢
ENDDO

change = true

DO while change s true
change = false
DO for j=1ton
PREVIOUS = LIVE(J)
LIVE() =

DO for k = each of j's successors

LIVE(j) = ((LIVE(k) n (a1l variables}- KILL(k)))
u GEN(k)) u LIVE(J)

ENDDO

IF PREVIOUS == LIVE(J)
change = true

SEGMENT Execute AVAIL on graph

n = number of nodes in flow graph

:**i
¥ Assume graph is numbered from 1 to n in postorder. ¥

* *
e Fo gk ek e e ek ok ke e ek ke e ek sk e e sk ok sk sk ek ek ke ok ok e ok e e s e o ok ok ok ok e ook ek Yook

AVAIL(n) = ¢
DO for j = n-1 to 1
N C ‘ - A
AVAIL(j) =%l variables’ <~
ENDDO

change = ftrue

DO while change is true
change = false
DO for j = n-1 to 1
PREVIOUS = AVAIL(j)
AVAIL(j) ={all variables}
DO for k = each of node j's predecessors
AVAIL(J) = AVAIL(J) n ((AVAIL(k) n (a1l variables}
- KILL(k))) u GEN(k))
ENDDO

IF PREVIOUS —=AVAIL(])
change = trye
ENDIF
ENDDO
ENDDO
END

-35-

SEGMENT Report local anomalies

IF block is main program
DO for each COMPOOL variable in I(graph

)
Output message ("COMPOOL variable (variable name)

main

unused in entire program.")
ENDDO
ENDIF

DO for each local variable in I (graphb}ock)
Output message ("Variable (variable name) declared in block
(block name) is never used.")

ENDDO

IF block is function block
Get entry nodes for block's exit node
DO for each entry node n

IF n is not a RETURN node and 3 a path from start node of
function to n

Output message ("Execution of function block possibly
ends on statement (number corresponding to node) which
is not a RETURN statement.")
ENDIF
ENDDO

ENDIF
Determine anomalous paths of type ur, dd, du

END

-36-

DO for FORM =1, 2, and 3
DO case of FORM

FORM = 7.
X = u
y =r

FORM = 2:
x =d
y = d

FORM = 3:
x = d
y =u

ENDDO

.QQ for each node n in flow graph
Get path sets for n
ANOM = Fx(n) n Cy(n+)
IF ANOM — empty
DO for each variable in ANOM

IF variable is simple variable
or FORM is ur

Find a path that contains anomaly (leaving,
Xy, some, node) for (variable)

Output message ("On one or more paths leaving
node anomaly of type (FORM) occurs for '
(variable). One such path is ...")

ENDIF

ENDDO
ENDIF

ANOM = Dx(n) n Ay(n+)
IF ANOM — empty
DO for each variable in ANOM .
IF variable is simple variable or FORM is — dd

Find a path that contains anomaly (leaving
xy, all, node) for (variable)

Qutput message ("On all paths Teaving node,
anomaly of type (FORM) occurs for (variable).
One such path is ...")

ENDIF
ENDDO
ENDIF

-37-

ANOM = FX(+n) n Cy(n)

IF ANOM — empty
DO for each variable in ANOM
IF variable is simple variable or FORM is ur

Find a path that contains anomaly (enter-
ing, xy, some, node) for (variable)

Output message ("On one or more paths entering
node, anomaly of type (FORM) occurs for
(variable). One such path is ...")

ENDIF
ENDDO
ENDIF

ANOM = DX(»n) n Ay(n)

IF ANOM — empty
DO for each variable in ANOM
IF variable is simple variable or FORM is - .dd

Find a path that contains anomaly (entering
Xy, all, node) for (variable)

Output message ("On all paths entering node,
node, anomaly of type (FORM) occurs for
(variable). One such path is ...")

ENDIF
ENDDO
ENDIF
ENDDO
ENDDO

END

-38-

SEGMENT Find a path that contains anomaly (direction, xy, frequency,
node) for (variable)

i******‘k‘éf*’k*******k****’************7’:‘:\':k*'k:k***********************‘k*****z
% direction = "entering" or "leaving" %
¥ oxy = "ur", "dd", "du", depending upon the type of the anomaly X
% frequency = "some paths" or "all paths" %
% node = node where anomaly was detected x
§ variable = variable for which anomaly was detected %
% Although one solution for finding a path containing an anomaly isgi
E to perform a restricted depth first search for one variable at a §
§ time, this segment will not be specified here as work is in pro- §
E gress to find more efficient algorithms for localizing anoma- %
% Tous path expressions [7]. §
'k**k*'k***%*ﬁk**k%*‘k**'k****k**************'k\k*-k**k***k***’k****************

END

-39-

SEGMENT Report global anomalies

Determine anomalous paths of type ur, dd, du

END

-40-

V. Extension of Analytic Techniques to Concurrency

The data flow analysis system described in this report assumes
that the HAL/S code to be analyzed consists of a single process.
However, the facility for creating a multi-process program structure
is a major feature of the HAL/S language. The algorithms described
here cannot be applied directly to analyze such code, but it appears
that they can be adapted to concurrent-process programs. The con-
current analysis employs precedence graphs in which the effect of
real time statements is modelled by special edges joining the flow
graphs of different processes [8]. Central to the analysis is the
static determination for each node in the program flow graph of which
other nodes must precede its execution, follow its execution, or possi-
bly execute concurrently with it. A complete presentation of these
analytic techniques will be contained in a forthcoming report [9].

Acknowledgments

I would Tike to acknowledge Rebecca Jones for significant help in
creating the PDL specifications of the analysis algorithms.

-47 -

References

L.J. Osterweil and L.D. Fosdick, "DAVE - A Validation Error Detection
and Documentation System for FOrtran Programs " Software - Practice
and Experience 6 (1976), 473-486.

L.D. Fosdick and L.J. Osterweil, "Data Flow Analysis in Software
ReTiability," Computing Surveys 8, 3 (Sept. 1976), 305-330.

HAL/S-360 User's Manual, Version IR-58-15, Intermetrics, Inc.,

Cambridge, Mass., 1977.
B. Edwards, "Graph Representations for HAL/S Programs" (to appear).

HAL/S Language Specification, Version IR-61-9, Intermetrics, Inc.,

Cambridge, Mass., 21 July 1978.

Caine, Farber & Gordon, Inc., PDL, Program Design Language Reference
Guide, 1977.

M. Gallucci, "Report on Path-Generating Algorithm," Dept. of Computer
Science Internal SVG Memo #93, University of Colorado, May 1978.

G. Bristow, "The Static Detection of Synchronization Anomalies in
HAL/S Programs," RSSM/82, Department of Computer Science, University
of Colorado, October 1978.

"DAVE-HAL/S: A System for the Static Data Flow Analysis of HAL/S
Programs" (to appear).

