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Abstract

A methodology for the architectural design of software systems
is composed of three interrelated facilities. First, there must be
some means of capturing the requirements for the system in some pri-
marily non-procedural specification. Second, there must be some means

for describing potential modularizations of the system in some primarily
pseudo-procedural design which captures the essential detail concern-
ing the modules' interfaces and their interactions. Finally, there
must be some means of determining whether a system design appropri-
ately meets the system specification. In this paper, we present a de-
sign methodology based on the use of event and event sequence descrip-
tions. We first give a brief definition of the Design Realization,
Evaluation and Modelling (DREAM) system and its description language

as they relate to an event-based design method. Then we define the
design method and give a simple example.






- I. Introduction

Many methodologies have recently been advanced for the disciplined,
orderly development of software systems. Each has as its basis a devel-
opment method (or process for the gradual, evolutionary development of
a software system) which serves to decompose the overall synthesis task
into a sequence of smaller, more manageable steps. Many methodologies
Tend additional help to software developers in the form of guidelines,
maxims or techniques that serve to support the method which they pro-
vide. A few offer help for the analysis which must be done to assure
that the developed system delivers the functional capabilities which
are required and does so within the performance and economic constraints
which have been levied against the system.

A particularly effective way in which a development methodology
may be delivered to software design practitioners is as a computerized
support system. Systems of this type (e.g., [AmbA77], [BakJ78],
[CamI78], [DavC77], [EstG78a], [EstG78b], [GooD77], [HenP75b], [MorM77],
[PeaD73], [RidW78c], [RidW78d], [RobL75], [SnoR767, [TeiD77], [VHoE781)
provide a language for the precise, but abstract, description of sys-
tems at intermediate points in their development when completely detailed
descriptions cannot be given. This language then allows the definition
of various development techniques and the provision of computerized aids
supporting these techniques.

In our own development support system, called the Design Realiza-
tion, Evaluation And Modelling (DREAM) system [RidW78d], we have focused
upon providing help for the development of concurrent software systems
(that is, those systems having parts which may be perceived as operating
synchronously and in parallel, even if the system actually executes in a
uniprocessor environment). We have additionally focused upon pro-
viding analysis aid which is highly integrated with a top-down design
method, so that system developers may gradually develop their confidence
in the appropriateness of a system in tandem with developing the system
itself.

In this paper we discuss the DREAM system and one of the develop-
ment methods which it supports. In the next section, we narrow the scope



_of consideration to that phase of the software development 1ife-cycle

for which DREAM has been developed. We then discuss description langua-
ges in general and the DREAM description language in particular. Then,
after outlining the DREAM system and discussing the types of computerized
aid it provides, we outline a variant of the traditional top-down design
method which the DREAM system provides and give a short example of its
use.

IT. Architectural Design Phase

The software system development process may be divided into three

1

major phases. Chronologically first among these is the requirements

definition phase during which the users' requirements are expressed in
terms of the system's expected functional capabilities as well as in
terms of performance and economic constraints upon the system. Chrono-
logically last is a phase which may be called the algorithm design

phase, during which the system's processing algorithms and internal data
structures are developed to the level of detail needed to permit compila-
tion.

Intermediate to these two phases is a phase which we call architec-
tural design. During this phase the system's gross organization is spe-

cified in terms of a hierarchically structured collection of modules,
each of which plays some well-defined role in the delivery of the sys-
tem's functional capabilities. In addition to the delineation of the
modules, their interfaces and interactions are defined in order to spe-
cify the coordination needed to assure the delivery of the expected func-
tional capabilities and the observance of the constraints which have been
Tevied upon the system.

The systhesis task during design2 is therefore the development of
a modularization for the system and the definition of strategies for
interactions among the modules. The associated ana?ysféﬁtaskffs to

1. The distinction of phases which we use here is a simplified version
of the many, diverse distinctions that have been made by others, for
example by [PetlL78].

2. For the remainder of this paper we use the term design to refer to
architectural design.



assess the strategies with respect to the system's requirements with
the intent of certifying that if the modules operate and interact as
specified then the requirements will be satisfied.

IIT. Software Design Description Languages

The description task during architectural design is a modelling
task that is only superficially similar to the traditional programming
task encountered during the algorithm design phase. Modelling shares
with programming the need to specify some details concerning the pro-
cessing performed by the system. But this specification should be
abstract with respect to specific mechanisms for implementing the pro-
cessing. Stated differently, the specification should be expressed in
requirements-oriented terms which reflect the effect of system opera-
tion rather than implementation-oriented terms reflecting the system's
actual operation and, therefore, the cause of the observable effects.
There is the need, therefore, for Tanguages which are considerably
different from programming languages and, in this section, we dis-
cuss the attributes of such design description languages.

Because of the need to highlight module boundaries and interactions,
a design description Tanguage needs to be behavior-oriented rather than
operation-oriented. A behavior-oriented language supports the abstrac-
tion of a module by allowing the description of the effect of the module's
operation without the description of the manner in which this effect is
caused. One approach to abstraction is to allow descriptions that are
projections of the actual modules within the system. 1In a projection,
the operational details of the module are suppressed, resulting in a
description which focuses upon the module's overall behavioral charac-

teristics. Another approach to abstraction is to allow a description
which is orthogonal to the system's implementation description in the
sense that the description may form associations among the elements of
the system that are completely different from those formed by the
system's internal, physical organization. Thus, the modules may be
merely logical entities rather than physical entities. A final approach
to behavioral abstraction is to allow descriptions that are non-proce-



dural in that they describe the effect of the module's processing
without specifying an algorithm for achieving the effect.

Example: Assertions [ManZ74] are non-procedural pro-
jections of the modules they describe. They are or-
thogonal to the implementations of the modules in

that they do not necessarily imply that one proce-
dure must exist for each set of input/output rela-
tions defined by an assertion -- one generalized
module could conceivably implement many sets of input/
output relations.

The need to be able to investigate the interactions among the
modules and the interplay among the various strategies implies that
design description Tanguages should be analysis-oriented. An obvious

criterion is that descriptions be unambiguous, so that formal analysis
techniques may be defined which derive information about the over-

all operation of a collection of interacting modules. Descriptions
should also be outward-directed, specifying the characteristids of a
module that are pertinent to its interactions with other modules, again
so that characteristics of the overall operation of a collection of
modules may be uncovered. Finally, descriptions should be redundant,
specifying a behavior either from different points of view -- for in-

stance, from the point of view of both the supplier or user of some
processing facility -- or with respect to different sets of concerns --
for instance, with respect to deired properties of the overall oper-
ation as well as with respect to the operation of the individual modules.

Example: Several recently defined programming langua-

ges -- such as Euclid [PopG77], CLU [LisB77], and Al-
phard [WulW75] -- satisfy many of these criteria. They
each have a well-defined semantics and hence Tead to unam-
biguous descriptions. Redundancy is allowed either through
the incorporation of assertions which allow formal veri-
fication, such as in Alphard, or the use of data abstrac-
tions and strict typing which Tead to useful compile-time
checks, as in CLU. Outward-directed descriptions are gen-
erally allowed through axioms, as in Alphard and Euclid,
which allow the effect of a sequence of operations to be
deduced.

Design description languages should also be modification-oriented
so that descriptions may be easily augmented, as new decisions are made,
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or returned to a previous state should decisions bé reversed. Descrip-
tions should be modular so that self-contained descriptions of differ-
ent aspects of the system may be separately specified. They should
also be hierarchical so that the descriptions may be iteratively
elaborated. It is also usually desirable to allow incremental de-

scriptions so that fragments of the overall description may be pre-
pared in an arbitrary order. This is sometimes contradictory with
the desire to have hierarchical descriptions, but only when it is
required (sometimes unnecessarily) that the order in which portions
of the description are developed corresponds to the nesting struc-
ture of the hierarchy.

Example: Algolic programming languages admit hierar-

chical, modular descriptions and the current trend to-

ward incorporating data abstraction constructs, as for

example in CLU, enhances programming languages with re-

spect to these criteria. Incremental descriptions are

not easily achieved in block-structured languages (and

are somewhat inconsistent with the idea of structured

programming), but can be achieved in languages which use

the idea of guarded commands [DijE76].

Finally, design description languages should be guidance-oriented

in that they should allow descriptions which help guide the further
design (and eventual implementation) of the system but do not overly

constrain the design (or implementation) decisions remaining to be

made. Descriptions should therefore be non-prescriptive such that they
capture the decisions already made but do not prescribe the manner in
which the resulting properties of the system should be achieved. Al-
though non-prescriptive, descriptions should also be inward-directed,
helping the designers to discover the options that are possible and
feasible for ensuing decisions. It is sometimes beneficial to allow

attribute descriptions in which various properties of the system are
described positively by indicating the values that they may assume or
negatively by indicating the values that are not to be allowed.
Example: Assertions are non-prescriptive and frequent-
1y inward-directed since they describe a procedure's

function as the conjunction of constraints and can there-
fore indicate different cases which should be handled.



Assertions could also be used to give attribute
descriptions which specify the range of permissible
values for each attribute.

The examples havé indicated that contemporary programming langua-
ges have moved in the direction of design description. Partially this
is because programming is also algorithm design; partially, it is in
recognition of the need to perform analysis in order to produce relia-
ble programs. But programming languages are rarely acceptable design
languages because they are inherently operation-oriented and specify
behavior only implicitly through procedures for achieving the behav-
jor.

IV. The DREAM Design. Language

As a basis for the DREAM system, which we discuss in the next sec-
tion, we have developed a design description language called the DREAM
Design Notion (DDN) which possesses many of the characteristics delin-
eated in the last section. In this section, we discuss the major facil-
ities available in DDN and indicate how these give rise to the various
characteristics. The discussion here is brief and without examples.
Some brief examples are given later -- others and more detailed discus-
sions of the DDN facilities are given in the cited references.

DDN descriptions are of classes of components within a system
[RidW77b]. Class-oriented descriptions were introduced in the SIMULA
language [Dah066] and have been incorporated in a wide variety of com-
puter-oriented description schemes ([HenP75a], [LisB75], [LisB7771,
[ParD72], [SnoR76], [WirN71b], [WulW75]). DDN allows parameterized
descriptions so that some of the details of a member (or instance)
of the class may be specified when the member is created. This facil-
ity allows the specification of many different types of variation among
members of a class. For example, it allows the description of system
components which have a variable number of subcomponents (such as the
class of multiple-task programs), a variable number of output Tinkages
(such as the class of messagé transmitters in a computer network), or
variable types of subcomponents (such as the class of stacks).



Class definition constructs facilitate the hierarchical defini-
tion of a software system since the designers are encouraged to think
of the system as decomposible into subcomponents which are members of
a set of classes and which are themselves decomposible into subcompo-
nents which are members of other classes. They also facilitate pro-
Jection and orthogonality since a class serves to collect together all
of the information pertinent to a collection of components and hence
leads to descriptions which highlight those characteristics common to
the collection rather than particular to its members. Finally, class
definition facilities allow modular descriptions which may be incre-
mentally developed since fragments of a class definition may be pre-
pared in any order. In sum, class definition facilities primarily
enhance the modification orientation of the language.

As implied above, a system must be hierarchically decomposed into
its subcomponents to be described in DDN -- components are composed of
sub-components which are composed of sub-subcomponents, etc. The tree-
Tike system organization which results is often natural in describing
the details of a system's algorithmic processing as indicated by the
usefulness of structured programming ([Dah073], [WirN71a]) for program
description. The tree-like organization is not appropriate, however,
in situations in which sharing occurs either because of the nature of
the system (as in shared database systems such as online reservation
systems) or because of a desire to layer the system into levels of vir-
tual machines (as in many current operating systems).

To allow non-tree-Tike organizations, DDN contains instantiation
control constructs [RidW76b]. Using these constructs, the designers
may specify that components which are described, for clarity of descrip-
tion, as distinct are actually a single component in the final system
configuration. These constructs are similar in effect to equivalencing
constructs such as found in the Fortran programming language, but do
not allow components of differing types to be "overlaid". They are
also similar in effect to the aliasing constructs typically provided by
parameter passing mechanisms and capability-based addressing schemes,
but are not intended to be effected by the transmission of addresses at
run-time. Thus, the constructs provide for the description of sharing



relationships that are determ1ned by the system s configuration and
which do not vary during system operat1on

The instantiation control constructs contr1bute primarily to the
inward- directedness of DDN since they a]]OW‘exp11c1t descr1pt1on of the
system's eventua1 physical conf19urat1on They also confr1bute by
a110w1ng the implicit descr1pt1on of all of the context in which a ,
given component is to function, thus leading the‘des1gner of the com-
ponent to consider how the'component should be implemented so as to effi-
ciently and effectively function in the various contexts.

The instantiation control constructs also lead to orthogonal,
modular descr1pt1ons since 1og1ca11y different parts of the system may
be separate]y described even though they share common subparts. The con-
structs may then be used to separately descr1be the sharing relationships
amont the parts.  This also tends to lead to incremental descriptions.

Components in a DDN description are considered to execute con-
currently and asynchronously and there are two major types of compo-
~nents [RidW78c]. Subsystems are those components which (Togically at
least) operate concurrently, interact freely but in a way acceptable to
both parties to any interaction, and collectively provide the system's
functional capabilities ([RidW77¢], [RidW78b]). Monitors also operate
concurrently, but provide data storage capabilities and possess built-in
mechanisms that may be used to synchronize the potentially conflicting
demands placed by other components [RidW78c]. The DDN view of a system .
is therefore that it is composed of hierarchically organized collections
of sequential processes which interact through shared data objects which
individually contain the necessary synchronization code.

This paraliel-world view of systems enhances the clarity of system
descriptions in the following way. It is generally recognized that
complex systems may be more easily comprehended if they can be broken
into simpler, smaller parts which interact in well-defined ways [SimH62].
When this is done, then an understanding of the system S operation may
be obtained by first understanding the parts and then understand1ng the
interactions among the parts. As evidenced by recent texts on operating
systems ([BriP77], [HabA76]) and recently developed methods for structur-
ing artificial intelligence systems [FenR77], decomposition of a complex



software system is easier when the parts operate concurrently and
interact asynchronously.

In terms of the characteristics delineated in the previous sec-
tion, the parallel-world view primarily facilitates modularization.
It also allows abstractions to be more easily constructed, since it
facilitates projection of the intermodule interactions and the over-
all effect of the interactions by allowing the suppression of detail
concerning how the interaction is accomplished. Finally, it allows
outward-directed descriptions which focus upon overall properties of
the system which derive from the interactions among the components.

In collections of concurrently operating components which interact
via shared data structures, it is common for the shared data struc-
tures to be used for message exchange. This form of interaction is
dwst1ngu1shed in DDN and constructs are provided for exp]1c1t]y describ-
ing the message generation and ut111zat70n characterlst1cs of subsystems -
and the message flow among the subsystems. This message transfer view
Teads to descriptions which are orthogonal, projective and~outwardm-‘
directed, allowing as it does focus upon the logical characteristics -
‘of module interdependencies and interactions.

The final set of DDN description facilities are those for the non-
procedural specification of overall system operation through the defini-
tion of behavior by the algebraic specification of sets of sequences of
events [Wi1J78]. Arbitrary events may be defined such as "program added
to schedule queue " or "legal access made to database" and sequences of
events which the designer wishes to allow may be specified by constructs
([RidW78f], [Wi1J78]) which are extensions to those found in regular
expressions and similar to those defined for path expressions ([CamR74],
[HabA75]) and flow expressions [ShaA78].

The event sequence expression constructs of DDN have been included
primarily to allow analysis. They provide a redundant, outward-directed
description which may be checked for consistency against the operational
descriptions of the component interactions [RidW78g]. As a descriptive
scheme, however, they also provide for the non-procedural, non-prescrip-
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tive, projective and orthogonal description of the operation of collec-
tions of subsystems.

V. The DREAM Design Support System

Precisely-defined design description languages of the sort dis-
cussed in the previous section can serve as a basis for the delivery of
several types of aid to software design practitioners. Tools, or com-
puterized techniques providing this aid, are most effectively delivered
as a set of coherent, integrated facilities within a design support sys-
tem. These tools may be classified as follows:

bookkeeping tools provide aid in recording the current
state of the development, in modifying and augment-

ing this record, and in returning it to a previous
state if decisions are reversed

supervisory tools provide aid in assuring that prac-
tices and procedures that are deemed beneficial are
actually followed ‘

management tools provide aid in assessing progress and
making resource allocation decisions

feedback tools provide aid in measuring the character-
istics of the system under development for the purpose
of detecting errors, gaining confidence in the appro-
priateness of the decisions that have been made, and
guiding the further development of the system
The DREAM system is organized as depicted in Figure 1. (This organ-
ization has been patterned after that developed for the Tools for Program
Development (TOPD) system [HenP75b].) Central to the system is a data-
base in which information is stored in textual form, organized into tex-
tual units or fragments of description which individually specify differ-
ent aspects of the system. Textual units are organized hierarchically --
for example, a textual unit describing a class of subsystems is composed
of textual units which describe the subcomponents comprising each sub-
system, the interfaces through which messages flow, the message trans-

mission activities performed, and other aspects.

Several bookkeeping tools are provided as information insertion and
retrieval mechanisms. Mechanisms for augmenting and modifying the infor-
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mation in the database on a textual unit basis facilitate the gradu-

al evolution of the system's design while the current description is
constantly available. Textual units which are to be added to the data-
base (using ENTER) are prepared with the aid of a text editing facil-
ity (EQLL) and may be altered versions of units which have been

copied from the database (using VIEW). Modifications to the database
never result in the deletion of textual units which were previously en-
tered -- thus designers have all of the previous versions of the de-
sign available and may back up to any previous point merely by retriev-
ing the description which corresponds to that point and re-entering it,
thus making it the current description. Problems caused by having an
ever-expanding database are eliminated by an archiving mechanism
(ARCHIVE) which may be used to copy the database to external, offline
storage, retaining only the latest version of each textual unit in the
database itself.

DREAM does not currently provide any supervisory aids since one of
the intents of the system is to allow the experimental determination of
the efficacy of various aids and hence none were pre-defined in the sys-
tem. DREAM has, however, been designed with the aim of allowing these
aids to be easily added to the system as mechanisms (within MANAGE)
which control the flow of information into and out of the database.

For example, documentation standards can be enforced by requiring that
each textual unit be accompanied by a documentation unit when it is
entered. Or, the principle of information hiding could be enforced by
permitting designers access to only some of the information regarding
components which they did not personally design. Or, a particular de-
sign method could be enforced by requiring that items in a design de-
scription be entered in a particular order.

Nor does DREAM currently provide any management aids, primarily be-
cause it is not clear what these aids should be. DREAM does provide a
basis for management aids (such as GENERATE) as long as they can be
formulated in terms of summary reports concerning the completeness or
rates of change of the information in the database.

It is in the area of analysis aid that DREAM has been developed to
provide the most aid. The analysis aids (such as ANALYZE) that are
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under development provide feedback analysis [RidW77a] in which informa-
tion concerning the characteristics and properties of the system under
design is derived and presented to the designers to be used in formu-
lating rigorous arguments about the design's correctness or incorrect-
ness. The only aid of this sort provided in the current DREAM system
is a syntax checking mechanism, providing a check that is a necessary
pre-requisite to any other analysis. The aids that are contemplated
will span a broad spectrum (discussed in detail in [StaA77b]), from
simple ones such as cross-reference generators to sophisticated ones
which derive predictions of run-time characteristics by either analytic
[RidW78g] or simulation [Sand77] techniques.

VI. An Event-based Design Method

With the DREAM design support system and the DDN design descrip-
tion language, we have attempted to Tend support to a variety of de-
sign styles rather than enforce our own style. A major reason is that
we wish to be able to use the DREAM system to quantitatively measure
the differences among various approaches to design. An equally impor-
tant reason, however, is that we are not confident that we could define
a method that was universally applicable across the full spectrum of
systems which may be addressing using the DREAM system.

Our predilection toward top-down design methods is, however, quite
evident in DREAM and DDN. We feel that these methods are the most
effective to use since they allow designers the opportunity to intro-
duce detail as warranted by consideration of a system's requirements
rather than by consideration of aspects of the processing domain.

In using DDN to describe a variety of existing software systems
([Cund77a], [Cund77b], [RidW78a], [SegA77], [StaA77al, [Wi1J77]1), we
have found that it admits an interesting and novel variation of the tra-
ditional top-down design method. We call this variation the event-
based design method and it is the purpose of this section to describe

it in some detail and make some observations as to its value.

As with most design methods, the event-based design method con-
sists of a design step which is applied iteratively. This basic step
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is graphically represented in Figure 2. The first task is to identify,
on the basis of the partial design prepared by previous steps, events
which are pertinent to the aspect of the system which is to be addressed
at this design step. Then, the partial design is used to develop con-
straints upon the occurrences of these events which are necessary to
assure that the system operates as required or intended. The next

task is then to define system components which can produce the delinea-
ted events, and the final task is to develop the interactions among the
components which Tead to the observance of the constraints.

Each design step therefore consists of the initial specification
of the required behavior to be exhibited by the part of the system under
consideration at this step. After this specification is prepared, the
step is then completed by defining modules and module interactions which
produce this required behavior.

As an example, consider the design of an on-board system for the
in-flight monitoring of an aircraft's engines, and specifically that
step at which we detail the interactions needed to call the attention
of the pilot to the heating up of one of the engines. We hypothesize
a partia? design that includes the requirements of interest at this
step, namely: there are four engines; a hot engine is to be signalled
to the pilot by sounding an audio-alarm device; and signalling the ex-
istence of one hot engine should not block the recognition of another
engine heating up and the signalling of this to the pilot. Notice
that at this step we cannot focus exclusively on only the software
parts of the system but must also consider non-software parts.

The events identified at this design step are defined, using the
DDN language, in Figure 3. They correspond to four interesting "hap-
penings" of concern at this step and reflect aspects of the system that
an external agent could observe during system operation. In addition
to three "primitive", undecomposed events, we have defined the over-
all event of handling a hot engine as a sequence of instances of the
three primitive events.

The constraints of interest at this point are recorded in Figure
4, again using the DDN description technique. First, we have estab-
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lTished that every time an engine heats up, this is noticed by the
monitoring system and the alarm is sounded. The second constraint re-
flects the requirement that the handling of hot engines be able to be
carried out concurrently in the case that another engine heats up when
one hot engine is being handled. In this description, the constraints
are expressed in terms of desirable properties of the sequences of
events which occur during system operation. In approaching the de-
scription task this way, the desired effect is non-procedurally and
non-prescriptively being specified.

Figure 5 gives a DDN definition of the components suggested by
the events that have been defined. Notice the components are ones
which operate concurrently and that both hardware and software compo-
nents are specified.

The interactions among the components are defined, in message
transmission terms, in Figure 6. Parts are defined and "plugged"
together to establish the communication pathways, and the control
process models specify the message transfer among the components. It
should be emphasized that message transmission is being used to model
the interactions among the components and that the interactions may
actually take place using some other mechanism. Note that programming-
language-1ike constructs are used to define the interactions. Also.
note that models of the hardware are specified to record the capabil-
ities that are required -- the engines, for example, must have sensors -
and be able to "send out" status signals upon demand. Finally, note
that the events identified at the beginning of this design step have
been related to specific points during the operation of the system
by labelling statements with the event identifiers.

We feel that the event-based design method outlined in the pre-
vious discussion formalizes the general practices of many software de-
signers and that this formalization leads to several benefits. The
greatest benefit comes from the provision of an important additional
facility -- the definition of events and constraints. This facility
allows the gradual reduction of requirements to precise statements
oriented to the system's evolving modularization.
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Another benefit, which we only briefly argue here, is the ability
to verify the design as it evolves. The constraints developed at each
step provide a redundant specification against which the newly designed
operation of (part of) the system may be checked. In our example, we
could use the pseudo-procedural descriptions given in Figure 6 as input
to a simulator and thereby derive sequences of event occurrences.

These sequences may then be compared to the desired sequences as stated
in Figure 4. Of course, simulation is not in general sufficient since
one needs to know all possible sequences of events that may arise. It
is possible to derive a description of all possible sequences but the
comparison is not, in general, feasible [RidW78g]. We are continuing
our research in this area, seeking algorithms for subcases which span a
wide variety of naturally occurring situations.

VII. Conclusion

We have described a variation of the traditional top-down design
method that utilizes the concepts of event and event sequence definition.
At each step, criteria for system modules being elaborated at that step
are extracted from the existing design and precisely stated using the
event and event sequence constructs. The step is then completed by
detailing the interactions among newly-designed and existing modules
necessary to satisfy the criteria. The opportunity then exists to ana-
lyze the new, partial design to assure that the criteria are met before
proceeding to the next design step.

The event-based design method arose in the process of our assess-
ment of the effectiveness pf the DREAM development support system and
its description language, DDN. We have not extensively used it in

design experiments, but have conducted two simple experiments in order
to refine its definition. We have found it natural and easy-to-use,
and feel that it both formalizes the practices of design practition-
ers and provides a basis for the integration of analysis with synthe-
sis during software system design.
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EVENT DEFINITION;

heat_up: DESCRIPTION; temperature of an engine becomes greater
than or equal to 150 degrees F END;,

ring: DESCRIPTION; audio-alarm device sounds END;,

notice: DESCRIPTION; monitor recognizes that engine has heated
up END;,

handle_hot_engine: SEQUENCE(heat up, notice, ring)
END EVENT DEFINITION;

Figure 3.

DESIRED BEHAVIOR;
SEQUENCE (heat_up, notice, ring),

POSSIBLY 4 CONCURRENT ,
(SEQUENCE (heat_up, notice, ring))

END DESIRED BEHAVIOR;

Figure 4.

SUBCOMPONENTS ;
engines ARRAY[1::4] OF [engine],
monitors ARRAY[1::4] OF [engine monitor],
alarm OF [audio device]
END SUBCOMPONENTS;

Figure 5.
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[engine monitor]: SUBSYSTEM CLASS;
request_status: OUT PORT; END OUT PORT;
receive status: IN PORT;
BUFFER SUBCOMPONENTS; signal OF [status signal]
END BUFFER SUBCOMPONENTS;
END IN PORT;
sound_alarm: OUT PORT; END OUT PORT;
observe: CONTROL PROCESS;
MODEL ;
ITERATE SEND request status;
RECEIVE receive status;
IF signal = is_hot
THEN notice: NULL;
SEND sound alarm;
END IF;
END ITERATE;
END MODEL;
END CONTROL PROCESS;
END SUBSYSTEM CLASS;

[status signal]: MONITOR CLASS;
STATE SUBSETS; 1is_ok, is_hot END STATE SUBSETS;
END MONITOR CLASS:

[engine]: SUBSYSTEM CLASS;
status_request: IN PORT; END IN PORT;
status_report: OUT PORT;
BUFFER SUBCOMPONENTS; signal OF [status signal]
END BUFFER SUBCOMPONENTS;
END OUT PORT;
report: CONTROL PROCESS;
MODEL 5
ITERATE RECEIVE status request;
MAYBE heatup: SET signal TO is_hot;
ELSE SET signal TO is_ok;
END MAYBE;
END ITERATE;
END MODEL;
END CONTROL PROCESS;
END SUBSYSTEM CLASS;

[alarm]: SUBSYSTEM CLASS;
ring_request: IN PORT; END IN PORT;
ringer: CONTROL PROCESS;
MODEL ;
ITERATE RECEIVE ring request;
ring: NULL;
END ITERATE;
END MODEL;
END CONTROL PROCESS;
END SUBSYSTEM CLASS;
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CONNECTIONS;
FOR ALL i IN [1::4];
PLUG (engines[i]|status request, monitors[i]|request status);
PLUG (engines[i]|status report, monitors[i]lireceive status);
PLUG (engines[i]lsound alarm, alarm|ring request);
END FOR;
END CONNECTIONS;

Figure 6.




