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ABSTRACT

A theorem on combinatorial structure of ETOL languages is proved.
It is used to formulate various results allowing one to provide a number

of Tanguages that are not ETOL languages.






INTRODUCTION

One of the important research areas in formal language theory is the
investigation of the (combinatorial) structure of languages in various
Tanguage classes. This yields results of the form: "If K is a language
belonging to the class of languages X then K has the following properties:..."
Results of this kind are needed to understand the nature of languages in the
given Tanguage class and to provide a tool for constructing languages that
are not in the given class of Tlanguages (a task that is in general quite
difficult).

This paper investigates the structure of ETOL languages (see [5]
or [4]). Although ETOL Tanguages play a central role in the theory of L
systems (see e.g. [4] and [6]) we still have only few results describing
their structure (see e.g. [1] and [3]). Hence, in our opinion, research
in this direction must remain one of the main research streams in the
theory of L systems.

We provide a direct result on the structure of ETOL languages and
then formulate quite a number of its consequences all of which allow us to
provide quite interesting examples of languages that are not ETOL languages.

We assume the reader to be familiar with rudiments of the theory of

ETOL systems (e.g. in the scope of [4]).



PRELIMINARIES

To establish notation and terminology we recall now the notion of an
ETOL system.

Definition. An ETOL system is a construct G = (z,H,w,A) where % is a
finite nonempty alphabet, A is a subset of %, w ¢ zt and H is a finite set
of finite substitutions on £ (called tables). If each substitution from H
is A-free than G is referred to as a propagating ETOL system (or EPTOL
system for short). The Zanguage of G, denoted by L(G), is defined by
L(G) = {x e 4* : x « h1"'hn(w) for some n = 0, hy,...,h < HI. (We
write composition of functions in the left to right order, that is h1 is
applied first and hn last. Also if n = 0 then h1"‘hn is the identity
mapping).O

A derivation in an ETOL system G = (z,H,w,A) is a precise descrip-
tion of how a word "is derived in G", that is, which words are obtained step-
by-step, which tables are applied and how they map all occurrences of all
the Tetters in intermediate words. This can be formalized, e.g. as in [4].
We will need only the following terminology and notation which we will
introduce rather informally.

Let D be a derivation of x in G. Then the full trace of D, denoted as
ftrace D, is a sequence [(x1’h])’(XZ’hz)’*“’(Xn’hn)’xn+] = x) where
X| T W Xos...X Are intermediate words obtained in D by using consecutively

tables hy,...,h ; and x ., = x is the result of D, denoted as res D. The

+1

control word of D is the sequence of tables applied in D, hence it equals

h]"'hn'

It is very well known that for every ETOL system there exists

(effectively) an equivalent propagating synchronized EPTOL system. Then



it is rather trivial to obtain the following result which will be very
useful in our considerations.

Theorem 1. There exists an algorithm which given any ETOL system
produces an equivalent EPTOL system G = (&,H,w,A) such that
(1) w e 2\a,
(2) there exists a symbol F in z\(A u {w}) such that, for every a in A
and every h in H, h(a) = {F} and h(F) = {F},
(3) for every a in £ and every h in H, if o < h(a) then either a ¢ A"

ora=Foraec (2\(avu {Fu}))t. O

We call F a synchronization symbol of G. Clearly we can always
assume that G has only one synchronization symbol.

Also the following technical result on trees (that is ordered
labeled trees) will be quite useful in our analysis of derivations in
ETOL systems.

Lemma 1. Let T be a tree satisfying the following condition:
if €1s. 58 is a path in T such that labels of e, and e, are equal, then
each node SRR has the out-degree equal 1. Let g be the number of
labels used in T and let the out-degree of every node in T be bounded by p.
Then the number of Teaves of T is bounded by pq.

Proof. By induction on g.

q = 1. The result is obvious.

Let us assume that the claim holds for all trees satisfying the
condition of the lemma and using no more than k Tabels.

g = k+1. Let ¢ be the label of the root. If ¢ does not label any
other node of T then by the inductive assumption the number of leaves in T
is bounded by p - pk = pk+] = pq. If ¢ labels also another node in T then

let d d],...,d5 be the longest path in T such that dO is the root of T and

O’



dO,dS have the same Tabel c. Then the condition required in the statement

of the Temma implies that T must be of the form

where the tree T rooted at dS is such that no node of it except for dS is
labeled by c. But then again (by the inductive assumption) p? bounds the

number of leaves in T and hence in T. [J

We use standard language-theoretic terminology and notation and per-
haps only the following notation needs an additional explanation. For a
word x, |x| denotes the length of x, alph x denotes the set of all letters
occurring in x and, for an alphabet o, #ex denotes the number of occurrences

of Tetters from o in x.



MAIN RESULT

In this section we prove the main result of this paper.

Theorem 2. Let K be an ETOL Tanguaae over an alphabet A. Then
there exists a positive integer constant k such that for every nonempty
subset © of A and for every word x in K one of the following conditions
holds:

(1) #.x <1,

(2) x contains a subword w such that |w| < k and A = 2,

(3) there exists an infinite subset M of K such that, for every y in M,
#@y = #ex‘

Proof. Since the above theorem trivially holds whenever K is
finite let us assume that K is infinite. Let 6 = (2,H,S,A) be an ETOL
system generating K and we assume that G satisfies the conclusion of
Theorem 1 and F is the synchronization symbol of G.

Let © = a v {F,S} u {[a,t] : a e 2\(a u {F}) and t ¢ {0,1,2}}

where S is a new symboTl.

Let, for every h in H, h be the finite substitution on E;¥ defined by
= {[s,0],[s,11.[S,21},

{F} for every a in & u {F},

> =
— —
<Y |
S S
] |

and for every a ¢ t\(Au{F}):
h([a,01) = {F} v {a e &% : a e h(a) and #0 = 0} u

U {[b],O]...[br,O] : b1"'br e i\N(a u {F}) and b1"‘br e h(a)},
h([a,1]) = {F} v {a e AT : o e h(a) and oo = 1} v

u {IbystqIlbysty 1. [b st T 2 byseiisb e IN(a v {F}),

b1...br e h(a) and for some j ¢ {1,...,r}, tj =1and t, = 0forg 3},



F([a,Z]) = {F} u {q e At ¢ o ¢ h(a) and #ea > 1} U
U {[b1,t]][bz,tz]...[br,tr] P bysevisb e 3N(s U {F3), by...b e h(a)
and either, for some j ¢ {1,...,r}, tj = 2 or, for some

j]sJZ € {1,...,Y‘}, J-] f 32, tJ] = tJZ = ]} .

Finally let G = (z,H,S,A) be the ETOL system where H = {h|h < H}.

Note that G results from G by attaching to each letter a form
s\(A u {F}) an index 0, 1 or 2 (resulting in the letter [a,0],[a,1] or [a,2]
respectively). If [a,i] occurs in a successful derivation in G then the
corresponding (occurrence of a) letter in the corresponding derivation in G
will contribute to the result of this derivation (in G) no letters from ©
if i = 0, one occurrence of a letter from & if i = 1 and at least two
occurrences of Tetters from o if i = 2. It is rather easy to see that
L(G) = L(G).

Let us analyze derivations in G.

If a derivation in G starts with the production S - [S,0] or with the
production S -+ [S,1] then the result of this derivation will satisfy condi-
tion (1) of the statement of the theorem.

Thus let us assume that the first step of a derivation D in G uses

production S = [S,2]. Let ftrace D = ((xo,go),(x1,g1),...,(xm_1,g )’Xm = x)

m-1
and let i be the largest integer such that X; contains an occurrence of a
type 2 letter (i.e. a letter of the form [a,2]). We have two cases to
consider.

(i) There exist r,s in {i+1,...,m-1} such that alph X, = alph Xs S >
and an occurrence of a Tetter (say c) in X, contributes to X a word of the
form acp with af # A.



Then for every n > 1 we change the derivation D to the derivation D(n)
constructed as follows.

First we use the sequence of tables 9 -9 in precisely the same way as

r-1
in D; thus we get Xy Then to X, we apply the sequence of tables (gr...gs_])n
in such a way that each occurrence of a letter, except for the given
occurrence of ¢, contributes on each iteration of 9n-++9g_q @ maximal in
length word that an occurrence of this letter contributes from X to Xg in

D; the given occurrence of ¢ is rewritten in such a way that in each

iteration of 9y - 9e it contributes acg. In this way after applying
(gr...gs_1)n to x,. we obtain a word z . Finally we apply Jg---9p_q to z, in
such a way that each occurrence of a letter in z, is rewritten in such a

way that it contributes a word of maximal length that was obtained from

the corresponding Tletter in Xo when Xg is rewritten by 9g---9 in D.

m-1

)ngs...gm_] and

(9,-..9

s-1

Thus the control word of D(n) 1S 95+ -G, 1

clearly #eresD(n) = #@x. From our assumption on r,s it follows that, for
n>1, |x| < [resD(n)I < [resD(n+])]. Consequently if (i) holds then the
condition (3) of the conclusion of the theorem holds.

(i1) There do not exist r,s in {i+1,...,m-1} such that alph xr==ath X
s > r and X contains an occurrence of a letter, say c, which contributes
to x. a word of the form acB with aB # A.

Let us consider an occurrence of a letter of type 2 ([a,2] say) in X We
will show that its contribution to Xp = X is not longer than a certain
constant dependent on §'0n1y.

Let E be a subderivation tree rooted at the given occurrence of [a,2] in X
Let us relabel it in such a way that each node in it with a label d gets
relabeled by (d,athxj) where the node corresponds to the occurrence in

the word Xj from D, i < j <m-1. In this way we obtain the tree E with the

root labeled by ([a,2],a2phx1) which satisfies the assumption of Lemma 1.



Our construction of E from E implies that E does not use more than

q = #1 - 2#Z Tabels and the out degree of every node in E is bounded by

p = max {|a| : there exist h in H and a in T such that o e h(a)}.
Consequently Lemma 1 implies that if we set k = pq with p,q as above then
condition (2) of the statement of the theorem holds.

This completes the proof of the theorem. [
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APPLICATIONS

In this section we prove several corrollaries of Theorem 2. They
allow one to provide various examples of languages that are not ETOL
languages.

As a direct application of Theorem 2 we can demonstrate the following
example of a Tanguage which is not an ETOL Tanguage.

Corollary 1. K = {(abn)m :m=n=>1} is not an ETOL Tanguage.

Proof. Let A = {a,b} and © = {a}. Consider conditions (1), (2) and
(3) of the statement of Theorem 2 and let us check them for the words of
)m

the form (abn s, mMm>=n=>=1withm=z=2. Then (1) obviously does not hold.

k+1
kH) do not

Moreover for every positive integer k words of the form (ab
satisfy (2). Finally for every word x in K the set of words y in K such
that #@x = ﬁ)y is finite, and so (3) does not hold.

Consequently Theorem 2 implies that K is not an ETOL language. [J

Before we show another application of Theorem 2 we recall a notion
from [2].

Definition. Let K be a nonempty language over an alphabet A and let
0 be a nonempty subset of A. We say that © <s clustered in K if there exist
positive integer constants n, m > 2 such that for every word x in K with
#gx = n there exists a subword y of x such that ly] <m and #y = 2.

Theorem 3. Let K be an ETOL language over an alphabet A and Tet
A]’AZ be a partition of A. If there exists a function ¢ from nonnegative
integers into nonnegative integers such that, for every x in K,

#A X < w(#A x) then Ay s clustered in K.
2 1
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Proof. The existence of such a function ¢ implies that, for every
x in K, the set of all words y such that #A y = #A x is finite. Hence K
1 1
must satisfy either condition (1) or condition (2) of the statement of

Theorem 2, which implies that Ay is clustered in K. [J

In particular the above result yields the following example of a
language that is not an ETOL Tanguage.

Corollary 2. K= {w e {a,b}* : #bw = Z#aw} is not an ETOL language.

Proof. If we take o = {a,b}, by = {a}, 8, = {b} and y defined by
y(n) = 2"+ 1, then if K would be an ETOL language then {al must be

clustered in K. Obviously {a} is not clustered in K and so K is not an

ETOL Tanguage. [J

For our next application of Theorem 2 we need a definition first.
Definition. Let K be a nonempty language over an alphabet A and let
A1,A2 be a partition of A. We say that Al’AZ are K-equivalent if for every
X,y in K the following holds:
#A X = #A y if and only if #A X = #A y. O
1 1 2 2
As a direct corollary of Theorem 2 we get the following result.
Theorem 4. Let K be an ETOL Tanguage over an alphabet A and let
A1,A2 be a partition of A. If Aysb, are K-equivalent then both By and by

are clustered in K. [

In particular the above result yields the following example of a

language which is not an ETOL language.
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Corollary 3. K= {x e fa,b}’ #ax = 2" and #px = 3" for some n = 0}
is not an ETOL Tanguage.
Proof. Obviously neither {a} nor {b} are clustered in K but {a},{b}

are K-equivalent. Thus Theorem 4 implies that K is not an ETOL language. 0

One of the operation considered in formal language theory is the
shuffle operation defined as follows.

Definition. Let K],K2 be Tanguages over alphabets Ay and A, respec-
tively. The shuffle of K] and KZ’ denoted as K1 L KZ’ is defined by
. > ] * *
Pz, XpaeeeaX € Ays YeeelY € by

€ KZ}. d

Ky 1 Ky = {x]y]xzyz...xry,r

XpeonX, € K] and Yi-eo¥,

The class of ETOL languages has quite strong closure properties,
e.g., it forms an AFL (see [4]). We will show now that this class of
languages is not closed with respect to shuffle operator.
Theorem 6. The class of ETOL languages is not closed with respect
to shuffle operation.
2 3" 3"
Proof. Take K; = {a” b” :n =0} and K, = {b”a” : n >0} and Tet

K=K; L K,. Obviously {a},{b} are K-equivalent but since {a} is not clus-

1 2
tered in K, Theorem 4 implies that K is not an ETOL Tanguage.
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