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Abstract:

The most successful quasi-Newton methods for solving uncon-
strained optimization problems when second derivatives are unavailable
or expensive have used the BFGS update. In recent tests, Brodlie
reports that an update introduced by Biggs performs equally well.
This update differs from the BFGS in that it alters the secant
equation to incorporate information from a cubic model. In this
paper we show that Biggs' method retains the Q-superlinear con-
vergence properties of the BFGS exhibited by Broyden, Dennis, and
More and by Powell. Our proofs show that near the solution of most
problems, Biggs' ' method and the BFGS are essentially the same. We
also establish necessary and sufficient conditions for the Q-super-
Tinear convergence of a general class of quasi-Newton methods
which modify the secant equation similarly to Biggs.



1. Introduction

This paper is concerned with the convergence of a class of
quasi-Newton methods for solving the unconstrained minimization
problem

n,

min f: R =+ R (1.7)

x ¢ R"

where f is assumed twice continuously differentiable. We assume
that the reader is familiar with quasi-Newton methods. Recent
references include Brodlie [3] and Dennis and Moré [9].

Quasi-Newton methods generate a sequence of points X; € R"
which hopefully converge to the solution x, of (1.1). They are re-
lated to Newton's method, in which this sequence is produced by the
iteration

2

_ 2 -1
Xis] = X5 =V rf(xi) v f(xi)' (1.2)

In the class of quasi-Newton methods with which we are concerned,
due to the unavailability or cost of obtaining v2 f(x), (1.2) is

modified by replacing Vz'f(xi)—]

with an approximation Hi which is
modified following each iteration. In addition, a line search
parameter Xi may be included, so that the iteration becomes
Xipp = X5 7 Ay H1 v f(xi), Aj > Q. (1.3)

If Hi is positive definite, Ay can be chosen so that f(xi+]) < f(xi).
The value A = 1 is often attempted first, and is called the direct
prediction value of Ay

The most successful quasi-Newton methods have chosen H.+] by

;
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update, [5,10,11,15],
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This is one of many updates obeying the secant equation,

=g (1.5)

Hin1Ys = 55

which is satisfied by,H1+1 = VZ f(xi+])_] if f is a quadratic, and

otherwise is approximately true (of vzf(xi+])—]) since
1

[ 'Jﬁ v f(xi + T Si) d T] S; = Ys.

T:

Subject to (1.5), (1.4) is the update which solves

min H H1+T - Hi IIF-H -1/2
nxn ’
e R

Hipg (1.6)

subject th,H symmetric
i

where H is any fixed matrix obeying (1.5). Here HA}[F " A, M e RV
denotes the Frobenius norm of A weighted by M, IIMAMIIF, where the Frobenius

norm TIBHF of any B-e R is the square root of the sum of the squares
of the elements of B.

In this paper we are concerned with methods which modify the
above by changing the secant equation to

MY T ey, (1.7)

for some free parameter o This degree of freedom was first sug-
gested by Huang [12]. Biggs [1,2] then introduced strategies for
choosing P in order to incorporate information from models of higher

than quadratic order. The main reason we are interested in analyzing

such methods is that in recent computational tests by Brodlie [4],



Biggs' [2] method performed as well as the BFGS. Therefore it is
of continuing interest.

The update used by Biggs in [2] is the one which solves (1.6)
subject to H1+1 obeying the modified secant eauation (1.7). This

is the variant of the BFGS,

i} T - T
Higg(og) = My # (ogsy-Hiyy)sy + s(ey54-Hiyy)
, T
S.'Y.
1ol (1.8)
T
< 048R Y > 548y
(s, y.)?

Parameter ¥ is chosen to incorporate information from a cubic model
of f. 1Its choice is explained in the beginning of section 4.

Our task in this paper is to analyze the behavior of Biggs'
method, and the general class of methods which modify the secant
equation to (1.7). In particular, we wish to compare their theo-
retical behavior with that of the BFGS. The BFGS has strong theo-
retical properties which complement its computational performance.
Broyden, Dennis and Moré [6] have shown that if Ai is always set
to 1, then the points generated by (1.3) using the BFGS update are
Q-superlinearly convergent to the solution x, of (1.1) if X, and
H, are sufficiently close to x, and v? f(x*)'1 respectively,
vz f(x4) is positive definite, and some lesser conditions on f are

met. (Q-superlinear convergence of {Xi} to x, is defined as

vim %44 7 % “; 5

i e I Xi - X ]

for some vector norm || « || ). Powell [13] has shown that if A; s chosen



by a certain realistic Tine search strategy, then the points generated
by (1.3) using the BFGS are globally convergent to the solution of

any convex function f which also satisfies some less restrictive con-
ditions, and Q-superlinearly convergent if v2 f(x,) is also positive
definite and ki = 1 is used whenever it is permissible.

Our main result in this paper is that Biggs' [2] method has
exactly the same properties. First we establish some general necessary
and sufficient conditions for the Q-superlinear convergence of quasi-
Newton methods which modify the secant equation to (1.7). In section 2
we show that for any such method of form (1.3) with A o= 1 to converge
locally Q-superlinearly to x, on the entire set of "well-behaved"
functions, it is necessary that .11m p. = 1. Next, in section 3 we

i s

show that a slightly stronger condition,

| oy [ =0 (1.9)

hr~18
[

i
is sufficient to extend the results of Broyden, Dennis and Moré [6] and
Powell [13] to update (1.8). For the Broyden-Dennis-More result o
is some fixed constant; for the Powell result any o < + « is
sufficient. In section 4 we extend the theorems of Broyden-Dennis-
Moré and Powell to Biggs' method. As a consequence of the preceeding
results, it is clear that in doing so we establish that Biags' choice
of p; converges to 15 indeed, it satisfies (1.9).

0f course, one consequence of this analysis is that Biggs'
method, and any successful method using update (1.8), is eventually
virtually the same as the BFGS. This could be said to argue against
consideration of this entire class of methods. However, firstly this

relationship between Biggs' method and the BFGS has not previously



been exhibited, and secondly, away from the solution the methods mayk

differ substantially. We comment briefly on this issue in section 5.

2. A necessary condition for Q-superlinear convergence of modified

secant methods

In this section we show that for any gquasi-Newton method of the
form

X = x; - Ho v f(xi)

i+] i

H obeys H.

i+] i+1Yi T P4
(51’ Vs defined as in (1.4))

to converge Q-superlinearly to the minima of the entire "well-behaved"

is necessary that T1im 0; = 1. This is established through use of
i o

a trivial example. Note that in one dimension (f: R = R), (2.1) and

the values of Xo and H0 completely specify the sequence {Xi}’ subject

only to the choices of Py So consider the nicest one dimensional

function of them all, f(x) = 1/2 x2, whose minimum is x, = 0. Then

v f(x) = x, so that at each iteration S; T VY H].+1 = Py and
Xig = X417 My 7 Flxgyy)
X5 7 P T (o)X
Therefore
lxi+2 - Xy .
— s = “—pil
X349 7 %l

and so if X, # 0 and HO z 1, x; converges Q-superlinearly to x, only

if Tim o = 1. This result is stated formally below. Note that by

i e

an expansion of the above example, the condition 1im p. = 1 can
i >



easily be shown to be necessary for the Q-superlinear convergence of
(2.1) on any twice continuously differentiable one dimensional function

f with f"(x,) nonzero and f" Lipschitz continuous at x,.

.

For the remainder of the paper, | (without subscript) will

denote the 32 vector norm or its induced matrix norm.

Theorem 2.1 Let f: R" >~ R be twice continuously differentiable in

the open convex set D, and assume for some x, € D and £ 2 O,
2 2
| v°F(x) - v f(x )|l = 2] x-x,] (2.2)
for all x e D, where vf(x,) = 0 and vzf(x*) is positive definite. Let

the sequence X; € Rn, i=1,2,... be generated from X, € Rn, HO e R

nxn

by an iterative method of form (2.1). Then there exists some such f

2 )“], {x;} converges Q-superlinearly

such that if x_  # x4 and Hy # 7 f(xO
to x, only if Tim p., = 1.
i

3. Sufficient conditions for the Q-superlinear convergence of

modified secant methods

In this section we show that the convergence results of Broyden,
Dennis and Moré [6] and Powell [13] for quasi-Newton methods using the
BFGS update extend to the modified secant form of the BFGS, (1.8),

if
].

iHr~18
o

Ipi-]! is bounded. Our proofs are just extensions of the

original results. The main component of all of them is to show that the

update under consideration, 1like the BFGS, is of bounded deterioration

if our condition on 0 is met. (Bounded deterioration, expressed in

equation (3.2) below, is some condition which means essentially that

(o]

(A R I TRl PR IR el

for some constant c, which implies that

2 2

IH; = 72000 T /I - ToRG) TN =1 w e



for all 1 = 0.) This is the main step in applying the techniques of
Broyden, Dennis and Moré [6] to any new update, and while it is only
one component of Powell's [13] proof, it is the only part requiring
non-trivial modification.

The results of Broyden, Dennis and Moré are concerned with
functions f which obey vzf(x*) positive definite and several lesser
conditions. They analyze the behavior of the direct prediction quasi-
Newton iteration

Kipg = X5 - Hi U F(x,) (3.1)
in the case when X, and HO are close to x, and vzf(x*)'], respectively.
Their proofs are based on their Theorem 3.4, which establishes a
general condition on the update of Hi under which the update is of
bounded deterioration and linear convergence is achieved by (3.1).

In Theorem 3.7 we extend this condition sTightly to allow for our
class of updates. The only change is the addition of the term w(x,H)
in (3.2). The proof, which is a straightforward extension of the
techniques of Broyden, Dennis and Moré [6], is omitted; it is con-

tained in Schnabel [14], Theorems 9.2.2 and 9.2.3.

Theorem 3.1 Let f: R" - R be twice continuously differentiable in
the open convex set D, and assume for some x,e D and £ = 0, (2.2)

holds, where v f(x,) = 0 and v°f(x,) is positive definite. Let
RN

~ 2 ~ {} be defined in a neighborhood N = N1 x N2

f(x*)_]) where N] e D. Suppose there exist nonnegative

constants 0505 and a nonsingular symmetric M ¢ R

g:R" « RN

of (X4 v?

MM such that for

any (x,H) ¢ N and X, = X - Hv f(x), the function U satisfies



2

1, = 9 gy = (el B9800 7

+ Pl + w(x,H)

for each H,_e U(x,H), where m = max ]l x+-x*]1,]]x-x*ll} and

n x . n nxn
w: R" x RV 5 R. Consider the sequences X; € R, H. ¢ R

i
generated from (xO,HO)e N by (2.1) with H , e U(Xi’Hi)‘ Then for

each r ¢ (0,1) and any nonnegative constant w, there exist positive

constants e(r), &(r) such that if | x - xe || se(r),

J
IH - vzf(x*)_]H < &(r) and ) W(Xi’Hi) < ws(r) for all j <0,
° FaM i=20

then the sequence {Hi} is well defined and {Xi} converges to Xy.
Furthermore,
Xipy = %o ll =0 1= |

for each 1 = 0, and {|| H, ||}, {[/H,™']|} are uniformly bounded.

From Theorem 3.1 and the techniques of Broyden, Dennis, and
More [6] it is easy to establish that the direct prediction method

using update (1.8) is Q-superlinearly convergent if Xq and HO are

I ~1 8
(@)

sufficiently close to x, and vzw"(x*)—1 and los-1] <o foro

;
sufficiently small. This is done in Theorem 3.2. The main portion
of this proof consists of noticing that the matrices H1+] and
H1+1(pi) generated by the BFGS update (1.4) and its modified secant
form (1.8) differ only by the term (91-1) sisiT/siTyi. From this it
is established that when x, and H, are near x, and sz(x*)"], the
difference between the two updates is basically determined by the

magnitude of (p.-1). It follows that {H., ,(p.)} is of bounded
i i+71'"

deterioration if fpi~]] is bounded.

.i

o138

0
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Theorem 3.2 Let f:R" R, Xy € R" satisfy the conditions of Theorem

1/2 n

3.1, and define M = vzf(x*) Consider the sequences x; e R,

nkn n .
Hi e R, i=1,2,... generated from X, € R* and a symmetric

H R
0

nin _
17 i

defined as in (1.4) and p; @ nonzero real number. Then there exist

by (3.1) with My (pi) given by (1.8), Sis Vs

positive constants e, §, o such that if

Ixg = xell < es [[H) = 72F ()7 lp yy = 6 and

I r~—1 <
(]

lo.-1] < o for all
; i
j = 0, then the sequence {Hi} is well defined and {Xi} converges

Q-superlinearly to x,.

Proof: The proof is a small extension of the work of Broyden, Dennis
More [6], who have proven this theorem in the case Py = 1. With a

s1ight expansion of their techniques we show that update (1.8)
satisfies (3.2) with w(x;,H;) = 5 |os-1]. This proves the Tinear
convergence of {Xi} by Theorem 3.1, and then the Q-superlinear con-
vergence follows directly from the work of Broyden, Dennis and More.

Broyden, Dennis and Moré show that under the assumptions of this

theorem, there exist open neighborhoods N around x, and N2 around

-1

vzf(x*) such that if X; € N, and Hi £ N2 is symmetric, then there

1
exist nonnegative constants Gy Gos for which

” H1'+](]) - H ”F,M s (]+0L-|m.i) ” HT' - H ”F,M + O‘Zm-i (3.3)

A vzf(x*)-]

A
where m, = max {|lx;,; - Xaell 5 1% - X4l ¥, H (Hypp (1),

(1.8) with p; = 1,is simply the BFGS.) They show in addition that
under these conditions
2
siTy. = (2/3)]ms,[1°. (3.4)

i
Now update (1.8) can be arranged as
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_ T, T
H'i'ﬂ(p'i) = H'i“H (]) + (pi—-l)sis’i /S.l Y.i
so that

IH. .5 (ps) - H| Fy s HH1+1(1)—14HF,M + fos-1] HsisiT[]F’M/siTyi

i+1 M
2, T
(1) - H”F,M + [pi“‘]'} ”MSiH /5-3 .Y-i-
Hence by (3.3) and (3.4),
: : 3
IHiyy (og) = Rl = (rogmy) [[Hy =Ry opmy + 5 [og-T ]
Therefore by Theorem 3.1 there exist positive constants e, 8, and o

such that if |[x - Xl < &y HHo"H“F,M < s+and

J

I le;-1] <o for all j = 0, the sequence {H;J is well defined and
i=0 ’

{xj} converges Q-linearly to x,. The proof of N-superlinear convergence
is then identical to that of Broyden, Dennis and Moré [6] for the

case 0 = 1.

Powell's [13] convergence result for the BFGS concerns a

slightly different method, where

Xipg = %5 ° Ay Hy vf(xi), (3.5)
A chosen to satisfy two line search conditions given in (3.6).
These conditions, which are sometimes used in practice, basically
assure that each iteration results in an adequate reduction in f(x)
and a step which is not too small. They were shown by Wolfe [16] to
guarantee convergence to the solution in many cases.

Powell's [13] theorem has two parts. First, he shows that the
points generated by (3.5) using this Tine search and the BFGS update
converge to a minimum of a convex function f which obeys other less
restrictive conditions. No assumption about X, or HO is made

(though the assumption of convexity is a strong one). Second he shows

that if in addition vzf(xo) is positive definite and X, = 1 1is
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selected whenever it meets the Tine search conditions, then the con-
vergence is Q-superlinear. In Theorem 3.3 we exhibit conditions under
which these results extend to update (1.8). For the first part of the
result, establishing convergence, we require only that 0 be bounded
above and below by positive constants. This fact is noted by

Brodlie [4] and takes virtually no new work to prove. For the portion

of the proof establishing Q-superlinear convergence, we require

lp5-1] <+ =. The extension of this portion of Powell's

HHr~18

0
proof needs only our bounded deterioration technique from Theorem 3.2.

.i

Theorem 3.3 Let f:R" = R be convex, X ¢ Rn, and assume that

D = {x]f(x) < f(xo)} is bounded and f is twice continuously
differentiable in D. Let the sequence X; € R”, i=1,2,... be gen-
erated from x and a symmetric H_ e RN by (3.5),

where H1+] = H1+](p1) given by (1.8), 0 is a nonzero real number,
and Ay > 0 is chosen so that

f( ]-x.)

T
Xi+1) ; f(xi) + 3]vf(x1) (X1+ i) (3.6)

T
(X5477%1)

T )T (Xyayoxg) 2 877 (xp)
61, 82 constants obeying 0 < 81 < 82 <1, 6] < 1/2. If there exist
constants 0 < pmin < 1 < pmax such that each o; € [omin, pmax],
then the sequence {Xi} is well defined and converges to a minimum

X Of f. If in addition vzf(x*) is positive definite, (2.2) holds

for all x in some open neighborhood around x,, and there exists

J
some v > 0 such that ) [p1-1[ < v for all j = 0, then the rate
i=0

of convergence is Q-superlinear.
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Proof: The plain convergence to a minimum follows alﬁost without

change from Powell [13]. Redefining his Y; as (Vf(xi+]) - Vf(xi))/oi,

the only place 0 then enters is in his Lemma 1 and equation (3.16),

where the extension given o; € [omin, pmax] is trivial. To extend

his proof of Q-superlinear convergence, the only place where the up-

date enters is in the use of Theorem 8.7 of Dennis and Moré [97.

This theorem is readily extended to update (1.8) using the techniques

of the proof of Theorem 3.2. Since {xj} > X4» these show that there

exists 10 > 0 such that for all i = 10,

iy (03) = P800 T p oy = kg (1) = PPe0) ™y + (372) o071
i+l M F,M i+1 F,M i

(3.7)

260x) 1) < 6

(The condition {x;} > x4 replaces the need for HHO -V
in order for (3.4), and hence (3.7) to hold.) Consulting the original
proof of Theorem 8.7 of Dennis and More [9] in Theorems 3.1 - 3.4

of Dennis and Moré [8], it is seen that (3.7),
-I'

Hr~—18

Olpj‘” <+°-° 

and Powell's resylt that i X; = Xg || <+« (which carries over
it RN

without change) are all that is needed to extend Theorem 8.7 to update

1 8

(1.8). The remainder of Powell's proof of Q-superlinear convergence

carries over without change.

4. The Q-superlinear convergence of Biggs' method

In this section we show that Biggs' [2] modification of the
BFGS has the same convergence properties as Broyden-Dennis-Moré [6]
and Powell [13] prove for the BFGS, under the same assumptions.
Essentially, this amounts to showing that Biggs' choice of the secant

parameter 0y (in the equation H]._H yi = pisi ) converges sufficiently
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quickly to 1. First we describe Biggs' choice of o
Biggs' choice can be motivated as follows. He retains the

general form of the secant equation H1+1y1 = 0455 because

vzf(x1+])si =Yy when f is nearly quadratic or S is small (and

H1+] approximates vzf(x1+])'1). However, he uses the free parameter

p. to introduce some third order information about f. In particular,

i

from the step just taken we have four pieces of information about f:

f(xi), f(x1+]), Vf(xi) and Vf(xi+]). From these, it is possible to

model the restriction of f to the 1ine connecting X; and X541

%(w) 4 f(xi + “51) , by the unique cubic q(w) which interpolates

f and f at X; and Xy

it+]

(w=0,1). Note that f'(w) = vf(xi+wsi)Tsi,

%”( w) = 51.T vzf(xi +Lu81) S, Using standard interpolation technigues,

it is found that the second derivative of this cubic model at
X 11 (w=1) 1is

9°(1) = ave(x, s, + 20F ()T, - 6(F(xy,q) - F(x,)).
T .2

Since g"(1) = %”(1) = S1 Y f(xi+]) F and we are trying to get

)—1, it would therefore be nice if

1] "]
q"(1) = s.H.q 's. . (4.1)

But we have H1+]y. =

i = PsSss and so (4.1) is achieved by setting

HH — T
q"(1) = s, Yiloss or

SR s, + 2vf(xi)Tsi —‘6(f(x1+]) - f(x;))

4Vf(x1+] ;

This is the value used by Biggs [2].
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In Theorem 3.1 we show that the direct prediction quasi-Newton
method (3.1) using Biggs' [2] update is locally Q-superlinearly con-
vergent under the assumptions of Broyden, Dennis and More [6]. The
proof 1is an extension of their result for the BFGS. We do not use
our general result from Theorem 3.2. Instead, it is easier to show
directly that when X; and Hi are sufficiently close to x, and
vzf(x*)—1, this update satisfies the original bounded deterioration
condition of Broyden, Dennis and More [6] (our equation (3.2) without
the w(x,H) term). This is done by showing that under these conditions,
05 given by (4.2) satisfies

[og=11 = komax {lxgey = xall g = xull3
for some constant k. The theorem then follows from Theorem 3.4 of

Broyden, Dennis and Moré, the original version of our Theorem 3.1.

Theorem 4.1 Let f:R" > R, X4 € R" satisfy the conditions of Theorem

nxn
R

3.1, and Tet the sequences X; € Rn, Hi € ,1=1,2,... be

generated from Xy € R" and a symmetric HO e R"™ as in Theorem 3.2,
2 1/2
f(Xy) /2.

positive constants e, § such that if leo-x*]] < ¢ and
2

using ¥ given by (4.2). Define M = v Then there exist

[H, -7 f(x*)—1“F,M:£ 8, then the sequence (H.} is well defined and

{Xi} converges Q-superlinearly to x,.

Proof: The proof, like that of Theorem 3.2, is an extension of
the pbpof of Broyden, Dennis and More [6] for the case 0 = 1. WUe
show that there exist postive e and § such that update (1.8) obeys

(3.2) with w(xigHi) = 0. The theorem then follows from Theorem 3.1.
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As in the proof of Theorem 3.2, we write the update as
_ T, T
H'H‘](p'l) = H.H_"l(]) + (91—])8151 /S.| “y'l (4'3)
Broyden, Dennis and Moré [6] show that under the assumptions of this
theorem, there exist open neighborhoods ﬁ1 around x, and &2 around
vzf(x*)_] such that if X5 € ﬁ1 and H. e &2 is symmetric, then there

exist non-negative constants &], &2, such that

Iipy (1) = Hllp = (Traqme) [0y = HIlp 0+ Spm, (4.4)

max {l]xgyq = xells f1xg =l 3o 08 9507

where m. j

i
We simply show that in addition there exist possibly smaller
neighborhoods N], N2 such that also

los =11 =< (9/2) ¢ [[H][m,. (4.5)
Then, since Broyden, Dennis and More have also shown that under
these assumptions

s.vy 2 (2/3) |IMs | (4.6)

;
(4.5) and (4.6) show that

Il (o

sy /sy Tyl gy = (27/8) 2 Il (4.7)
Thus from (4.3), (4.4), (4.7) and the triangle inequality, update
(1.8) satisfies (3.2) with o = &1, o, = &2 + (27/4) £ |IH||. Linear
converaence now follows from Theorem 3.1, and Q-suverlinear con-

veraence without chanae from the proof of Broyden, Dennis and Moré

for the BFGS.
To show (4.5), it is easier to first show that
roo=1
o111 < (9/4) ¢ |[H]m,.

For m, sufficiently small this clearly implies (4.5). For the
remainder of the proof we write x, X.o T f+, g, g,> m, s and y

for X-ia X'H‘]’ f(X.), f(x'i-ﬂ)" vf(xi): Vf(xﬂ_])e mia S1. and y1.
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respectively. Then
T T

. S Ag,'s +2g's - 6(f. -f) 1
i STy
T
_ g+TS + gs - 2(f+’f) . :‘ (4.8)
sTy
since y = 9, - 9. From elementary calculus

g, =9+ [ﬁvf(x+rs)d1]s,
. |

=0
1

+. f + gTs +ST[I(]—I) sz(x-k"rs) d-c:| S

t=0 :
Taking the inner product of the first equation with s and subtract-

—h
"

ing from it twice the second,

. . f 1
g+Ts ,«+”gTS - 2(f+-f) = ST[I (27-1) sz(xfr S)d’f} S
| T

=0
and using the transform‘¢ =2Tt-1,"
g+Ts + gTs - 2(f,-f) =
1 2 ' 2
‘ _gT[ Jf¢{v fx+ lé%i,s) - Vf(x+ 15 ¢ s}ti¢/2] S. (4.9)
¢ =0

The proof is essentially completed by showing that the term in
curly brackets has norm < 2 £ m for any ¢ e [0,1]. By the triangle

inequality,

]]vzf(x-+l{;§ s) - VZf(X'Fli%QS )l =
9% 0cr L35 ) = o)l + e+ 152 6) - i)

and so using Lipschitz condition (2.2) and the triangle inequality

again,
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| sz(x4-] ;¢ s) - V?f(x*-]é syl <

R L I P ET I E
ellx-xadl + %, xl] < 2em. (4.70)

Using (4.10) we.get from (4.9)

lg,Ts +'s - 2(F,-F)] = || 's HU/-¢,€m do=1sl2ens.
6 =0 (4.17)
Thus from (4.6), (4.8) and (4.11), ‘

3 Lslem Isl?em

Sy s 2

1
—
IA
o

IA

o8y 2 | M2 flm = (9/4) 2 || HIm

For N1 and N2 sufficiently small, ms is sufficiently small for this

to imply (4.5), which comDTetes the proof.

Theorem 4.2‘conta1ns the extension of Powell's [13] convergence
theorem to Biggs' [2] method. Ag>1h Theorem 3.3, the prdof is almost
immediate given the bounded deterioration result for Biggs' method

estab]ished above.

~ Theorem 4.2 Let f:R" = R, X, € R" satisfy the conditions of Theorem

3.3, and let the sequences X; s'Rn, Hi £ Rnxn,
RN

i=1,2,... be
generated from Xy € R and a symmetric H0 £ as in Theorem 3.3, using
0y given by (4.2). If there exist constants 0 < pmin < 1 < pmax such
that ¥ is also constrained to be in [omin, pmax], then the sequence
{Xi} is well-defined and converges to a mimimum X* of f. If in addition

vzf(x*) is positive definite and (2.2) holds for all x in some open

neighborhood around x,, then the rate of convergence is Q-superlinear.
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Proof: The proof of convergence to a minimum is the same as in
Theorem 3.3. The proof of the Q-superlinear rate again requires only
the extension of Theorem 8.7 of Dennis and Moré [9] to Biggs' update.
It is seen by consulting the original proof of Theorem 8.7 in
Theorems 3.1 - 3.4 of Dennis and Moré [8] that Theorem 8.7 can now

be applied directly to Biggs' update, since this update has been
shown in the proof of Theorem 4.1 to obey the standard bounded
deterioration condition, (3.2) with w(x,H) = 0. The proof of
0-superlinear convergence is thus immediate by the techniques of

Powell [13].

5. Summay‘y and COHC';ud‘inq -remarks .

We have shown in this paper that if the BFGS method is modified

to obey the secant equation Hi+1y. =

; pisi, then its theoretical con-

vergence properties are preserved as long as p; converges quickly
enough to 1. We also show that at least convergence to 1 is necessary
to assure (Q-superlinear convergence under the normal assumptions.
Furthermore, we have shown that in the instance of such a method which
has been successful in practice, Biggs' [2] method, 0 has precisely
this property and the Q-superlinear convergence properties of the
BFGS are retained.

One interesting consequence of our results is that they show
that for most problems, Biggs' method will be virtually the same as
the BFGS close to the solution. This raises the question as to
whether there is any point in using Biggs' method. Indeed, Brodlie
[4] finds the two methods to be about the same in practice, and so

suggests using the BFGS as it is somewhat simpler. Our theoretical
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results provide no firm basis for disagreement. However, it should
be considered that Bigg's method will differ from the BFGS further
from the solution where the function is Tless quadratic, and in thié
situation the use of a cubic model may be helpful. Therefore, since
our results show that Biggs' method is essentially equivalent to the
BFGS near the solution, and since it may be attractive further away,
its continued consideration may be justified.

It should finally be noted that our techniques in Theorems 3.2
and 4.1 of extending the BFGS proof of Broyden, Dennis and Moré [6]
to its modified secant form can equivalently be used to prove
0-superlinear convergence of the modified secant form of any other
update which has been proven Q-superlinearly convergent by the tech-
niques of Broyden, Dennis and Moré. These include the PSB, DFP
(see Broyden, Dennis and Moré [6]) and versions of the method of
Davidon [7] considered by Schnabel [14]. However, since none of these
updates have been superior to the BFGS 1in practice, there is no reason
to expect that their modified secant form would be superior to Biggs'

update.
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