Five Essays on Software Engineering
Bruce K. Haddon

CU-CS-131-78

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

FIVE ESSAYS ON SOFTWARE ENGINEERING
by

Bruce K. Haddon
Department of Electrical Engineering

Department of Computer Science
University of Colorado
Boulder, Colorado 80309

U.S.A.

CS-CU-131~78 June, 1978

N
wl978 Bruce K. Haddon

CONTENTS

Towards a Definition of Software 1

"Perhaps it's Neither?" 5

In Search of a Paradigm 8

Reading Programs for Fun and Profit 15

This I did next 22

Foreword

These essays were written while I was a postgraduate student
taking the course C5582, Software Engineering. They were written
to fulfill part of the requirements for this course, and 1 am
indebted to Professor Paul Zeiger both for the insplration
provided by his conduct of this class, and for accepting 'what
comes naturally" as evidence of having performed the required
classwork,

There is really no common thread to these essays. They are
simply my response to a number of different issues raised in the
course of classroom discussion, where I felt that I had more to
say than could be reasonably explained in the classroom situation.
They will have served a purpose if they spark the same response in
the reader.

Bruce K, Haddon
June, 1978

Towards a Definition of "Software'"

"defini'tion, n. Stating the
precise nature of a thing ...
The Concise Oxford Dictionary.

"

"a program (...). That is the thing
commonly produced in garages, "
Frederick P. Brooks, Jr.

in The Mythical Man~Month.

The main problem with definitions 1s that they are wusually
conceived in order to fulfil some, dare I say ulterior, purpose.
In my schooldays, the debating master warned against defining
one's terms too narrowly, as this would define the opponents "out
of the debate" and the argument would never be joined. On the
other hand, too loose a definition does not allow a meaningful
discussion that is free of bothersome qualifications. In short, a
useful definition is one that allows meaningful statements to be
made in the chosen area of discourse.

Now, in attempting to define "software" we undoubtedly have it
in the back of our minds that we would like to say meaningful (and
perhaps even interesting) things about '"software engineering."
(Let 1t be admitted that this is a chicken and egg situation, but
pass 1t by for the moment,) Recognising in advance the kind of
things we would like to say enables some bounds to be placed upon
the meaning of the term to be defined. For a start, we know that
"software'" 1is a more general term than algorithm. Also, we are
really only interested in using the term "software” in a computer
context, and we wish to exclude from our definition that which we
call hardware. Thus, we are 1looking for something between "a
specification or description of a method for solving a problem"
and "an entity that carries out operations upon data

representations."

We probably also have a feeling that the production of software
is related to an activity that we call and recognize as
programming. This is compatible. with the didea that "software
engineering" has some concern with organizing the programming
task, This means we lmmediately think of the tools and methods of
programming~~-pencils, paper, erasers, support documentation, user
manuals, etc. And since we hope that the output from all this
activity is "software' we must really ask, and eventually answer,
how much of all these things make up the actual product.

At this point, I would pause to consider whether the term
"software" is really intended to mean something more (or less)
than the word "program'" does. I think that ten or so years ago I
would have taken the position that the word 'software" was

descriptive of that class of programs that was as essential to the
operation of the computer as was the hardware, that is, those
programs that are now classified as "systems software.” As people
now frequently and quite happily speak of "applications software,"
"user software,'" "software packages' and the like, I feel that we
must recognize that "software" includes all programs. The use of
the word '"civil" din 'civil engineering" bears the same
relationship to a bridge as "software'" in "software engineering"
does to a regression program. It is an abstract term that makes
less commitment to the characteristics of the physical objects
involved.

Following the same line of thought, I think that we all feel
that large programming projects attempt to produce "software,"
But at the other end of the scale, consider a person carefully
entering strokes on a so-called 'key-programmable' hand
calculator. Is this person creating '"software''-—and if mnot, why
not? If the individual is working alone, for his own ends, then
his product is free of all the paperwork we usually associate wilth
software production, and it would not make any economic sense to
insist upon written records. (For example, an experienced user of
such a calculator who knows that a quadratic equation may mave two
real roots <could probably create a program to find them faster
than he could find, understand, copy and use someone else's.) Yet
it is obvious that the packages of programs published by the
calculator manufacturers are as much subject to the dictums of
"software engineering' as any other programming product. All of
this assuming that key-programmable calculators are allowed as
instances of computers. ‘

In answer to this last question, I think we must allow that
they are. If someone throws a log over a stream, it is a bridge.
Such a bridge may be of marginal interest to civil engineers, and
they may not feel that such a structure exemplifies the finer
points of their art, but 1its essential characteristics are no
different from dits bigger and costlier brothers. The analogy
holds for key~programmable calculators and five-step programs.

There 1s another marginal situation that may reflect some light
on the meaning of the term "software." Let us assume some alleged
piece of software is recast as a module of sequential electronic
circultry. If this is accomplished by the burning of a ROM chip,
it would probably be agreed that an irreversible recording has
been made, a recording little different (size excepted) from that
made by (dirreversibly) punching holes in a deck of cards, A
"sof tware change" requires only that a new recording be made. If,
however, such a change requires the addition or removal of
particular electronic components, then it would also probably be
agreed that a transition has been made from software engineering
to hardware engineering, as the economics of circuit design, state

minimization and component costs and utilization will have become
relevant., To state the same thing a little differently, the
maintenance manual must now speak of electronic components rather
than source language statements. A software product was created,
and exists, but its role was that of a design tool for the
hardware designer, As such, the documentation associated with
this software product will loock very different to that associated
with software items that are end products in themselves,

The term "software'" has already occurred many times in this
discussion, but as yet has not been defined! It has been used to
refer to representations of purposeful collections of computer
instructions, the representation having been chosen in a way that
ultimately makes the dinstructions available to a computer for
execution.

This definition seems to suilt our needs quite nicely, We do
not vreally want to label as "software' something that cannot be
executed--a handwritten program is not yet software, even though
it d1s a long step towards its eventual production. A high-level
language is a means towards more compact representation, so we can
meaningfully speak of software written in a high~level language
(and deduce other properties). The word "purposeful" connotes
intent, which enables discussion of software with errors (which
would be impossible if correctness were part of the definition --
indeed in this circumstance it would be difficult to prove that a
given item was a piece of software at all) but allows us to
exclude sets of random statements. We can recognize compilation,
assembly, and link editing as transformations of representation
that (hopefully) do not alter the dintent of the software.
"Software engineering" now has as its subject matter the practice
and methods for generating and manipulating representations of
this type. And finally, we can see that the thing defined is that
which is produced by "programming.' -

Lastly, we can return to the question of whether the associated
documentation should be considered to be an integral part of the
software. The definition given above excludes 41t by the
insistence on executability. Is this too narrow, or should the
definition be expanded? The calculator example showed that it is
meaningful to speak of software that has nc documentation., The
discussion relating to hardware illustrated that the type, style,
and amount of documentation was determined by the intended use of
the product, not the product itself., It is my opinion that the
"engineering' part of "software engineering" by itself implies the
existence of specification, design, use and maintenance documents
to the degree that is commeasurate with the economic value of the
product, All engineering disciplines have a similar requirement,
and software engineering can borrow from their experience. In
fact, we know that a goodly part of the effort that goes into

applications software in concerned with documentation as a problem
area, To include documentation din the definition of software
invites a dangerous amount of introspection.,

So, in summary, I offer the following definition:

soft'ware, n. A representation of a purposeful
collection of computer instructions, the
representation being transformable to a form
executable by a computer.

"Perhaps it's Neither?"

With the advent of the industrial age, it was recognized by
economists that there were two major types of commercial activity:
the so-called primary industries (agriculture, mining, etc.) that
produced raw material, and the secondary industries
(manufacturing, processing, etc.) that reworked the raw materials
into finished preducts, It was not that there was no secondary
industry before this time, but that it was not economically

significant to differentiate (in fact, there was little
economics). Towards the turn of this century, ancther type grew
to the point of economic significance, the service or tertiary
industries (government, education, banking, maintenance,

accounting, personal services, etc.).

It is obvious that computer software is not a primary product
(i.e. it does not grow on trees). So now the question is: ''Is
computer software a good or a service?" Perhaps this question is
not properly put, in that it does not have an excluded middle.

It is argued by Peter F, Drucker [1969] that a fourth economic
classification is needed today, which he calls the '"information
and knowledge" industries. This classification dincludes, for
example, communications media (newspapers, book publishing and
libraries), education, market and economic analysis services,
weather prediction, and computer software. All of these share the
property that after the initial production effort, the product can
be used and reused without requiring new production. A telephone
cable does not have to be replaced after each conversation., If
you pay a market analyst for a good tip, he is very hard put to
prevent you sharing it with friends.

The magnetic tape upon which your software is written is very
much analogous to a communication channel, and what you receive is
information on how to perform a given task (provided you have the
tools), this information embodying the knowledge and understanding
that the writer of the software had of the methods of carrying out
the task,

Drucker's thesis is that the growth of these industries is now
so explosive that it is outstripping the economic models that we
have to describe their dynamics and our understanding of the
management problems involved. This, he says, 48 creating a
"discontinuity'" in the social structure that could become even
more disruptive than the Industrial Revolution~--the following
extracts illustrate some of the points that he makes:

"The KNOWLEDGE INDUSTRIES which produce and distribute
ideas and information rather than goods and services,
accounted in 1955 for one-quarter of the US Gross
National Product. (This was already three times the
proportion of the national product that the country
had spent on the "knowledge sector in 1900,) Yet by
1965, ten vyears later, the knowledge sector was
taking one-~third of a much bigger national product.
In the late 1970s it will account for one-half of the
total national product. Every other dollar earned
and spent in the American economy will be earned by
producing and distributing ideas and information and
will be spent on procuring ideas and information."
(p321.)

"Traditional economic theory knows only
"commodities’. It does not know 'products'. A
commodity is defined entirely by physical
characteristics. Competition, therefore, is always

between units that are clearly defined and
distinguished and differ from each other only by

their price,. Products are, however, much more
complex, They are wusually not capable of being
defined in physical terms alone. They are wusually

differentiated in the value they offer the buyer--And
there the traditional commodity concept is simply not
adequate." (p205.)

"Teaching is the only traditional craft in which we
have not vyet fashioned the tools that make an
ordinary person capable of superior performance. In
this respect, teaching is far behind medicine where
the tools first became available a century or more
ago. It is, of course, dnfinitely behind the
mechanical crafts where we have had effective
apprenticeship for thousands and thousands of years."
(p42.)

"The information industry will create tremendous
employment opportunities. We need, for instance, in
the United States about 1 million computer
programmers between now and 1975--as against 150,000
to 200,000 to date. The computer programmer is to
the dinformation industry what the worker on the
assembly line was to the mass-production industry of
yesterday: the semi-skilled but highly paid, highly
productive worker." (p43.)

"Clearly we do not as yet know how to obtain economic
performance from knowledge., We also do not know how
to satisfy the knowledge worker and to enable him to
gain the achievement he needs. Nor do we as yet
fully understand the social and psychological needs
of the knowledge worker.

"That we do not yet know how to manage knowledge
workers for performance is hardly surprising
considering how recent the shift to knowledge work
has been. After all, it is less than a hundred years
since we first began to concern ourselves with
managing the manual worker." (p349.)

"We could, therefor, hardly expect to know how to
define, let alone measure the output of knowledge
work. For this task we mneed definitions--not to
speak of measurements--~that are quite different from
those that we have learned to apply to manual work,
The most useless and wasteful effort is that of an
engineering team that with great speed, precision,
and elegance turns out drawings for the wrong
product. Knowledge work is not easily defined in
quantitative terms, and may indeed be dincapable of
quantification altogether, The computer, it 1is
reasonably certain, cannot measure the work of the
programmer who runs the computer.'" (p350.)

Reference

Drucker, Peter F. The Age of Discontinuity. Pan Books Ltd,
London (1969) pp477.

In Search of a Paradigm

"*3' means '2+1', and '4' means '3+17.
Hence it follows (although the proof
is long) that '4' means the same as
"242', Thus mathematical knowledge
ceases to be mysterious.'

Bertrand Russell,
in "The Philosophy of Logical
Analysis' . #*

There have been many attempts to characterize a programmer's
activities by likening them to those of other professions or
crafts--this is yet another. Other endeavours have been aimed at
formulating the structure of the ideal programming team, a
structure intended to enhance the enviromment in which the
programmer's activities take place. There is obviously a very
strong interaction between the perceived nature of a programmer's
work and the team structure considered ideal, Two strongly
antithetic views on team structure are advanced by Weinberg [1972]
and Brooks [1975] which undoubtedly mirror fundamental differences
in appreciation of the programmer and the programmer's task.
Before looking at these differences, let me first examine some
possible analogous occupations.

The Programmer as Draughtsman

Perhaps it would be better to choose a Draughting Engineer then
simply a draughtsman, but nevertheless, let me pursue the analogy.
The draughtsman will often receive from the engineering designer a
sketch of some item, with some notes as to critical dimensions,
important relationships between parts of unit, and a brief outline
of the function of the thing. The draughtsman job is then to
produce a neat, tidy, understandable drawing which has all the
detail filled dn--exact radii and positions of holes, machining
tolerances where they are critical, depth and shape of weld
fillets, and many other essential things that must be taken care
of 1f the item d4s to fulfill 4its designed functions, The
draughtman's objective is to be able to hand the drawing to the
machinist or diecutter or someone who will be able to create the
actual object without further reference elsewhere.

Now, this is frequently the type of task set for a programmer,
and one, incidentally, to which I have found that programmers
respond very well. The design document specifies a rough outline

*Bertrand Russell, A History of Western Philosophy, Allen & Unwin
(1946).

of the program or module, its purpose, and some indications of
possible algorithms. The programmer is left all the "important"
decisions, such as the final choice of algorithm, induction of the
final (sub)modularization, and all the small detaills, such as what
variables are needed, just where in the code the incrementation of
a counter is done, and so omn,

The analogy can be pushed a little further. If the engineering
product is more complex, then a team effort may be required-—and a
communication problem is introduced. Draughtsman Bob says, 'Hey,
Jim, I need to fasten this piece, I'll put a bolt through here,"
Jim replies, "No, the nut will get in the way of my swing arm
here." Bob cogitates and answers '"'OK, I'll use a countersunk head
on that side, and put the nut on this side.'" The same interplay
can be observed when programmers decide what information is to be
passed across a module interface,

The analogy breaks down a little at the point where the product
fails to work as hoped. In the engineering situation, the
component that does not work is examined first, whereas in the
programming case, first recourse 1is to the program text—-the
"drawing'. (Although, fifteen years ago, it is likely that the
first thing examined would have been a core dump, that 1is, the

actual software product that failed). This difference seems to
lead to an assumption that in the engineering case there was a
"designer's" error, whereas in the software instance, a

"programmer's'" error. This view may not be universally true, but
I have seen it happen more often than not.

The Programmer as Mathematician

Both the programmer and the mathematician produce a ''paper"
product. Both must produce their product in a form that will
withstand the most rigorous scrutiny, and let's face it, a
scrutiny more aimed at showing the reasoning embodied in the
product 1is incorrect rather than correct. Both are at the mercy
of typographical errors, although the programmer is in a slightly
more fortunate position in this regard,

There is some thought that the product of the programmer is
more complex than that of the mathematician, a position that I do
not fully accept. The longest mathematical proof that I myself
have ever produced ran to 63 pages of preliminary theorems and
lemmas, the actual ‘'proof" (to show that two definitions of
certain nilpotent ideals in an algebra were in fact equivalent)
occupied just the last ten limes. Only rarely have I written a
program of this size. The longest mathematical proof I have ever
experienced was that of the Prime Number Theorem, which took a
lecturer 36 hours to develop (12 weeks at 3 hours a week), during

10

which time I made almost 200 pages of notes. Again, most of this
time (space) was occupied by developing preliminary theorens,
which have an existence in thelr own right. They formed a
necessary background to the actual proof in question. In the
software engineer’s terminology they constitute the support
modules embodying the abstractions required for the higher level
application.

Now this is where the mathematician appears to have the edge on
the programmer/software engineer. The mathematician appears to
have the capacity and the inclination to formulate abstractions
that have a greater conceptual unity, that have a better intuitive
appeal than are (yet) available to the programmer., I can see two
possible contributing factors to the mathematician's advantage.

Firstly, the mathematician has access to a better (more
sophisticated?) mnotation in which to formulate his problems. And
the overwhelming advantage of this notation is that itself
possesses formal properties, that is, it can be demonstrated that
certain manipulations of the symbols can be performed irrespective
of the '"meaning'" of the symbols. Such manipulations do not
produce anything new, but can have a dramatic effect on our
perception of intent. For example:

ax? + bx + ¢ = 0

and T

x =-b % /b2 - bac, a # 0

Za

are formally equivalent, vyet we all feel the second tells us
something that the first does not, Many would argue that the
second equation is the 'solution'" to the first, yet it is no
different in nature to:

b = —ax - ¢/x, x # 03
which doesn't tell us anything we care to know. But they are both
simple restatements of the original. In the same way:

while b # 0 do begin S end;

and

if b # 0 then repeat S until b = 0; (*b functional#*)
are equivalent. (Note that the caveat "b functional" is similar
in nature to the "x # 0" or "a # 0" introduced by the rewriting of

the mathematical formulae.) But for some reason one of these
programming language statements is no more revealing than the
other. Some would take the position that the following

"definition" (of while) is even more obscure:
goto loop_end;

loop_start: §;

loop _end: if b # 0 then goto loop_start;
At the very least it seems certain that our notation is not
working for us--it may be as one popular view has it, that our
programming languages are the biggest obstacle that we have to
overcome,

11

The second factor is related to the position of mathematics in
our society and educational system, A practising mathematician
will have learnt most of his basic tools and methodology in his
high school years, and many of his most basic concepts much
earlier. He will have learnt by drills and repetitive exercises,
so that much of his knowledge will have become "intuitive'". In
fact, mathematicians place a high estimation on intuition, a
measure of the value of an abstraction or mnotation being its
intuitive appeal. Many programmers, on the other hand, avoid
writing the same or similar programs if at all possible, thus
denying themselves the opportunity to learn through practice, and
they also find that "intuition is frequently unreliable.'"'* These

positions, I feel, arise from the superficiality of our
understanding of the arts and sciences of programming. As Wulf
remarks, "... if we really understood a program, we would

understand why it is correct or incorrect.'™**

The programmers I have known have not been mathematicians, vyet
their mathematical facility has been more functionally
sophisticated than their programming skills. The differentiation
of a function of a function offers less challenge than deriving

the loop invariant for a for statement. The latter, to the
programmer, surely has greater utility, The teaching of

programming earlier in the education curriculum may go someway
toward correcting this, and the ‘dmproving techniques of
abstraction will provide some help. A 5000 year history to draw
upon would also be an inestimable advantage.

The Programmer as Novelist

No matter how much a writer writes to fulfill some inner
compulsion, publication is the only objective test of merit. And
the corollary of publication is criticism. Although there is an
adversary relationship between writer and critic, it 1is a
productive relationship, Ideally there is an exchange between the
protagonists that sharpens both their skills and their
appreciation of each other's roles. Even when less than ideal,
both can learn by Ilistening to the other, even if they do not
particularly like what they hear.

* Barbara Liskov and Stephen Zilles. An Introduction to Formal
Specifications of Data Abstractions. In Current Trends in
Programming Methodology: Volume 1 (Raymond T. Yeh, ed.).
Prentice~Hall, Inc., Englewood Cliffs, N.J. (1977).

#%William A. Wulf, Languages and Structured Programs, op. cit.

12

Whether a programmer likes it or not, he 1is in the same
situation. The behaviour of a program intended for any but
personal use 1s subject to examination by many critics (with a
vested interest in performance). A successful program will be
under pressure for extension, an unsuccessful one for correction,
so inevitably the actual source text will be subject to some
analysis, This analysis will be critical, in both the dramatic
and literary sense. A programmer must face this prospect at the
outset, and write to be read.

Now, there 1s a popular dimpression that programmmers are
naturally secretive about their code. This is contrary to my
experience-~I have seen many programs that were not what I would
call "readable', but never a programmer who was not willing to
show and explain every nuance and subtlety of his creation. The
main difficulty encountered appears to be the finding of others
who will 1listen. Welnberg (p. 6) comments that programmers are
usually not avid program readers. A programmer seeking to show
off his code 1is not really loocking for someone to say that the
method won't work, or is implemented incorrectly, or there 1is a
known better method. But these are the sorts of things that a
critic will say anyway (and we noted above that the intrusion of a
critic is dinevitable) and I have seen that a programmer will
accept this in return for having someone take the time to "coo
over his baby."

The trick is to convince the programmmer that he will have an
easier time finding readers, and that they will be less prone to
false criticism, if the code is " readable. And once he starts
consciously improving the readability of his code, so will he
improve the quality, and with that, his morale. At this point,
you have a ''programming novelist',

The Ultimate Team vs, The Ultimate Programmer

Weinberg is of the opinion that most programmers invest too
much ego in their programs to be comfortable with exposing their
programs to others, or even to cope without tension with the
errors that could be detected by the computer system. To my mind,
this attributes less maturity to a programmer than to an infant
learning to walk, The infant has a considerable ego investment in
getting onto his feet, perhaps is under strong external (parental)
pressures, and has to cope with both extreme personal limitations
and repeated rebuff by an dinanimate environment. Yet he
perseveres; the experience is rewarding in its outcome, and, more
importantly, teaches lessons about the nature of 1life and the
process of learning, both of which we consider to be necessary and
valuable features of the child's development.

13

Brooks' picture of the "chief" programmer is a stark contrast.
His programmer is a person sufficiently productive and self-
confident to be able to keep up to nine other people occupied with
his output. His responsibilities go beyond just the programming
task, The frustrations that so worry Weinberg have no place in
this scenario. Unfortunately, it is beyond my experience to know
how well such a team would work, but having worked within smaller
units with similar features (punch operator, secretary to whom to
dictate the documentation, back—~up programmer to read and
independently test the code) I know that productivity is greatly
enhanced by such an organization,

It is difficult to reconcile these two different views of the
same ''animal". I feel that Weinberg's view may have been
influenced by the psychologist's tendency to examine ''mental
institution" cases, and dependency on data acquired from and by
students subject to the ambivalences and wuncertainties of the
learning situation, particularly those affected by the mid-to-late
sixties' euphoria with high~level languages and third-generation
machines, which promised an end to the evils of earlier times. We
are seeing today the effects of the let-down from this ‘high".
Brooks 1s also biassed, 1in the other direction, by association
with very competent, ultra-professionals. The programmers of my
asgsociation are somewhere in between,

The Programmer as Programmer

None of the analogies outlined above really describe a
programmer, for a programmer is none of these--he is, in fact, a
programmer, But no matter how low he is in any organizational
structure, the professional programmer does need to have the
ability to bring some design talent to the project, for he will
have to make all those miniscule decisions that make up the warp
and weft 1in the fabric of the overall design. He must be
conversant with the notations and abstractions of his trade, be
able to make statements about and prove the properties implicit in
these mnotations and abstractions, utilizing a well-developed
intuition to guide him through the maze of complexity.

As importantly, he must interact with his environment,. Not
only mneed he cope with the limitations of Thimself and his
machines, and learn the lessons imposed by these limitations, he
should go further and expose his work to the critical examination
of his peers, and be prepared to learn the lessons that that
exposure will generate.

14

The above has not offered a definitive view of the programmer
and his task. This is something that each programmer must find
for himself, relating his own circumstances with his own nature
and goals. Enlightenment 1s in the search for a paradigm--the
substance adds little more,

References

Brooks, Frederick P., Jr. The Mythical Man-Month. Addison-Wesley
Publishing Company, Reading, Massachusetts (1975) pp. 195.

Weinberg, Gerald M. The Psychology of Computer Programming. Van
Nostrand Reinhold Company, New York (1972) pp. 288.

15

Reading Programs for Fun and Profit

"Reading is one of the highest
functions of the human brain--of all
¢creatures on earth, only people can
read.

"Reading is one of the most
important functions in 1life, since
virtually all learning is based on
the ability to read.

"It is truly astonishing that it
has taken us so many years to realize
that the vyounger a child is when he
learns to read, the easier it will be
for him to read and the better he
will read."

Glenn Doman,
in "How to Teach Your Baby to
Read,''*

My first (and only) formal class in assembly language
programming started with the lecturer asking whether everybody had
a copy of the manufacturer's manual. About five out of forty had
it., So we were admonished to obtain one, and the class was
dismissed, The following week, the same question was put. This
time the ratio was reversed, so we were handed some sheets of
exercises, and asked whether there were "Any questions?" There
were none, so agaln the class was dismissed. It did not meet
again. After a fashion, I completed two exercises, and passed the
course,

Having struck up a friendship (that lasts to this day) with one
of the staff programmers, I asked him to teach me to "program the
machine." He handed me a listing, and told me to vreturn when I
understood it. That took two months, the listing was of the
machine's monitor program. I knew how to "program the machine'.

The reading habit persists, Fifteen languages later, I still
start out reading programs, with a manual at my elbow to explain
what T am looking at. I read critically, asking whether the code
T am examining constitutes good usage, whether it reflects the
spirit of the language designer's intent, whether the available
language constructs are being used when applicable, whether
advantage is being taken of machine features (good 1in assembly
language programs, possibly bad in high-level language programs) .
0f course, at the beginning, my judgements in these matters may be

*Dolphin Books, Doubleday & Company, Inc. Garden City, New York
(1975).

16

amiss, but this approach has developed a fine appreciation for the
helpful comment, the transparent structure, the overall clarity of
a program. It has also created an awareness of the strengths and
weaknesses of various languages and language constructs for
diverse applications and situations.

This method of learning can be compared to the child's learning
of his native tongue. Understanding comes before formal study.
Patterns of usage are copied from others., Literary appreciation
is a faculty that has to be developed by continual exposure and
critical appraisal. Finally, reading can become an enjoyable
pursuit in itself.

I suggested 1in an earlier essay that programmers are only too
ready to show off their code, their main obstacle being the
finding of willing readers. And potential readers shy away from
volunteering, since they do not know what 1is expected of them,
This situation is in large measure the fault of our educators, for
although they teach the writing of programs, they do not teach
reading. How many so-called programming courses are 1in essence
like my first assembly language course, casting the student loose
in a sea of language constructs, with little or no idea how to
organize them? The student is expected to communicate in (to him)
a foreign language without ever having seen how the parts can be
used to make a whole. From whence comes the appreciation of good
usage? Or the ability to distinguish a useful comment from the
obvious comment? It is my experience that it takes little to
impart a sufficient appreciation of a programming language to a
beginner for him to understand a' well-written program, and, that
almost as soon as he can do that, he can re~-use statements from
that program to construct another., At this point, he needs to
learn to find his way around the defining manual, to check that
each statement does what he thinks it does.

If we are to encourage the reading of programs, particularly in
the professional ranks as a means of controlling errors and
improving maintainability, the function and the duties of the
reader need to be defined. I will call this person the "critic',
and I dintend it in the literary sense. The writer of the program
I will call the "author", to complete the analogy. The author
writes the program, the critic writes a critique. In managing
programmers and programming teams, I have often appointed people
to the role of critic, sometimes myself, sometimes trainees,
sometimes more than one, and sometimes changing the critic in the
course of the project. In the ensuing discussion, I will describe
the critic's role, and his interaction with the author.

There are five distinct phases in the critic's job, each of
which may be iterated or returned to more than once, Remember
that at each phase the critic need not always be the same person,

17

or even one person., In the environments in whch I have applied
this approach, the projects have mnot been overly large, the
largest being the design and writing of an operating system of
approximately 50000 lines. I could envisage that in a large
organization, some of the critic's functions could be permanently
institutionalized in the organization's structure, However, I
will write simply of an author, and a critic. I lack names for
the phases, so will just number them.

Phase 1 The author supplies a written description of the
functions of the program, in the form of compiler- or
assembler—-acceptable commentary. (A1l the descriptions
mentioned here and below are in this form, and are intended to
become a permanent part of the program text., In all cases, the
critic is responsible for ensuring the format agrees with the
project's internal documentation standards.) The critic
discusses this description with the author and requests changes
until the c¢ritic 1s satisfied that the description says what
the author intends.

Note that the critic is not responsible for ensuring that this
description agrees with the program's specification., That is a
task for the author's team leader or supervisor. The canny
supervisor will ask to see the description only after the critic
has approved it. At this point, the supervisor can be sure that
the author has stated his intentions in a comprehensible form,
thus easing his task of checking that the author is intending to
write the desired program. This check may cause some further
iteration in this phase, but better now than later,

Phase 2 The author supplies a written specification of the
program's internal structure, interface specifications, data
(and file) descriptions, and algorithms to be used. The critic
applies the same standards to each as he did in phase 1, and
further attempts to reconcile the structures and algorithms
with the description agreed upon in phase 1, He should also
check for internal consistency. These descriptions might be
given to the critic all together, or one-by-one as they are
written. Either way, phase 2 should be expected to occupy a
fairly long period, as this is the time that the author will be
wrestling with his overall design problems.

The critic must be shown no code at this time., This is not to
say that the author may not be writing code. In fact, this is the
time that the author may "write one to throw away.'" Writing code
may help him organize the program, and to write suitably
definitive descriptions. He may get away with writing the code
first and the documentation later (as many programmers are wont to
try) or he may have to abandon some or all of the code to satisfy
the critic in this or later phases. Either way, the project

18

proceeds as if all the design decisions were made and written down
before the code was written.

The critic should pay particular attenticn to any specified
side~effect within a routine. The description of the routine
should both fully explain the intended effect and the necessity
for using a side-effect vrather than communicating via the
parameter interface. I am not necessarily suggesting that side-
effects not be wused (dinput/output routines, random number
generators, symbol table handers and so on perforce must utilize
some side~effects), but they do increase program complexity quite
markedly, and are so easily forgotten when later looking at the
routine invocation.

Phase 3 The author supplies the critic with listings of the
individual modules. These must be syntax—error free compiler
or assembler listings, at the highest available diagnostic
level of the language processor, with symbol table and cross-
reference options (hopefully available). The critic's job at
this stage is not to follow the flow of control, but to simply
check each type, data or routine identifier for appropriate
choice of name, correct definition, and consistency of wuse
(thus the need for crogs-references).

If the mnemonics wused by the author for names do not connote
the right meanings to the critic, they must be changed. The
overall intelligibility of the program to later readers
(particularly maintainers) depends heavily on these choices. I
have found that programmers who are not aware of the reading
problem will tend to use shortened abbreviations, which carry a
sentence~full of information to him, but nothing to the reader,

e,g. NIITP = '"next input item to process'. This imposes a double
load on the reader, to learn firstly the identifier, and secondly
its meaning. Natural language words impose much less load. In

the above instance, '"NEXT' is the logical choice, but if this is
required for something else, wusing words like 'CAT' for the
current ditem and 'DOG' for the one following it are more easily
learned than the unfamiliar acronym. (Note to language designers-
~English averages about cne bit of information per character, so
adding one character of allowable length to identifiers
approximately doubles the number of wuseful words--~including a
break character together with a generous limit on length allows
descriptive phrases to be used.)

It may seem that this phase comes a little late in the
sequence, Surely, vou might ask, checking identifiers after the
code has been prepared and compiled is 1like the horse and the
stable door. In practice, once the author is aware that he is
writing to be read, and knows what will give his critic the least
difficulty, he will vrarely have to make a change to satisfy the

19

critic., In cases of doubt, the author can consult with the critic
beforehand. This part of this phase should be more a formality
than the start of a heavy rewrite (or at least some use of the
editor to perform systematic changes). The amount of space
devoted to the issue is just to emphasize the importance.

The main functions of the phase are the 'correctness of
definition" and "consistency of use" checks, firstly, to pick up
the obvious errors, and secondly, to familiarize the critic with
the basic data structures of the program, the values they assume,
and the operations performed upon them.

Phase 4 Now the critic actually starts to read the code. It
is my earnest recommendation that this be done bottom-up, that
is, commencing with the lowest level routines. The critic
should ensure that each routine does exactly as 1its interface
description says that it does, nothing more and nothing less.
Once 100% confidence is established in the description, it may
be referred to whenever an invocation of the routine is
encountered, with there being no further need to reread the
code of the routine.

At this point, the critic should find the reading fairly easy
work~-he is familiar with the objectives of the program, has a
good idea of what 1s done in each routine, knows what data the
program manipulates and the kind of operations it applies to each
datum, The critic should be able to concentrate on the flow of
control with relatively little distraction.

The critic needs to be aided during this phase by suitable
running commentary within the program text. He should note all
places where he feels he had to work too hard to see the purpose
or workings of a statement, or where the commentary was
misleading. The benefit of the doubt belongs with the critic--he
represents all later readers. The critic should also feel free to
ask for the removal of irrelevant commentary, although in this
case the benefit of any doubt belongs to the author.

The reason for starting at the bottom is to counter the human
tendency for seeing what one wishes to see. If an invocation of a
routine is seen before the routine has been checked against its
description, there is some pressure to accept the description at
face value if it accords with the way the routine is being used,
or worse, to read the code of the routine and overlook the

description, In addition, the voutine will be examined with the
prejudicial knowledge of what it is meant to do in the particular
context of the invocation, The perceptual phenomenon of

"completion' (the tendency to see things the way they should be,
rather than the way they are) will interfere with accurate
reading.

20

The outcome of this phase could be a return to any of the
earlier phases, either to wupdate descriptions, redesign data
structures, restructure the modules, pick new names, or simply to
fix errors.

While the critic is reading the text, which could take some
time, the author (or other responsible party) can be debugging.
But don't tell the critic the outcome! The critic's reading and
the debugging crosscheck each other. Ideally, the critiec ~will
find all the errors that the debugging does, and vice versa. If
not, someone is not trying hard enough, 0f course, as in all
things, perfection is not possible, but significant deviation in
diagnostic performance between the reading and the debugging
indicates problems in the project. (The really aggressive author
can "bebug" the program to measure the critic's performance.)

Phase 5 The critic is given the external documentation to read
(user manual, maintenance manual, etc). This d1s basically a
check for completeness, as the critic is in a good position to
see that all features are described, all limitations are
mentioned, and that the documentation accords with the critic's
understanding of the program,

There are a number of other people who should also read the
external documentation before it reaches its ''final" form. The
author, of course, dirrespective of whether he originated the
document; the designer who wrote the program specifications, and
who probably has some responsibility to see that the documentation
meshes with the documentation of other programs associated with
this one; a representative of the user community (at least one),
to ensure the manuals speak a language that they understand. But
the critic is the only person in a position to give an informed,
interested, though independent opinion.

w0 =m0 =0

Throughout, the critic's role is to interact with the author
and that which the author writes. Care has been taken to see that
the critic does not become involved in the author's interaction
with other people, such as the author's supervisor, the testing
department (if this is a separate function), the documentation
editor etc. Whether vyou are a chief programmer's co-pilot, a
member of a co-operative team, or just an office-mate unofficially
helping a friend, I do believe that the above schema should be
followed at least in essence, if your role as critic is to be
productive. To people interacting with the author, the critic
should be invisible, apart from the observable readability of the
author's code.

21

The critic is no replacement for other methods of quality
control, either of the software or the associated documentation.
We can hope that the quality will be higher, or the production
time be shorter.

The above five-phase scheme 1s derived from experience with
simply reading programs. Inevitably, when picking up a program to
read, the first thing sought is a description of what the program
does, its inputs, options, by-products and outputs. The next
thing sought is some idea of how it does it, where decisions are
taken, where data transformations are made, the way these are
distributed through the program, In a program written to be read,
these steps are straightforward., If not, this information must be
painfully deduced from evidence found in later stages of the
reading.

The next mnatural step is to start reading the code, but this
will only be effective if the function of the data structures is
known. Without definitions of these functions, successive guesses
must be made till finally the code is understood. Thus the
emphasis placed on phase 3 of the critic's task.

Phase 5 is placed where it is simply because that is the time
the critic can most wusefully perform that task, If you are a
later reader, you will undoubtedly read the wuser documentation
first (if there is any) as a way of obtaining a definition of the
function of the program.

Either as a critic or a maintainer, or even as a casual reader,
the benefit to be derived from reading programs is to see how
someone else makes use of a language or machine, thus broadening
your experience and outlook at nowhere near the cost of writing
the program yourself. And you will gain a very deep appreciation

of the difficulties that you can impose on a reader when vyou
yourself are the author, If you bring this appreciation to your

own writing, you too can write readable programs.

Short Quiz, Can you remember the four didentifiers wused in the
example in the discussion of phase 3?7 If three come easily, then
the point is made.

22

This I did next

"'The time has come,' the Walrus said,
"To talk of many things:"
Lewis Carrol,
in "The Walrus and the
Carpenter.”

"'0h no, no, you are not seeing it.
Your kind of visualising is not right
for seeing this. Think of it
abstractly. What 1is happening on
this photograph of an explosion is
that the first differential
coefficient vanishes identically, and
that d4s why what becomes visible is
the trace of the second differential
coefficient.'"

John wvon Neumann, as quoted by
Jacob Bronowski,
in The Ascent of Man.*

The program had been written, rewritten, punched, assembled,
punching errors eliminated, loaded and now the testing was
completed. The testing was done by the somewhat old-fashioned
method of dumping the memory and single-stepping through the
program. The errors found had been corrected, and the program re-
tested. The last pass through the troublesome program paths
revealed no masked errors. So what to do now? For about half-an-
hour I sat at the machine console, idly re-~reading the program
text, really at a loss as to what to do next. Life appeared to be
empty of further challenge.

After a period, I came to thinking of what there d1s in
programming, and particularly this program, that creates such a
state, such an internal tension, that the aftermath has all the
symptoms of depression, Other writers have made the observation
that amateur and beginning programmers exhibit many of the signs
of addiction,. Perhaps the difference between these and the
professional programmer is that the latter has learnt to control
the exhibition of the signs, being reasonably assured of a
continuing source of his "drug'.

This analogy is, of course, much too facile, T feel that the
"high" of the programmer is much more akin to that of the creative
artist, involving the same elements of personal commitment, ego
projection, stylistic expression and dedication to perfection.

*Little, Brown and Company, Boston (1973).

23

The absolute marriage of the intellect, the activity of the body,
and the creative urge in programming brings about the conditions
in which self-limitations are surmounted (however imperfectly) to
achieve a work that we can, and do, judge by aesthetic standards.

The apparent "post-program" depression is really the relaxation
experienced by the high~jumper descending from the bar into the
padding. The mind has been focussed, the energies rallied, and
gravity overcome. Now is the time to relax, before having to
attempt to do better.,

The program was written to fulfill a definite need. For the
last five years, one of the important tasks for the Librascope
computer operated by the Electrical Engineering Department has
been the production of typewritten documents on the Selectric
typewriter attached to it. The mode of operation is that a "type
tape' is prepared, the contents of which are transmitted to the
typewriter at 15 characters/sec by a small interrupt-driven
program running in background, occupying the high memory
locations. A set of switches on a separate control panel is used
to select such options as stopping at the end of the page, pausing
temporarily (e.g. while the ribbon of the typewriter is changed),
and so on.

In the course of time, a number of desirable (but absent)
features had been ddentified. The dimplementation of the most
necessary of these was originally envisioned as a modification of
the existing program, but after examination, 1t quickly became
apparent that the exlsting program was the "one to throw away".
With the constraints imposed by the structure of the existing
program removed, it became possible to consider implementing all
desired features.

Apart from limitations on design-programming~testing~
documentation time (due to other commitments, personal effort was
restricted to about an hour a day for two or three months), the
design had to conform to two constraints: the time from interrupt
to delivery of the character to the typewriter should not, on the
average, exceed 500 microseconds; and the size of the program
ideally should not exceed 400 words (the space occupied by the
existing program), or at worst not exceed that figure by more than
20%.

The main disability with which I came to this project was never
having programmed the machine in assembly language before, and
thus was neither familiar with the details of the machine nor the
assembly language. Having the existing program was a help, but as
it was not documented and only sparsely commented, to understand
it would require a fairly heavy investment in becoming acquainted
with the machine and the assembly language anyway. In addition,

24

apart from the sketches of the logical connections, the hardware
added to the machine to interface the typewriter was not
documented.,

The first step then was to read the machine manual and the
assembly language manual., At the same time, I read as much of the
MONITOR as I could, both to test my understanding of what I had
read, and to see how the instruction set was put to use. The side
benefit was dinvestigating the connections that a background
program must necessarily make with the MONITOR to obtain interrupt
service.

The program structure to be used, in outline, was obvious: a
mainline to handle the majority of characters, branching to
processors for special actions, a level or so of subroutines
underneath to handle tape input operations and other management
details. Along the mainline, the time constraint would be
dominant, all else would be governed by the space constraint. The
execution of paths other than the mainline would occur one or more
orders of magnitude less often, so would have small impact on the
average speed.

At this point, many details were left to be resolved, but it
was clear what the tape input routines had to do. So I decided to
start immediately with a bottom-up implementation, devoting most
of my hour/day to programming, and relegated further "thinking" to
background while eating, sleeping etc. So I proceeded with this,
defining macros to handle things like subroutine entry/exit, i/o
channel selection, and spins (two-instruction loops waiting for
the 1i/o channel to cease to be busy). These routines were ready
for assembly after two weeks.

The assembler would not accept the macro definitions, although
they conformed to the description in the manual. The MONITOR code
used no macros, so no guidance was available there. The existing
program used just one. The format of its definition was different
to what I had used, and the code of the assembler was sufficiently
obscure that I could not deduce the format from there. So I
rewrote the macro definitions, imitating as best I could the one
example that I had. The assembler now complained that I had too

mWANY Macros. The manual said I could have 1000, So I removed
definitions till the assembler stopped complaining. The number
left was zero. Eventually I discovered that there was a later

edition of the assembler manual (the one I had been wusing being
written before the assembler was available), where I learnt that
the format I was now using was correct. I finally found that the
assembler reads predefined macros from the system library, and
apparently there are 999 definitions there, and these leave just
enough room to define one more macro, if the definition does not
exceed one line, No documentation exists on how to change this

25

limit, so I abandonned macros as a technique, and wrote all the
instructions myself.

At this point, the code assembled, although trouble was
looming. This code was about 140 words long, compared to the 60
or so in the existing program that did essentially the same,
although, to be fair, I had included error recovery code which was
not present in the other.

I went aghead and tested the code, to see whether the correct
paths were taken on detecting errors and endfile., All went well,
with no logical errors being discovered. I pronounced this part
finished, with the mental reservation that I may need to compact
the code (not that I could see at this time where I could do so).

In the meanwhile, I had been jotting down algorithms, and also
test sequences of code to get a feeling for the suitability of the
algorithms for the machine, for handling the operations determined
by control characters coming from the tape, and had got to the
point where all the behavioural conditions were satisfied. BSo I
finalized the code for these processors, punched and assembled
them, Another 160 words of code! With allocation of space for
the input record and other data, the total size would be about 330
words. In the existing program, the translation table (from the
tape character code to the typewriter code) occupied 64 words, so
I was looking at approximately 390 words, without having loocked at
the mainline code, the control switch decoding and action
processors for them, or the interrupt handling. In the existing
program these things took around 190 words, handling only 5
control switches, whereas the specification for the new program
defined 15 control switches. My program looked as though 1t was
going to be 600-700 words long.

I began to think very much about the efficiency of my use of
the instruction set and data space. The most obvious place to
begin was with the translation table., The existing program's
method of indexed look-up and indirect jumps, requiring one word
per entry, obviously used space poorly. I could see that the same
information could be reasonably easily packed into sixteen words,
imposing an unpacking cost (in time and space) din the mainline.
Part of the information required in the translation table was
which characters were control characters requiring additiomal
processing. A side-effect of the packing was having to decode
this after extracting the entry (the original simply holding the
address of the control processors in the table)., This led to the
observation that once I knew what the special processor was, I
also knew what the associated translation was, hence I did not
need to have both in the table. This meant I could put either the
translated character in the table, or the index of the control
processor, plus a bit to say which was which., The translation

26

table could now fit din ten words, at the expense of some
additional dinstructions to do the unpacking and decoding (which
turned out to be 27 words).

The problem now was to generate the translation table, as its
structure was now quite complex. The best way to handle that, I
decided, was to design a simple, unpacked representation, and to
convert the simple to the complex by code in the initialization
phase., The initialization code need only be present during the
loading of the program, so would not cost against the space
limitation, (The code to do this transformation ended up
occupying 120 words.)

This saving of space was very gratifying, but represented only
a small dent in the 200-300 excess that 1 appeared to be
generating. But still, now that the translation table format was
fixed, and the input format was already fixed by the necessity of
remaining compatible with programs already generating type tapes,
I could write the mainline code. The requirements for this code
were so vrigid that there was little problem and little scope for
doing anything other than what had to be done., With one exception
(described later) this code has not wvaried from the first
manuscript.

While worrying all this out, I had been rereading the machine
manual, looking for features that I could utilize to compact the
code already written. The first major breakthrough was the
discovery that an index register could be dedicated to
implementing a stack, the address held by the index register being
incremented and decremented automatically as words were stored or
fetched. This was attractive for aesthetic reasons, as my
previous experience with a stack-oriented machine led me naturally
to the didea of stacking subroutine return addresses., 1 could
allcocate as many words to hold return addresses as the greatest
depth of subroutine calling, instead of one per subroutine. Then
I could play the game of direct Jjumps from subroutine to
subroutine where the last action in the subroutine was a call on
another,

As a result, I rewrote all the subroutine calls, entries and
exits to use this new concept (wishing all along that I had been
able to make them macros as I had originally intended), making the
direct jump optimization where I could. The saving was about 10
words, This was good, so I started to reorganize the tape input
routines so that I could wuse the optimization more often.
Regularities started to appear that were previously hidden, so now
I could make more common routines. Also, multiple entry points
were possible, as the location of the return address was not
related teo the entry point, so I could combine routines that had
the same final sequence, instead of just those that had the same

27

initial sequence. The final result was that the tape input
routines occupied 74 words, about 50% of the initial attempt.

Consider the following example: let SAVE be the instruction
that puts a return address on the stack, and RETURN be the
instruction that takes it off the stack, and exits the subroutine
(actually going to the second dnstruction beyond the SAVE
instruction). The following comes from the read (a tape record)
routine:

IF (i/o_error) JUMP (to error_ label)
(ok_label) SAVE

JUMP (to clear interface routine)

RETURN (from read rvoutine)
(error_label) SAVE

JUMP (to clear_ interface routine)

(continue with error recovery)

The SAVE-JUMP-RETURN sequence can be replaced by simply JUMP,
relying on the clear_ interface routine to do the return, giving:

IF (i/o_error) JUMP (to error_label)
{ok label) JUMP (to clear_interface routine)
(error_label) SAVE

JUMP (to clear_ interface routine)

(continue)

This can be further compressed to give:

IF NOT (i/o_error) JUMP (to ok label)
(error_label) SAVE
(ok_label) JUMP (to clear_ interface routine)
(continue with error recovery)

for a total saving of 3 (out of 5) dinstructions. (As it
represented an important assertion, I wished to retain ok label,
otherwise the JUMP to it could have gone directly to the
clear_interface routine.) The intent is now no longer quite as
clear, but, as Knuth points out, there is no problem if vyou know
how it was derived,

These transformations of the code had been fairly mechanical,
and I was satisfied that none of the original testing had been
invalidated, so I did not retest. In the interim, the mainline
had been tested, revealing no errcrs.

I now turned my attention to the size of the control character
processors, Although I had written and punched them, I had not
tested, feeling that T would need to rework them. On returning to
them, it was obvious that I had been wusing state flags very

28

heavily, the main purpose being to ensure that after taking action
and returning to a common point to await the interrupt response,
control could be returned to the control processor to finalize the
action before continuing. This structure looked very nice and
regular, repeated each time for each processor, and enabled nice
assertions to be made about the state based on the state flags—-
but so expensive! I decided to heed my own advice from the days
when 1 was writing operating systems—--do not think of an
interrupt~driven program as a subroutine called by the interrupt,
but make it a cyclic process and let it call the interrupt,
i.e. bury the wait for the interrupt in a subroutine,

This I did, and by doing so, I was able to gain some other
marginal benefits (which I shall not detail here). But the
principal payoff was being able to let the return address kept by
the wait for interrupt routine represent the state., I could now
start in earnest looking for ways to shorten the code. The main
tool was looking for assertions, which held at labels, being true
elsewhere, Since the state was represented by an address, and an
address represented a place in the code, the structuring model was
that of a set of finite state machines, The result: 92 words,
down from 160, at the ‘cost"” of having 30 1labels (each
representing a state), most of which have at least two paths into
them, The desk checking consisted of ensuring that the required
assertions held at each jump to a label, and that given the
correct conditioms, the routines were exited with the job done,

Some of the code to test the control switches was distributed
through the control character’ routines (there being defined
interactions), so I added the remainder of the code for the
control switches, and went now directly to a 'system test"
(feeling that there could not be much wrong in any of this code).

The immediate result was that the machine "hung' completely.
stopping somewhere in the MONITOR. A dump dindicated that the
initialization had completed correctly. A half-a-day of stepping
through the MONITOR showed that it contained an error (at least
six years o0ld) that was precipitated by having the flip-flop set
that enabled the automatic stacking mode. This had been left on
at the end of the initialization (as I had assumed it would be
cleared in the program termination sequence of the MONITOR).
Clearing this flip~flop before returning to the MONITOR made this
problem go away (but there could still be problems if the
initialization is interrupted by the operator-~but fixing the
MONITOR is beyond my responsibilities).

On the next trial, I started getting characters typed on the
typewriter, but all were spaces except for sixteen characters
every tape record. A dump showed that this was exactly what was
in the dinput buffer, so there had to be a fault in reading from

29

the tape. Immediately, T suspected that I had done something
wrong while changing the subroutine calling sequences and the
subsequent optimization of these routines. Eventually, I found
that the instruction that was loading the i/o channel with the
number of words to be read was setting the counter to read two
words (sixteen characters) instead of ten words. This instruction
performed a register—to-register copy, and was itself correct., I
replaced it with a memory~to-register transfer instruction, and
lo, the counter was being set correctly. Why, I still do not
know.

The next test was to check correct reaction to the control
switches. Result: no reaction at all., I wrote a small test
program to report just the switch settings. According to the
machine manual, the switches set bits in a register, This
register can be transferred to memory by a register-to-memory
instruction, or the bits can be treated as individual flip-flops
by a state testing dnstruction. Apparently the machine was
installed sans the hardware to implement the individual bit
accessing mode. I now had to rewrite the parts of the program
that tested control switch bits directly, and substitute code that
tested the bits in a memory copy of the switch register. This
rewrite impacted the space constraint, as the state testing
instructions allowed for testing whether a switch were on or off.
Using the memory copy, I must first load it to the A-register, and
then I could only test whether the corresponding bit were set,
Que sera, sera.

I could now return to the testing of switch reactions. I found
I could still not get a reaction to one particular switch, but now
I had my suspicions din the right place. 1 opened the panel
holding the switches, and immediately located the disconnected
wire. Reconnecting this wire fixed the problem. Continuing, I
found a reaction that indicated that one switch would not turn
off, This time, a dump showed that it was indeed switching off,
so I single~stepped through the corresponding control routine, and
found the first genuine programming error--a test for zero Jjumped
the wrong way. A patch demonstrated that this was the only error
in the routine,

While all this was going on, I had discovered that one of the
heavier wusers of the typewriter prepared tapes on the CDCH400 at
the Computer Center, and then did a «code translation on the
Librascope to get type tapes acceptable to the typing program, a
procedure prone to error (for reasons related to the reliability
of the machine) and delay (as only one person knew the details of
running the conversion program), I began to consider the
feasibility of adding a second translation table to the typing
program that I had written, to make the CDC tapes acceptable
without prior translation. The earlier decisions had decoupled

30

the program from the details of the table, so it was merely a
question of setting up another table (easily done, as I had the
necesssary code in the initialization phase) and selecting it
(again easily done, as the '"foriegn'" tapes had a distinctive
format). It took a couple of days (two hours of actual time) to
make these additions, costing a total of 16 words (11 of which
were for the second translation table and its access pointer),
bringing the total to 461 words.

Being very confident at this point of the correctness of the
program, I mounted a trial run using a CDC prepared tape. Result:
garbage typed on the typewriter, eventually a hung machine, and nc
ideas. So I started single-stepping through everything, the
setting up of the tables in the dinitialization phase, the
interrupt response, reading of the tape record, unpacking of the
input characters, translation table access, decode of the table
entry, decision that this was not a contrel character-~hold 1t!
The character that I was looking at should be a control character.
Now, the index of the second translation table was being set up
correctly in an index register, the translation table was being
accessed correctly to get, in this case, the index of the control
character processor, the translation table was being again
accessed for the bit dindicating this to be a control processor
index and not a typewriter character-~but the bit was not set,
The initialization phase was setting it, and a dump now showed it
set, Then I noticed that I had the bit pattern from the
corresponding position in the other translation table, so somehow
the index register had become set to zero, instead of being still
one (it had to have been cne to get the control processor index
properly). There were just two instructions between the first and
second access to the translation table, a test, and a shift--then
light dawned. The second table accessing instruction did not
specify any indexing, hence was getting a zero value by default
(which didn't matter given only one table).

I made the fix, and then all went well. At this point I was
prepared to release the program for use. The only doubts in my
mind were concerning the accuracy of the second translation table,
as I had had to deduce this from the data cards to the conversion
program, and what I could actually see on the sample tape from the
Computer Center. While pondering this, I saw that I could save
another word in the loop that selected the translation table on
the basis of the format of the tape, which would bring the size to
a nice "round" 460. So I made that change. Also, I saw that one
of the control processors for special characters had two exit
points, both requiring the re~evaluation of the switch settings,
but that they went to different points. I felt that it would be
clearer to the reader if they both went to the same point. Making
this change made the code look far more symmetric,

31

Having done this, I mounted a demonstration. Disaster, as not
only did the program behave erratically, the material typed looked
as though the wrong translation table was being used. Looking at
the code, I saw firstly, that the change I had made in the
selection loop to save a word had violated the loop invariant
(which was that the pattern being tested was in the A-register).
By changing the invariant, and suitably altering the rest of the
loop, I was still able to save the word, and again, on the desk,
demonstrate the correctness. Then I looked at the other change,
and again saw that a label assertion was being violated. The
common point to which both exits went had the assertion that the
switch register copy was in the A~register. The exit that I had
changed satisfied a "don't care" with respect to the A-register.
The program was taking the random stuff din the A-register as
control switch settings, and reacting accordingly (i.e. randomly).
This explained why the two exits had been different. Returning to
the original arrangement fixed this problem. (So much for
roundness of numbers or symmetry of code as criteria by which to
program,)

Just to be sure, I single-stepped through the paths that had
been troublesome, but this revealed no masked errors. 8o what to
do now? For about half-an-hour I sat at the machine console, idly
re-reading the program text, really at a loss as to what to do
next., Life appeared to be empty of further challenge.

