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I. INTRODUCTION

There is no single attribute or characteristic which distinguishes
a software system as complex - rather, software system complexity may
be assessed only in terms of a complicated combination of a variety of
quantitative and qualitative measurements. Typical quantitative measures
are size, number of components and length of the construction period -
generally these can be artificially increased by inexperienced or inept
designers or programmers. Measures of a more qualitative nature are
ones such as understandability and modifiability - these are generally
dependent upon the experience and ability of those trying to measure
the system's complexity.

One measure does stand out, however, as hightly correlated with
general, subjective assessments of software system complexity. This
measure is commnectivity, the degree to which interdependencies exist
among the system's components. Frequently, the interdependencies mani-
fest themselves in terms of aspects of the systemwhichmay be easily measured;
an example is the connection established between two components when one
invokes the other through the subroutine-call facilities of the language
in which they are programmed. At Teast equally frequently, connectiv-
ity is not manifest in easily measurable aspects of the system; an ex-
ample is the typical situation of an initialization component which
establishes the environment in which other components operate.

Recent research in the areas of design and maintenance of soft-
ware systems has mainly been directed toward discovering ways 1in
which connectivity can be controlled and reduced. Much of this re-
search has been directed toward small, sequential programs in the belief
that programming in the small must be thoroughly understood before one
can appropriately attack large-scale software systems.! But Targe-scale
systems differ qualitatively from small-scale ones, primarily in the
nature of the connectivity among the components. Instead of the simple
data referencing and control flow connections typical of small-scale
systems, there are more complex data sharing and control synchronization
connections.

There are two basic approaches to coping with connectivity, and

IThis viewpoint has been espoused by many, perhaps the most notable
being E. W. Dykstra ([1],[2]).
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hence complexity, within large-scale software systems. On the one

hand, system organizations and operation modes may be sought which

lead to clean, clear connections among the components within the system.
Alternatively, description schemes may be sought which permit the con-
cise, clear description of component connectivity so that an understand-
ing of the connectivity and its implications concerning the operation of
the system as a whole may be quickly grasped. In either case, the super-
structure and synchronization of the components must be defined clearly
in order to avoid cacophony and this orchestration of the components is
best approached at an appropriately abstract level, where the system's
structure and behavior can be investigated directly without concern for
specific implementation details.

In this paper we discuss an approach to coping with software system
complexity of the second type delineated above. Specifically, we review
"a software modelling scheme, and approaches to software design which are
admitted by this scheme, which allows designers to explicitly and suc-
cinctly describe the structural and behavioral connectivity among a
software system's components. We arque that through the explicit de-
scription of connectivity and the concomitant ability to reason (via
simulation or analytic techniques) about its appropriateness, designers
may more effectively function during the design process.

In the next two sectibns, we discuss software modelling in general,
indicating its relationship to other work directed toward the production
of correctly functioning systems and its relationship to programming.
Then we review several software modelling schemes and give an overview
of our own, followed by a discussion of the relationships between our
scheme and the theory of general systems. We then turn to analysis
techniques admitted by our modelling scheme, discussing first the role
these techniques play in the general design methodology based upon the
modelling scheme and, second, the specific simulation and analytic tech-
niques which we have investigated. In closing, we attempt to give some
direction to future work in this area.

Modelling and the Production of Correctly Functioning Systems.

Numerous investigators have studied the problems of proving the
correctness of programs since Floyd's famous paper [3]. Some



understanding of the principles involved 1s now required of most com-
puter science students and at Teast two current textbooks [2,4] postulate
the necessity of proving programs correct as they are being developed.

While the future usage of these technigues is open to debate, it is clear
that the majority of working programmers are not now engaged in formally

proving the correctness of their programs, and this seems unlikely to
change in the near future. There are two issues here pertinent to the
development of large systems: one, it is presently too difficult and
time consuming to develop proofs for each small piece of a large system,
much Tess integrate these proofs to achieve a proof of the total

system; second, the language of the assertions required in correctness
proofs is inimical to the algorithm and data structuring constructs

used in the abstract description of a large-scale software system.

Another major research area relating to the production of correct-
ly functioning systems is the area of program comprehensibility. In-
cluded under this heading are structured programming, code format con-
ventions, and programming language constructs. The complexity of current
software systems make it imperative that their understanding require less
effort than their original development, and program comprehensibility
research attacks this problem.

A final major area of research concerns questions regarding the
development of software systems - what sorts of environments are best
for teams of programmers ([5],[6]), and what sorts of "methodologies"
should be applied during development ([7],[81,[9])? While the intui-
tive notions developed through these investigations are useful, they
Tack the precision of formal specifications and hence function as quide-
1ines only.

There is little doubt that the research mentioned has significantly
improved the practice and understanding of the programming process.
However, it has not been concerned with the desiagn phase as such, but
rather with the program which is the result of the design phase. In
particular, research on the above themes focuses on guestions of the
following sort (see for example [10]):

What programming language features produce the "cleanest" code?

What programming lanquage features have good proof rules associated
with them?



What sorts of things can be checked at compile time and which must
be delayed until run time?

How can one enforce strong typing?
What are good practices for programmers to follow so t
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The central thesis of this paper is that it is highly profitable
to consider large software systems from a more abstract point of view,
that of a general systems theorist. From this viewpoint, some different
questions are addressed and different goals arise, for example:
What are the central characteristics of large software systems,
i.e., what characteristics are essential to modelling such systems?

How can these characteristics be quantified, in particular to allow
comparison of different systems or different designs for the same
system?

What sorts of mathematical models are appropriate to the study of
large software systems?

What homomorphisms can be used to relate different levels of a
system design?

Can our mathematical models yield any formally justified design
principles?

The ultimate goal of our work is to develop a software system design
methodology, based on answers to these types of questions, which provides
a vehicle for employing program development quidelines and practices in
the design of large scale software systems.

Modelling Versus Programming

Software system modelling and software system programming are super-

ficially similar but differ qualitatively in three respects. First, during

the programming phase the intent is to produce efficient, well-structur-
ed code for each of the system modules. Hence the emphasis is upon the
definition of data structures and the algorithms manipulating them. Dur-
ing the design phase the aims are more global - one is interested in pre-
paring a complete specification and doing so in an incremental fashion
rather than en masse. Second, system properties which are of concern
during design may cut across module boundaries whereas during implemen-
tation the system properties of interest are usually local to modules.
Finally, during implementation, behavior is defined implicitly whereas
during design one wishes to give explicit, nonprocedural specifications

of behavior.



The constraints in effect during the two phases are quite different
also. During implementation one must account for limited resources,
the operation of real synchronization primitives provided by the pro-
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cerned with global, and partial, descriptions. Thus, during the design
phase it is acceptable to assume an infinite supply of resources and
idealized synchronization primitives. Further, error correction is defined
implicitly by nonprocedural definitions of the behavior that the system
must vealize, and error detection may be modelled by the inclusion of
"error" states as post conditions of certain actions of the system.

Recent advances in the design of programming languages have tended
to raise their level toward the domain of system modelling. For example,
abstract data types [11] have recently emerged as an important facility
for the specification of sequential programs. While they are convenient
for the description of a software system's data storage components, they
are not convenient for the succinct description of those system components
which are more for the processing than the storage of data. This is
particularly true when the components operate concurrently.! The major
problem is that abstract data types are oriented towards describing com-
ponents as structures of data which are operated upon via procedure calls.
Many components (e.q., a text editor in an operating system or a file
system in a multiprocessor computing facility) are not naturally described
in this manner.

Software Modelling

Thus software system modelling is a task which is distinct from
software system programming. Not only are the intents of modelling dif-
ferent from those of programming, but the constructs needed in a modell-
ing language are somewhat different in nature from those of proaramming
languages. While there have been surprisingly few efforts to develop
software system modelling languacaes, some of the essential constructs of
these lanquages have been developed.

1By "concurrent" we mean parallelism which may be actually achieved by
executing the system in a multiprocessing environment or which may be
only apparent at abstract levels of system description and never achieved
during system execution.



The SIMULA language [12] introduced the class concept which has
subsequently found a home in the TOPD system (see below) and the DREAM
system, and is central to the definition of abstract data types. Sever-
f the SIMU
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modelling of software systems [13].

The TOPD system ([141,[15]), developed at the University of
Newcastle upon Tyne, England, introduced the concept of finite state
modelling of sequential programs. In TOPD the "values" of data objects
are partitioned into "states". Procedures which operate on these ob-
jects effect state transitions which may be specified via pre- and post-
conditions for the procedure's invocation. One may "run" a TOPD model
and receive a listing of the possible states of objects at each state-
ment of the program. In addition, TOPD can perform some checking of
the internal consistency of the model description.

Petri nets and equivalent schemes (reviewed in [16]) have been

used for the formal modelling of systems with parallelism. These schemes
accurately portray the detailed action sequences of processes operat-

ing in parallel, but have strong drawbacks as a general modelling scheme
for the design of complex systems: first they are not language based;
second, they are gepera1]y quite cumbersome to use because of the low
(essentially machine) level of description; and third, they generally
have no explicit behavioral component, i.e., the action sequences may

be obtained only through model simulation.

The PPML modellina scheme [17] was developed as a natural, but
still formally defined, modelling tool for systems with parallelism.
In PPML the component processes of a system are described in a hiah
level modelling language rather than a graph or mathematical representa-
tion of the potential activity of the system. The component processes
of the system communicate via message transmissions. The communication
is mediated by 1link processes which serve to effect all necessary mes-
sage transmission synchronization. Since overall system coordination
is modelled by the transmission of messages, this activity is of para-
mount importance in understanding PPML-modelled systems. Thus, the
PPML scheme allows one to algorithmically derive [18] a closed-form
representation of the message transmission behavior of the system,



which may be inspected for incorrect functioning of the system.!

Software Modelling in the DREAM System

The considerations outlined above quided us in our development of
the Design Realization, Evaluation And Modelling (DREAM) system ([19]-[22])
and its associated modelling language, the DREAM Design Notation (DDN).
Our specific aims were to develop a system which would allow a designer
to iteratively develop a model of an intended system by providing both
a modelling language for the description of the system and a data base
for retention and extraction of design fragments. In addition we wished
to provide both simulation and analytic techniques which designers could
use to incrementally bolster their confidence in the validity of the
evolving design. In this section we describe the basic modelling con-
structs provided by DDN; analysis techniques provided by DREAM will be
treated in a later section.

In DDN a system is defined to be a network of hierarchically de-
composable components which execute concurrently and asynchronously.
The overall purposes of the system are achieved via the internal pro-
cessing of the components as coordinated by communication among them.
In DDN, communication is used both as a modeiling construct and as a
construct available for specifying implementation details. There are
two mechanisms, message transfer and shared data, for communication
description which are oriented toward these two different purposes.
Message transmission is analogous to control signal processing in the
hardware domain, and is primarily a modelling concept for software.

In DDN, message handling models those aspects of component communica-
tion in which components require some knowledge of the rest of the sys-
tem since the message pathways must be explicitly defined and fixed and
the message types must be known to the participating processes. The
shared data mode of communication is less of a modelling concept, and
nearer to implementation (although it is a modelling concept used in
general systems). This mode of communication does not require knowledge
of how the rest of the system operates nor how the rest of the system

1This is obviously not as simple as it sounds, and research continues
on ways to extract particular features of interest from this behavicral
description. This is discussed more fully in a later section.



utilizes the data, although constraints may be imposed within the data
definition jtself.

The key modelling concepts underlying DDN are the class notion,
the thorough distinction between the structure and the behavior of a
system, and the concept of isolated knowledge ('need to know", "informa-
tion hiding"). The class notion presumes that a system is comprised of
many similar units, hence a model of a system should allow description
of templates for the system parts. In DDN these templates (classes)
have associated qualifiers (or parameters) which allow slight distinc-
tions to be incorporated in class instances.

The designer of a large system exhibiting parallelism is constant-
ly plagued by confusion between the structure and the behavior of the
target system. The difficulty arises from the different levels of de-
scription the designer wishes to use, and from the different levels of
abstraction inherent in a system description. For example, an operating
system may be viewed as an object that has as its parts a scheduler, an
interrupt handler, managers for primary and secondary storage, an I/0
handler, and user jobs. But a description of any of these subobjects
is in fact a template of a potential process. DDN provides the capa-
bility of illuminating these differences via formal specifications of
structure and concomitant descriptions of behavior, either endogenous
(associated with the structural specification) or exogenous (not Tinked
to specific structure).

The concept of information hiding pervades modelling activities
in many domains, under an assorted collection of pseudonyms. Basically,
the principle states that component A should be (or is) only knowledge-
able about the function(s) provided by component B, and should be (or is
in fact) ignorant of the internal mechanisms by which component B per-
forms. This concept is also a meta-modellina one, since designers
should not be exposed to the inner workings of components other than
the one currently being designed, else they are likely to take advan-
tage of this structure when they are to be guided only by the behavior
of other components. For the same reason, programmers should be quided
by this principle [23], and only be given as much (behavioral) descrip-
tion of the rest of the system as is necessary to complete their part



of the system. DDN provides information hiding capabilities in several
ways, notably via explicit behavioral description of processes, and by
the definition of only certain aspects of a component to be "observable"
to the rest of the system.

More specifically, in DDN descriptions a software system is decom-
posed into components of two types. Subsystems are those components
which control and guide the performance of the system's processing, which
operate (conceptually at least) in parallel and asynchronously with re-
spect to other components, and which are individually capable of perform-
ing several activities at once.! Monitors are those components which also
operate concurrently and asynchronously with respect to other components
but which serve primarily as repositories of shared information and are
individually capable of performing only a single activity at any point
in time.? An auxilliary component of DDN descriptions is the event
class. This is used for describing part of the system's operation in
terms of a behavioral description which is exogenous to the system. One
could, for example, givea description, in terms of several events, of
an operating system from an external user's point of view, thus provid-
ing a description which is redundant with the internal description and
orthogonal to the internal specification in the sense that it may estab-
1ish associations among activities which occur within physically differ-
ent parts of the system.

Structural descriptions are given in DDN by specifying the compo-
nentry and the operation of the components. For subsystems this consists
of giving fragments, called textual units, of design description which
describe the ports through which the subsystem sends and receives mes-
sages, the subcomponents (instances of other subsystem classes and of
monitor classes) which comprise an instance of this class, and the al-
gorithms for control processes which control the flow of messages among

Those system components which execute concurrently and manipulate shared
data objects are usually considered to be sequential processes, as de-
fined in [24]. A subsystem is a more general object, being essentially
a collection of sequential processes.

“The monitors of DDN are essentially those defined by Hoare [25]. To the
usual definition of monitors, we have added constructs for behavior
specification, patterned after constructs developed for the TOPD system

[14].
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the subcomponents and/or ports. As a very simple examplel, consider a
data base which we will call a blackboard. Values stored in the black-
board may be inspected and modified. The blackboard serves as a re-

vy for information and has processing components which "observe"
the changes made to particular entries in the blackboard and notify
the outside world whenever the entry is the subject of a modify opera-

tion. One possible DDN description of such a data base is:
[blackboard]: SUBSYSTEM CLASS;
QUALIFIERS; # of entries END QUALIFIERS;

request: IN PORT;
BUFFER SUBCOMPONENTS:
request type OF [bb _request type]

END BUFFER SUBCOMPONENTS;
END PORT;

answer: OUT PORT;
BUFFER SUBCOMPOMENTS;
done_signal OF [bb request answer]

END BUFFER SUBCOMPOMENTS;
END PORT;

signal: OUT PORT;
BUFFER SUBCOMPONENTS;
value OF [possible values]
END BUFFER SUBCOMPONENTS;
END PORT;

SUBCOMPONENTS

entries: ARRAY [1: # _of entries] OF [data entry],

watchers: ARRAY [1::# of _entries] OF[wat
END SUBCOMPONENTS; J [ Cher]

END SUBSYSTEM CLASS;

The qualifier # of entries serves to parameterize the class definition
to produce a description of a generic class of entities. The blackboard
receives the commands requesting the inspection or modification of en-
tries through the request port and notifies the outside world that the
requested operation has been completed through the answer port. The
condition checking portion of the blackboard sends notification that

the "observed" entry was the subject of a modification operation out
through the signal port. Each of the ports has a buffer associated

with it where messages are stored on the way in and out. The

‘More extensive examples are given in [20], [21], [26]-[31].
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subcomponents are structures of instances of other classes which indi-
cate the essential subparts of an instance of this class. The defini-
tion could also include the description of a control process which

channels messages which come in through the request port to the appro-
priate entry in the watchers array as indicated by the content of the

request message.

Not all of this definition would normally be visible to a member
of the design team other than the designer who prepared it. Port and
qualifier definitions would be visible but subcomponent definitions and
control process bodies are not visible except when specifically made so
by using the attribute "visible" in their declaration. This enforces
the desirable result that in defining the use of a subsystem one may
normally not rely upon any knowledge of its internal operation.

Monitors are described by defining their subcomponents, their
states, and the actions which may be performed on the data objects
they model. The states description in DDN contains a great deal of
structural information. State variables are defined, and state sub-
sets may then be defined as subsets of the cross product of the values
of the state variables. (State subsets are always visible, but state
variables are visible only when indicated by the attribute "visible".)
In addition one may define an qrder%ng relation on states and an equiv-
alence relation between states of the monitor class and sets of states
of the subcomponents of the monitor class. The definition of the mon-
itor's actions or procedures includes the definition of the local sub-
components, the sequence of computation steps, the parameters of the
procedure, and the transitions of the procedure, i.e., the state transi-
tions that will occur as a result of the procedure's invocation.! As
a simple example, the following definitions specify the monitor classes
referenced in the previous example:

[possible values]: MONITOR CLASS;
STATE SUBSETS; valuel, value2, value3 END STATE SUBSETS;
END MONITOR CLASS;

17t should be noted that all of the textual units of a DDN descrip-
tion are optional, thus a designer may specify as much or as little
detail as desired in any given design step.
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[bb request type]: MONITOR CLASS;
STATE SUBSETS; inspect, modify END STATE SUBSETS:
END MONITOR CLASS;

[bb request answer]: MONITOR CLASS;
Annn

STATE SUBSETS; value,done END STATE SUBSETS;

END MONITOR CLASS;
For each, all that has been defined are the externally observable states
(which are essentially the same, in this case, as values for an enumerat-
ed type in Pascal).

In addition to structural descriptions in terms of templates for
the subsystem and monitor classes, designers may additionally define
the sharing of system components and how the ports of the components
are connected together. Sharing may be described by instantiation con-
trol textual units which serve to indicate the "equivalence" of subcom-
ponents which are otherwise (for ease or clarity of description) de-
scribed as distinct. Connection textual units may be used to describe
message communication pathways in terms of "transmission lines" between

ports. (More extensive discussion of these constructs may be found in
[32] and [33].)

Behavioral aspects of a system may be specified both pseudo-
procedurally and non-procedurally. The major pseudo-procedural means
of describing a subsystem's behavior is by giving models which define
the subsystem's operation, in terms of message flow through the ports,
as seen by external subsystems. For example, the operation of [black-
board] subsystems may be modelled as:

‘[blackboard]:'
servicer: CONTROL PROCESS;
MODEL s
ITERATE
RECEIVE request;
IF request type = modify
THEN value SET TO valuel OR valueZ OR value3;
SEND signals
done signal SET TO done;
ELSE done signal SET TO value;
END IF;
SEND answer;
END ITERATE;
END MODEL;
END CONTROL PROCESS;
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Nondeterministic control constructs are also provided in DDN so that
models such as these may be even more abstract.

o
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tinguish two broad types of events, endogenous and exogenous, in DDN.
Endogenous events are those occurrences which arise from some activi-

ty within the currently DDN-described portions of the software system.
Exogenous events are those occurrences which are relevant to or impinge
upon the system's behavior but arise from some activity outside the
currently described portions of the software system. Whether an event

is endoaenous or exogenous is therefore relative to the extent of the
system's description and may change over time - for example, an exog-
enous event may become an endogenous event as elaboration of the design
leads to the description of the component whose activity gives rise to
the event. Some events, however, are inherently exogenous since they
pertain to the system's operation but do not stem from the software
portion of the system being designed - examples of such events are activ-
ities within some other software system which interacts with the sys-

tem being designed or operations performed by some physical device con-
trolled by the software system.

The most elementary method for defining endogenous events is to
simply attach a label, called an event identifier, to some portion of
the DDN description - an example appears later. Exogenous events defini-
tions may not be associated with any monitor or subsystem definitions and
are therefore defined via the event class textual unit. Once a set of
events has been defined, a software system designer may specify intend-
ed behavior by describing the possible sequencing and simultaneity of
event occurrences which would be acceptable during system operation.
(A more complete description of DDN constructs for event definition
and sequence specification is given in [34].)

Comparison With Formal Modelling Concepts

In this section we will relate the modelling concepts of DDN to
the theory of modelling and simulation developed by Zeigler [46].
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Each of the four basic concepts in that theory will be presented in
terms of Zeigler's definition, its definition with respect to soft-
ware systems, and its realization in DDN.

The real system is, in Zeigler's scheme, the source of data; more-
over the data or the behavior is all that we can know directly about the
system. In particular, we can have no direct knowledge of the structure
of the system. Ignoring the profound epistomological implications of
this approach, we note that this allows a precise distinction to be made
between the system and a model of that system. The situation is somewhat
murkier with respect to software. Considering a software system to be
a collection of computer programs, we must infer that a software system
is in  fact purely a model of some other system since the code has no

1" The appropriate real sys-

behavior - only a prescription of behavior.
tem is the combination of the software and some hardware upon which the

software instructions are executed.?

There remains another difference, namely our knowledge of the system.
Since we have available the entire structure of the system (the code and
the hardware principles of operation), it would appear that our systems
are vastly different from those of Zeigler. The complexity of the soft-
ware systems under discussion vitiates this point. In terms of human
understanding, the one million lines of code of the IBM 0S/360
operating system are as unknowable as a large ecosystem. In fact, it
is because of this complexity that software systems may benefit from
application of modelling theory!

In DDN, the real system is the target system being designed, i.e.,
the real system is a tabula rasa. We know something about the behavior
of the system because we generate an exogenous behavior for it, but we
do not know the structure of the target system, only a DDN model of it
which admits of numerous realizations.

IThis is a bit pedantic, but in fact there is some confusion in the
literature regarding this point.

e are still faced with a considerable dilemma since to be precise we

would have to specify a particular hardware machine and we wish to con-
sider only the software. Hence we assume hereon the existence of a
universal order code into which all programs will be translated.
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An experimental frame is a set of circumstances under which the
real system can be observed or can be experimented with. It usually
corresponds to some set of questions posed about the real system. Since

no o en

knowiedge about the real system is purely

(e

.
ehavioral

vioral, an experimental

J
frame may be defined by the entirety of I/0 observations from it. In
software, since one has the structure of the system to examine (the code),
there exist static as well as dynamic experimental frames. Statically,
one can examine scope of variables, scope of control, the flow graph of
a program or the program schema. Dynamically, one may for example trace
variables or resources, or concentrate on the working set or the page
movement. In DDN, static experimental frames could include any subset
of textual units across the system. Dynamic experimental frames could
include any specified exogenous behavioral attributes pertinent to some
subset of the subsystems. Note that (as in PPML) one may derive behav-
iors of the system (in terms of events and event sequences) without the
necessity of exercising the system, and these derived behaviors could
constitute an experimental frame, i.e., the endogenous behavior descrip-
tion on one level may be viewed as an exogenous behavioral description
for the next lower level of detail. The pseudo-procedural models of
control processes provide an alternative means in DDN of defining
experimental frames since these serve as externally visible defini-
tions of the behavior of a class of subsystems.

The base model is a model that accounts for all of the 1/0 behavior
of the system. It is a model that is "valid" (see below) in all permis-
sible experimental frames. The base model is never fully knowable since
the set of possible experimental frames is infinite. In software the
base model of the system is the code (see above) which is in principle
fully known. In DDN the base model is also the code, but is never fully
knowable because the DREAM machine is an abstract machine.!

A lumped model is an abstraction of the base model obtained from
the base model by simplification, lumping of variables, or suppression
of detail. The lumped model concept provides a framework for discussing

IThe modelling language of DREAM, DDN, assumes the existence of a hard-
ware machine with capabilities necessary to the modelling process, such
as infinite resources including number of processors. As discussed pre-
viously, modelling is very different from programming.
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the validity of system models. A Tumped model is tested for validity with
respect to an experimental frame, and is valid with respect to some exper-
imental frame if it can generate all of the behavior of the experimental
me to within some specified tolerance. Thuys many differen
models may be valid with respect to the same experimental frame, and a
given lumped model may be valid in some experimental frame and not in
another one. In software, Tumped models may be informal prose descriptions
of the processes of the system and/or hierarchical organization charts

or they may be formal predicate assertions defining system purpose. In

DDN a Tumped model of the system is a collection of textual units describ-
ing the internal operation of subsystems and monitors - its most important
constituents are body textual units for control processes and procedures.
Which textual units are chosen depends on the system properties under in-
vestigation, i.e., upon the experimental frame. Since DDN supports re-
dundant system descriptions it is possible to have different Tumped

models which are valid with respect to a selected experimental frame.

Note that this is absolutely necessary for a design system, in order to
allow a designer to investigate alternative structures of the target
system. The natural relationship between experimental frames and Tumped
models developed by Zeigler is of great value for an understanding of

the modelling and desian processes.

The modelling scheme advanced in [46] has proven to be very useful
in guiding our thinking about software modelling. There are, however,
two major distinctions between the (natural) systems discussed therein
and software systems. The first is the nature of the real system, as
already discussed. The other difference is that DDN is primarily a
modelling system for the synthesis of systems rather than for abstrac-
tion from existing systems.!

A Design Methodology

DREAM is a design methodology - a collection of tools and pro-
cedures - useful for the design of complex, concurrent software systems.
The intent in constructing DREAM has been to provide tools which support

1o far, our examples of the usage of DDN ([20],[217,[26]-[31]) have
been in the traditional role of abstraction for understanding rather
than for synthesis.
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a variety of design procedures - one of the criteria has been to develop
a medium for the experimental evaluation of the viability and efficacy
of different design procedures. Most of the tools prepared so far, how-
ever, tend to make DREAM most useful in conjunction with a top-down de-
sign method in which designers iteratively prepare the DDN text describ-
ing a system by gradually elaborating the detail of the system's organiza-
tion and operation. The completed design consists of a set of templates
for the components of the system, a description of the behavior exogenous
to the system, and an initial configuration of the system: the connec-
tivity and the instantiation control. At each design step, the designer
uses DREAM to either modify or augment the existing design retained in

a DREAM database by changing, adding, or deleting textual units. It
should be noted that the design Tanguage admits a hierarchical design,

and that DREAM allows a system design to exist at varying levels of

detail simultaneously.

DREAM provides a variety of tools to assist in managing this
elaboration. Primary amonag these are an editing facility to assist
in text preparation and a data base management facility to assist in
the augmentation and modification of the design description. The other
tools provided by DREAM allow the designers to obtain information about
the characteristics of the system under desiagn that are not explicitly
stated in the text of the design description. The intent of these tools
is to provide designers with some means of analyzing their design in
tandem with its development.

Analysis During Design

A major reason for preparing models of software systems in some
formally defined modelling scheme is the concomitant ability to al-
gorithmically assess the system's characteristics. This is all the more
important during design, since the analysis provides a preview of the
characteristics of the eventual system and allows the designers to in-
crementally gain confidence in the validity of their decisions. In
this section we discuss some approaches to analysis during desiagn which
are supported by a modelling scheme of the sort discussed in the previous
section.

The analysis schemes that we have in mind are not necessarily fully
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algorithmic. At any point during design, there exists a partially com-

plete description, D, of the system under design. In addition, the de-

signers have some idea of the system's characteristics along some dimen-
h
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is then representable as:

pi(ciséi(D))

65 derives the system's actual characteristics along the dimension i, to
the extent that these are represented by the partial design D. p; com-
pares the system's actual and desired characteristics to determine
whether or not they are acceptably related. In the analysis schemes that
we discuss here, we require that 61 be algorithmic but admit P that
cannot be embodied in an algorithm.

The non-algorithmic nature of the analysis may arise from one of
two sources. First, the comparison that needs to be done can be theoret-
ically undecidable and thus an algorithm for p; may not exist. Second,
it may be impossible for the designers to specify Ci to the level of
detail needed to apply the 0 comparison algorithm. In either case,
the designers must use their intuition, experience and skill at formu-
lating a logical argument in order to prepare a demonstration that the
actual characteristics and the desired characteristics are or are not

This type of analysis may be called feedback analysis to connote
that information concerning the system's characteristics is derived
and presented to the designers for their assessment of the implications
and subsequent application of any necessary corrective measures. This
general class of approaches to analysis may be subdivided according to,
first, the characteristic under analysis and, second, the approach used
to implement Si’ This leads to three major types of feedback analysis:
feedback analysis of system organization, simulation-based feedback
analysis of system behavior, and analytic feedback analysis of system
behavior.

Feedback Analysis of System Organization

The simplest form of feedback analysis concerns the organization
of the system, its physical characteristics. The point of this analysis
is to present the designers with a description of the overall system
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organization, derived from the designer-prepared description which ex-
plicitly describes only the components and their local inter-relation-
ships.

The DDN description scheme supports two feedback analysis techniques
of this type. The first derives a comnectivity graph which shows the
communication pathways which exist for message transfer among the com-
ponents. The definition of this graph may be easily derived using the
information contained in the port and connection textual units. But
actually drawing the graph is not an easy task because of the problem of
determining node placement so that a graph with a near-minimal number
of arc crossings is produced.

The value of this feedback analysis technique 1ies in the fact that
message communication connections are used in DDN descriptions to model
the potential dependency of one component's operation upon the operation
of another component. Thus the physical connections for message transfer
actually reflect the Zogical connections for processing inter-dependencies.

The second feedback analysis technique supported by DDN for the
analysis of system organization focuses upon the hierarchical organization
of the system's componentry. This technique produces an instantiation
graph in which arcs represent "part of" relationships among the compo-
nents - the graph is essentially a map of the elaboration process follow-
ed in preparing the design. The definition of an instantiation graph
is also easily derived, in this case from the subcomponents and instan-
tiation control textual units. The graph itself is not difficult to
prepare since it is a directed acyclic graph! rather than a general net-
work.

The value of this feedback analysis technique is that it pictorially
represents the component sharing within the designed system. For ease and
naturalness of describing individual components, DDN allows the sharing
of ports (and therefore buffers) and subcomponents to be described sepa-
rately from the description of the components themselves. The instantia-
tion graph therefore provides feedback which is helpful in discovering
both system organization errors and potential conflicts due to sharing.

IDDN does not allow recursive subcomponent definitions.
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Feedback analysis of system organization is primarily of value in
checking that the design (at the current level of elaboration) has been
correctly described in DDN. The DDN description scheme relies heavily
upon relationships among the components such as "sends message to" and
"is part of". Graphically presenting these relationships to the designers
affords the opportunity to check that the local connectivity with respect
to these relationships gives rise to a global system organization which
coincides with the desired one.

Simulation-based Feedback Analysis of System Behavior

More critical than an understanding of global system organization
is an understanding of the system's overall behavior. The designers
have prepared a definition of each component which specifies how it
should interact with other components. It is the intent of feedback
analysis of system behavior to derive information concerning the over-
all behavior which results from the Tocal interactions.

One way in which this information may be used is in verifying that
the overall behavior is indeed what is required or intended. Another use
is in checking the consistency of two descriptions of an interface, one
in each of two interacting components. For either of these possible uses,
it is necessary to gain information about the dynamic, run-time operation
of the system and one way to do this is by simulation.

To effectively perform simulation, the designers must supply es-
timates of the time consumption characteristics of modelled operations
and the behavioral characteristics of nondeterministic operations. This
can be done in DDN after the scheme is extended' in a relatively straight-
forward manner. For example the description of the control process
within the blackboard class can be augmented as f@?iows:

IThis extension is patterned after one used as the basis for a recent
thesis on performance assessment during design [35].
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servicer: CONTROL PROCESS;
MODEL
ITERATE
RECEIVE request;
NULL //100//3
if request type = modify
THEN value SET TO //3//
valuel OR value2 OR value3 (.33,.33,.33);
SEND signal:
done signal SET TO //1// done;
ELSE done signal SET TO //1// value;
END IF;
SEND answer;
END ITERATE;
END MODEL;
END CONTROL PROCESS;
The notation //n// associates with a modelled operation a time, quoted
in some arbitrary time units, for its execution. In general, a time dis-
tribution would be specified and techniques developed for simulation lan-
quages could be used for this purpose. Also, a more general scheme would
allow the specification of timing characteristics of SEND and RECEIVE
operations - for simplicity, we assume that this time is a constant
known to the simulator. The notation (p,q,...) indicates the proba-
bilities with which various options in a nondeterministic operation

should be chosen.

With descriptions augmented in this manner, the model of the system
under design may be exercised by a simulator to obtain an estimate of
the distribution of derived statistics concerning the run-time charac-
teristics of the system. In addition, the timing and probability esti-
mates may be varied to parametrically investigate the sensitivity of
these derived statistics to changes in the estimates.

Simulation-based feedback analysis can be used in several ways in
addition to obtaining estimates of the time-related behavioral charac-
teristics of a system. First, it can be used to investigate the effect
of bounding the number of messages sent out through a port, such as a
[blackboard]'s signal port, which have not been forwarded to a receiver.
(This would, of course, require expanding our example description to
reflect this bound.)

Second, simulation could be used to check for the violation of
conditions upon the messages that may flow among the components. For
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example, DDN would allow the description of the signal port to be
augmented as follows:
signal: OUT PORT;
BUFFER SURCOMPONENTS

value OF [possible values]
END BUFFER SUBCOMPONENTS;

BUFFER CONDITIONS;
value = valuel OR value = valued
END BUFFER CONDITIONS:
END PORT;
indicating that only messages with value being either valuel or value?
may validly flow out through the port. During simulation, observance
of this condition could be checked whenever a SEND operation is done in-

volving the signal port.

Finally, simulation may be used to investigate the effect of the
system's eventual processing environment upon the system's time-related
behavioral characteristics. The DDN description scheme is built upon
the assumption that resources are infinite in the execution environment -
memories are assumed to be unbounded and it is assumed that there is
a sufficient number of processes for all the components to run in parallel,
each on a dedicated processor. These assumptions are fine for the pur-
poses of modelling and force the designers to conscientiously consider
the control needed to operate in a restricted resource environment since
no restrictions are levied by the modelling scheme itself. The simulator
may be implemented so that it accepts the definition of a run-time en-
vironment, in terms of memory bounds and the numbers and types of pro-
cessors, and takes account of the overhead incurred by sharing within
the defined, resource-impoverished, run-time environment.

There are two major problems with a simulation-based approach to
feedback analysis of system behavior during design. The most serious
is the Tack of data upon which to base the timing estimates and, to
some extent, the probability estimates. Because the analysis is being
done during design, the designers must rely upon their intuition, ex-
perience and knowledge to develop reasonable estimates. But, even good
estimates of mean values will have large variances and these will cas-
cade to give derived statistics with large variances.

This problem is somewhat aleviated by the fact that as the design
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progresses, the designers will be able to get better estimates as the
design moves to the more detailed level, closer to primitive operations
about which the designers have better intuition. The designers may check

that these bhetter estimates are consistent with those used previously
and revalidate previous designs if there is a significant inconsistency.
This iterative approach to behavior assessment is consistent with typi-

cal approaches to software design.

The cascading of variances is sometimes tolerable when the design-
ers are only interested in the derived statistics for the purposes of
comparing design alternatives. In these cases, the variances of estimates
used in corresponding portions of the alternative structures will typi-
cally be roughly the same and it will be the timing distribution means
which differ significantly. Therefore, it may be possible to relate
differences in the derived statistics to differences in the means of
timing distributions and designers may therefore often make correct
assessments as to the sensitivity of the system's characteristics to

the operation of the individual components and correctly assess the
differences among alternative system structures.

The effect of cascading variances can sometimes also be tolerated
when absolute judgments rather than relative comparisions are being
made. This can occur, for example, when the system is a real-time one
and its specifications indicate some constraints that must be observed.
In this case, if the ranges of the derived statistics lie within the
constraint, then the magnitude of the variances makes no difference and
the designers may validly conclude that the system observes the real-time
constraints. When the ranges fall outside the constraints, it may be
possible for the designers to parametrically assess the relationship
of the variances of the individual timing estimates to determine local
constraints which lead to satisfaction of the global constraints.

The second problem with simulation-based approaches to system be-
havior feedback analysis is not too severe and may be avoided by careful
design of the simulator - this is the problem of simulating a multiple
processor system. During simulation, operations will generally be
sequentialized when in the eventual system they may be simultaneous.
Problems stemming from this sequentialization may be avoided by having

the simulator nondeterministically or pseudorandomly choose among
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simultaneous operations. This is effective only if it is permissible
to interpret "simultaneous" as "sequential but unordered" - this is most
usually a valid interpretation in the case of software systems.

Analytic Feedback Analysis of System Behavior

Simulation is an important part of the theory advanced by Zeigler
and others. DDN, however, is not a simulation Tanguage in the conven-
tional sense for several reasons. First, current simulation Tanguages
do not allow behavioral specification, thus there can be no static analy-
sis of behavior. That is, simulations produce behavior which is then
examined, rather than allowing derivation of behavior from the structur-
al description, as is possible in DREAM. Second, simulations are typi-
cally used to investigate performance characteristics rather than yes/no
questions Tike system deadlock which should be answerable from a closed
form behavioral description rather than from a (possibly infinite) num-
ber of simulation runs. Thirdly, simulation languages address process
synchronization questions implicitly or when explicity by (simple) tie-
breaking rules, and synchronization questions are at the heart of many
problems with complex software systems, e.g., operating systems.

The analytic approaches supported by DDN are based upon the
ability to derive from the structural model a description of behavior
in the form of an algebraic expression over the set of event names
for the system.® To give an example of this, we must augment the black-
board description so that there is a description of that part of the
rest of the system which serves to activate the blackboard:

10ne version of this derivation procedure is given in [18]. It is a
variant of the Brzozowski method [36] for deriving a regular expression
for the language recognized by a finite-state automaton.
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[driver]: SUBSYSTEM CLASS;

ask: OUT PORT;
BUFFER SUBCOMPONENTS;
request OF [bb request _type]
END BUFFER SUBCOMPONENTS,
END PORT;

Tisten: N PORT;

BUFFER SUPCOMPONEBTS
disposition OF [bb _request_answer]

END BUFFER SUBCOMPONENTS;
END PORT;

exerciser: CONTROL PROCESS;
MODEL;
ITERATE
request SET TO inspect OR modify;
RECEIVE listen;
SEND ask;
END ITERATE;
END MODEL;
END CONTROL PROCESS:

END SUBSYSTEM CLASS;

Processes of this class interact with the blackboard in a coroutine
fashion, at each interaction requesting either an inspection or a mod-
ification operation.

We must also add the definition of some events to the control process

within the blackboard definition:

servicer: CONTROL PROCESS;
MODEL
ITERATE
hear: RECEIVE request;
IF request type = modify
THEN value SET TO valuel OR value2 OR value3;
activate: SEND signals
done_signal SET TO done;
ELSE done signal SET TO value;
END IF;
respond: SEND answer;
END ITERATE;
END MODEL
END CONTROL PROCESS;

By labelling some of the statements, we have demarcated events by which

the behavior of the system may be described.
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Suppose there are two processes of class [driver] and one of class
[blackboard] and they are connected so that the ask ports of the drivers
are connected to the reguest port of the blackboard and the Iisten ports
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we have one possible configuration for the system and may ask: what is
the system's behavior in terms of the sequences of events which arise
from its operation? An answer may be algorithmically obtained once an
initial configuration of messages in the ports has been specified. In
our example, an appropriate initial configuration is that the Ilisten
port has a single message and the other ports are empty. Using a nota-
tion called event expressions [18], the behavior of the system could
be expressed as:

(hear(activate u A)respond)*

This indicates that the servicer loops through the sequence of events:
receive a request (hear); possibly send a message out through the signal
port (activate); respond to the request (respond}. (This particular
behavior description is easy to derive by inspection, but that is because
of the simplicity of the example.)

With this information, the designers are able to draw inferences
as to whether the system is appropriately designed or not. They might,
for example, not have realized that the blackboard is constructed so
that it operates as a subroutine (with the undesirable effect that re-
sponses may be received by the wrong driver process) and wish to rede-
fine it as a subsystem with two components, one for each of the drivers.
In general, the designers may use the derived information to confirm
that the system will behave as they intend. Of course, the level of
confidence that they can attain in this way depends on the complete-
ness of the design and the extent to which they have defined events that
capture the behavior they are interested in analyzing.

A second use for the behavior expression derivation technique is in
the guidance of the design process itself. In this case, the designers
use the derived information to guide future design decisions. A partic-
ularly important use along these Tlines is the choice of synchronization
mechanisms for the efficient coordination of parallel processes. A large
number of synchronization mechanisms have been developed ([25],[37],[38])
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and they are all essentially equivalent in power. The choice of a par-
ticular mechanism is frequently done on the basis of a designer's ex-
perience or the seeming appropriateness of the mechanism. But a wrong
choice can lead to a much higher than necessary overhead in the system's
operation. A totally appropriate choice can be made only if the design-
ers know how the mechanism is actually used as well as how it is Zntended
to be used.

In our example, the intended usage of the signal port would indi-
cate that some bounded message transmission mechanism, such as communica-
tion semaphores [39], wou1d be appropriate. But if event expression
analysis were to uncover that this port was never used to send other
than valuel messages, then a more efficient solution would be to use a
normal semaphore mechanism which merely counts the number of messages
rather than actually storing them. This solution may Tater prove to be
an incorrect one and the designers must be careful to periodically check
that the solution is valid.! But at the point in design represented by
our example, there is no reason to choose a more general, less efficient
solution merely to be rid of the responsibility to carefully assess the
effect of subsequent desian decisions.

This is an example of a larger class of problems concerning the
choice of appropriate strategies, policies and algorithms for controll-
ing the interactions among a system's parallel components. By using DDN
in conjunction with a top-down design method, the designers will have a
much clearer idea of how a facility will actually be used before they
design the components which provide the facility. They will therefore
be able to tune the implementation of a facility to its use at the same
time as designing its basic organization and operation.

A final way in which the expression derivation technique may be
utilized is in performance assessment, To give an example, we must first
create a description of a closed system by adding the definition of the

"Whenever a design is modified or elaborated, some check must be made
to assure that the design description is internally consistent. The
DREAM approach is to provide tools by which advisory information may
be obtained and used in assessing the implications of a change in the
design - these tools are not automatically applied when a change is
made but are rather selectively applied by the designers.



class of processes that are activated by the blackboard when an
"observed" entity is assianed a new value:

Lhandler]: SURSYSTEM CLASS;

ask: OUT PORT:
BUFFER SUBCOMPONENTS;
request OF [bb request type]
END BUFFER SUBCOMPONENTS;
END PORT;

listen: IN PORT;
BUFFER SUBCOMPONENTS ;
disposition OF [bb request_answer |
END BUFFER SUBCOMPONENTS
END PORT;

start: IN PORT;
BUFFER SUBCOMPONENT
next value OF [posswb1e values |

END BUFFER SUBCOMPONENTS ;
END PORT;

handle it: CONTROL PROCESS;
MODEL;
ITERATE
RECEIVE start;
ITERATE O OR MORE {{5}}TIMES
request SET TO //1// inspect;
SEND ask;
RECEIVE Tisten;
END ITERATE;
END ITERATE:
END MODEL;
END CONTROL PROCESS;

END SUBSYSTEM CLASS;

In the nondeterministic ITERATE statement, the notation {{m}} in-
dicates the expected number of times that repetition will occur.

An event expression could then be derived which contains the tim-
ing and probability information [35]. We do not give this expression
for two reasons. First, it is fairly complex and uses some constructs
which we do not want to have to explain here. Second, and more important,
in and of itself it does not explicitly give any information about the
overall timing characteristics of the system - it is really just another
representation of the system that happens to account more directly for
the interactions among the parts of the system. In DREAM, the derived
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expression is not displayed to the user but rather there are
facilities for deriving summary statistics, such as means and variances.
Through the interactive use of these facilities the designer could de-
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as described and if the timing estimates are an accurate reflection of
the real system, then the operation of the object of class [driver]
would be slowed down by about 20 percent, due to the interference intro-
duced by the interactions of an instance of class [handler] with a
[blackboard]. That this is true is not immediately obvious from in-
spection of the descriptions, but is rather easy to deduce from statis-

tics about the execution and waiting times of the processes.

A Look to the Future

We have argued throughout that there exists a need to view complex
software systems from a modelling and systems viewpoint, and discussed
one rapprochement. There is some evidence that other research groups
are beginning to use this approach to solving software design problems
(e.g., [40]-[44]). MWe believe that there are many benefits to both the
modelling and the software communities by collaboration.

The modelling community will find that software is rich in problems
to be solved by formal means, and that software systems are readily avail-
able for study at all levels of system complexity. The software community
could particularly benefit from answers in the following areas:

What is a natural domain for expressing the semantics of software

description languages?

Can we describe a hierarchy of software system models a la Zeigler
[46], and morphisms between them?

How may we formalize notions of subsystem connectivity and strength?
What sorts of analyses of behavior can we perform?

It should also be apparent that the primitives of DDN (or similar
languages) are well suited for the description of systems other than soft-
ware. The concepts of rigorous specification of subsystems, inter-sys-
tem communication mechanisms, and behavioral specification are partic-
ularly interesting in this regard.

General systems theory has traditionally worked on two fronts,
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system characterization, and the unification of models of systems. The
DREAM system furnishes a testbed for the investigation of both of these
issues with respect to complex software systems. There does not current-
iy exist a formal theory of software
of system for that matter)! nor a formal theory of software system
organization, nor even a commonly accepted set of definitions or vo-
cabulary for the discussion of such systems. It is hoped that DREAM is

a rich enough system to provide the beginnings of answers to these ques-
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tions (or at Teast a framework for the discussion of such issues), in
addition to its intended practical value.

This has been recognized as one of the major problems that general
systems theorists should attack [45].
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