Languages for Representing Software Specifications and Designs

William E. Riddle
Jack C. Wileden

CU-CS-127-78

[
%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE




ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.






LANGUAGES FOR REPRESENTING SOFTWARE
SPECIFICATIONS AND DESIGNS

William E. Riddle
Department of Computer Science
University of Colorado
Boulder, Colorado

and

Jack C. Wileden
Department of Computer and Information Science
University of Massachusetts
Amherst, Massachusetts

CU-CS-127-78 May 1978

RSSM/72






Abstract:

We consider the nature of software system specifications and designs,
then survey the languages used in representing them. We emphasize the
utility of language~based representations as a foundation for computerized
tools which provide aid during software system development. The survey is
based upon a classification of the languages according to their underlying
representational constructs.






Introduction

The fundamental activity during the development of a large, complex
software system is the successive production of differing descriptions
of the system. These successive descriptions differ principally in their
orientation, vocabulary and organization. For example, the succession
of descriptions typically culminates in a (collection of) computer
program(s) forming a description oriented toward a particular (possibly
virtual) machine, expressed in the vocabulary of some particular computer
language and organized into the units mandated by that language (e.g.,
control sections, subroutines or procedures). 1In this paper, we focus
upon the first two types of descriptions which arise during the development

of a software system, which we designate as specifications and designs,

and upon the activity of fashioning the second type of description from

the first, which we call the design process.

Normally, the first type of description formulated during a software

system development project is a specification for the system. A specifi~

cation describes the proposed system in terms of the problem(s) which it

is to solve, indicating the intended functions of the system and any
policies which should govern system behavior. Specifications may also
impose economic or performance constraints and suggest desirable attributes
for proposed systems. Thus, a specification may be characterized as a

problem domain oriented description of a software system. The vocabulary

of such a description is generally that common to the problem domain, and
a specification is typically organized, if at all, into units which are

natural to the problem domain.



The next distinguishable type of system description to emerge during
a software system development project may be called a design. As
contrasted with specifications, a design describes a software system less
in terms of the problem which it addresses and more in terms of a proposed
solution to that problem. A design presents this solution as a collection
of conceptual processing units, or modules, specifying outlines for their
individual activities and indicating the intended interactions among them.
Thus, where specifications are problem domain oriented descriptioms,

designs are implementation or software domain oriented descriptions. The

vocabulary of such a description is generally that common to the software
and implementation community. So although designs, like specifications,
may impose constraints and suggest desirable attributes for a proposed
software system, these constraints and attributes normally are specifically
related to properties of module activity and interaction. The organization
of a design also reflects the underlying orientation toward implementation
concerns, since it typically is based upon units (e.g., modules or
collections of modules) which are natural to the implementation and
software domain.

We use the phrase design process to denote the activity of

creating a software system design based upon, and purportedly realizing,
the system's specification. This process, whereby a description in the
problem domain gives rise to a description in the implementation domain,
is at once the most crucial and the least understood of any phase in the
development of a software system. TIdeally, in order to minimize errors and

facilitate production of a design, the process should proceed in a series



of orderly and verifiable steps. Yet, although both specifications and
designs may exist and be incrementally elaborated within broad ranges of
representational detail (as suggested by Figure 1), the transition from
one domain to the other is still typically abrupt and error-prone.

Any systematic approach to software development clearly requires one
or more languages in which to formulate unambiguous, well-defined state-
ments of software specifications and designs. These two types of descrip-
tions, with their differing orientations, demand different sets of
language capabilities and constructs to support the natural expression of
salient properties within their respective domains. When these distinct
capabilities and constructs reside within two separate languages, the design
process involves producing a description in one language which somehow
reflects a description in the other. If both sets of constructs and
capabilities are contained within a single language, then the design
process can potentially be carried out in a more integrated and gradual
manner. In either case, the two sets of constructs should preferably
be related, either formally or informally. Such a relationship between
constructs is necessary to any verification of design correctness and can
also be of use in structuring and organizing the design process.

In the remainder of this paper, we shall discuss a number of languages
which have been developed for describing software system specifications and
designs. We first briefly consider some of the benefits which accrue
through the use of such languages and mention some language attributes which
are particularly important for the design process. Then we present a

classification of the currently existing specification and design languages,



IMPLEMENTATION DOMAIN
" ORIENTED DESCRIPTIONS

PROBLEM DOMAIN
ORIENTED
DESCRIPTIONS

\pEsTon |
\ PROCESS'

elaboration process elaboration process

———————————————————————— @ ™ e o e e e e e e — — — D
SPECIFICATION 1 SPECIFICATION 2 DESIGN 1 DESIGN 2
Increasingly detailed representations’ Increasingly detailed representations

Figure 1

4=



showing how several such languages fit within this classification and

considering the capabilities and shortcomings of each language.

Software Development Tools

Benefits accrue from languages for the statement of specifications
and designs because they provide a basis for a variety of tools which a
software system designer or design team may use to ease the design
process. Roughly classified, these tools fall into the following categories:

Bookkeeping tool: Provides aid in recording the current specifi-
cation and/or design, in modifying and augmenting this record,
and in returning it to a previous point if decisions are
reversed.

Supervisory tool: Provides aid in assuring that design practices
and procedures which are considered beneficial are actually
followed.

Managerial tool: Provides aid in assessing the progress of the
design effort and in focusing attention upon the critical
remaining design tasks.

Decision-making tool: Provides aid in measuring and predicting
the properties (as implied by the current design) of the
system under design for the purpose of detecting errors,
gaining confidence in the appropriateness of the already
made design decisions, and guiding the further development
of the design.

It is possible to define tools in all of these categories without
the use of design or specification languages, but the structure of the
languages can introduce a desirable rigor into the definition of the tools.
For example, the syntactic structure of a language can delineate units of
information in a design, such that restrictions on their visibility to

different members of a design team constitute a definition of the practice

known as information hiding [Pa7l].



A set of integrated, computerized tools (a toolbox) may be constructed
around a data base system which provides a repository for all of the
information concerning the evolving design. The data base itself may be
organized according to the syntactic structure of the design and specifi-
cation languages, with the syntactic structure of the languages serving
to delineate the units of information in the data base. Bookkeeping
tools may then be provided in the form of text editors which assist in
composing description fragments and data base management routines which
control the flow of information into and out of the data base. Supervisory
tools also take the form of data base management routines, imposing
constraints upon what information may be inserted into or retrieved from
the data base at any point in time. Management tools include report
generators which derive information about the completeness of the infor-
mation in the data base and analysis routines which help in assessing
the implications of this information. Finally, decision making tools take
the form of simulation or analysis based routines which process the
information in the data base to determine both its consistency and its

implications regarding the characteristics of the system under design.

Desirable Language Features

Languages for use during that phase of software system development
encompassing the design process are necessarily quite different from the
familiar programming languages employed in later developmental phases. In
this section, we indicate the nature of this difference and suggest a set

of desirable attributes for such languages.



The primary emphasis in this early phase of software development is
upon describing the system's intended behavior as opposed to the details
of its operation. Languages for use during this phase should, therefore,

be behavior oriented. In particular, such languages should be non-

rescriptive, capable of describing the designer's intentions for system
P p g y

behavior without prescribing any specific means for achieving those
intentions. Non-prescriptiveness serves to prevent the premature selection
of implementation mechanisms which can unnecessarily limit the range of
potential system realizations. The behavioral orientation of this phase
also favors languages in which descriptions orthogonal to the system's
eventual implementation description can be formulated. An orthogonal
description is one forming associations among the elements of the system
which may be completely different from those found in the system's
implementation. An orthogonal description may, therefore, express a
logical rather than a physical system organization.

While system behavior may be procedurally described using language
constructs akin to those appearing in traditional programming languages,
this can lead to a more prescriptive, less orthogonal description.
Languages for use in the early phases of a software development should,

therefore, contain non-procedural constructs which can state behavioral

attributes without specifying algorithms or mechanisms for producing those
attributes. Language constructs which provide for modelling offer another
valuable technique for non-prescriptive, orthogonal behavior description,
allowing an abstract, pseudo-procedural representation of intended system

behavior.



The descriptions of a software system which appear during the first
stages in its development are most valuable if they can serve as the
basis for some analysis. Thus, languages for use in stating such descrip-
tions should provide for unambiguous representations. Analysis is also
facilitated by languages which permit projection, or the focusing of the
description upon various particular aspects of interest. Languages should,
in addition, allow and encourage redundant descriptions, since the
comparison of multiple descriptions is a valuable analysis technique.

Finally, languages used in conjunction with the design process
should obviously facilitate modification to descriptions. Modularity
is one useful attribute in this regard, since alterations are simpler
and less error-prone when they can be localized. Languages which foster

hierarchical representations can similarly ease modifications. Above

all, such languages should permit incremental change, so that descriptions

can be enhanced and refined as software system development progresses.

Language Classification and Survey

It is possible to distinguish three major types of languages which
possess the attributes discussed in the previous section and which support
the provision of a design toolbox—-state-based languages, event-based
languages and relational languages. In the three subsections below,
we briefly define these types and survey some representative languages
encompassed by each type.

State-based languages. Description schemes in this category provide

some means of specifying the set of possible system states and the system's

state transition function. Programming languages are state space description



schemes since a program's data and control variables define a state space
and the text of the program defines a state transition function. The

value of state-based schemes for the task of describing specifications

and designs lies in the ability to abstract the state space so that it
reflects only interesting details and in the availability of non-programming
approaches to the description of the state transition function. For
example, a data base could be abstractly modelled in a state space

description scheme as an entity which has the states open and closed, and

that part of the transition function corresponding to closing the file
could be described by the set of transitions {open--> closed, closed-—>
closed}.

A particularly valuable aspect of state space description schemes is
that they admit hierarchical descriptions. A collection of modules may
be described as a composite module by demarcating a set of states and
delineating the correspondence between one of the states of the composite
module and a combination of states of the component modules. The opera-
tions which may be invoked upon the composite module may then be described
in two ways. First, they may be described in terms of transitions over
the states of the composite module. Alternatively, each operation may be
procedurally described as an algorithm controlling the invocation of
operations upon the component objects. Each module in the resulting
hierarchy serves to encapsulate its component modules, providing a
"high-level" description of their collective operation without the
necessity of detailing their individual operation.

TOPD [He75b] is a program construction toolbox which uses a state
space scheme for describing a program's design. In TOPD, fragments of a

design describe various aspects of a program's modules such as their states



or the transition definitions of the operations which may be invoked upon
them. Bookkeeping tools included within the TOPD system consist of an
editor for aiding the composition of design description fragments and a
data base management system which provides facilities for augmenting

and modifying the design description. TOPD also includes a decision
making tool [He75a] which checks the consistency between an operation's
transition definition and its procedural definition. The checking
facility does not, in and of itself, certify the '"correctness" of the
procedural definition with respect to the transition definition. Rather,
it uncovers inconsistencies and it is the responsibility of the designer
to determine the import of this information. This type of analysis,
called feedback analysis [Ri77a], is quite appropriate during design
when the designer's insight and intuition are needed in the assessment

of the design's appropriateness.

A state space description scheme [Ro77] is also the basis for a
program development toolbox developed at SRI, International. The descrip-
tion scheme is a variation and extension of that developed by Parnas [Pa72],
providing a means for procedural models of the system's components, to
which has been added an assertion language, providing a means for non-
procedural descriptions. The focus of this toolbox is upon a supervisory
tool, in the form of a well-defined method for system development [Ro75a],
and a decision making tool which uses theorem proving techniques for
ascertaining the consistency between a module's procedural and assertional
definitions [Ro75b].

A third toolbox which uses the state space approach to design

description is the DREAM system developed at the University of Michigan

-10-



[Ri77¢,Ri77d]. This system is intended for the development of large-
scale software systems which contain (either actual or apparent)
parallelism. In DREAM, interactions among the asynchronous, concurrent
modules are modelled as either the transmission of messages or the direct
sharing of information repositories. The state space therefore reflects
the states of the shared information repositories and the state of the
message transmissions among the message sources and sinks. Operations
upon shared information repositories may be described either procedurally
or non-procedurally by means of constructs similar to those in TOPD.
The operation of the message sources and sinks may be described procedurally
in terms of an algorithm controlling the message transmission operatioms,
the operations upon shared information repositories and the operations
modelling the processing of messages. A non-procedural scheme for
describing the system's modules is also available and is discussed in the
next section. DREAM provides bookkeeping tools which are patterned after
those provided by TOPD [Ri77b]. Several decision making tools are under
development which will allow the software designer to assess the dynamic,
run—-time characteristics of the system under design. These tools are
intended primarily for the investigation of synchronization properties
[Ri761, but will also allow investigation of performance properties [Sa77].
All three of these systems support the hierarchical description of
a design, for the following reasons. First, hierarchical description
facilitates the incremental development of a design. (All of the systems
have a definite orientation toward top-down development, but may also be

used with other design methods.) Second, hierarchical description is

—11-



provided so that the task of design analysis, with the aid of the decision
making tools, may also be carried out incrementally, coincident with the
incremental evolution of the design.

Event~based languages. A second set of descriptive techniques

potentially useful in describing software specifications and designs may
be characterized as event-based. That is, descriptions are stated in
terms of orderings upon the occurrence of certain distinguished events
in the software system's behavior. The techniques generally represent
the collection of desired or acceptable event orderings by combining
symbols which stand for event occurrences into one or more formal,
algebraic expressions. Such expressions, therefore, offer a means for
formulating non-procedural, non-prescriptive descriptions of complex
software systems.

The path expression formalism, developed by Campbell and Habermann
[Ca74] is one such algebraic technique, originally intended for use as
a programming language construct to express desired sequencing and
synchronization in concurrent programs. Symbols representing procedure
executions are combined in path expressions using operators which indicate
the acceptable ordering of procedure occurrences. Several expressions
may be used to state various different aspects of the intended sequencing
and synchronization, thereby permitting a modular description and
facilitating incremental change. A collection of path expressions is
normally interpreted as permitting only those procedure invocations which
do not violate any of the sequencing constraints imposed by the various
members of the collection. Path expressions have been used to construct

solutions to classical synchronization problems.

-12-



Event sequence expressions [Wi78,Ri77c¢], an outgrowth of earlier
work on event expressions [Ri76], provide a means for non-procedural
behavior description within the DREAM system. Event sequence expressions
support the definition of a set of distinguished events and the state-
ment of properties, either restrictive or permissive, regarding the
intended sequencing and concurrency of those events. A collection of
expression operators is provided for use in constructing expressions
describing permissible sequences of event occurrences and several
constructs are available for the explicit, succinct statement of coordina-
tion and synchronization relationships among events. The DDN constructs
and their precursors have been used in numerous example software system
descriptions and their properties have been extensively studied.

Shaw's flow expressions [Sh77] are very similar to event expressions.
Flow expressions are formed using operators similar to those employed in
regular expressions, and represent the flow of entities (e.g., control,
data items) through components (e.g., instructioms, procedures, modules)
during system execution. As in the case of event expressions, an
arbitrary interleaving of the symbols corresponding to entities represents
potential concurrency in the symbol strings described by flow expressions.
Certain synchronization operators, which are specialized versions of the
event expression synchronization operators, are used to describe
intended coordination among or within flow expressions. The flow
expression technique has been used to describe several types of software
systems from various perspectives.

Grief has proposed a closely related scheme [Gr77] in which the

sequencing of event occurrences is constrained by a partial ordering

—13-



defined over those occurrences. Both events and sequences of events may
be ordered in the Grief approach. In essence, this technique implicitly
defines the sets of event sequences which are explicitly defined in the

event expression and flow expression formalisms. Grief has demonstrated
the use of this scheme in describing solutions to a classical synchroni-
zation problem.

Relational languages. Relational description schemes provide a

"free-association" approach to description development. In such schemes,
it is possible to declare pertinent aspects of a system such as the
input to be processed, the output to be produced, the functions to be
performed and events which are to happen during the system's operation.
Then properties of the system are specified by describing the required
or desired relationships among the declared aspects—-for example, the
relationship "is input to' could be specified as holding between some
data entered into the system and one of the functions to be performed by
the system. The description scheme itself does not impose any organi-
zation upon the order in which aspects must be declared or relationships
must be specified.

Two similar toolboxes, ISDOS [Te71] and REVS [Da77], have been
developed around a relational description scheme. Both provide a variety
of predefined relationships and include bookkeeping tools which aid in
the preparation of a system specification with respect to these relationships.
Both also include decision making tools which paraphrase the information in
a specification and produce reports through which the person preparing the
specification can more easily perceive consistencies and potentially
discover inconsistencies. In some cases, inconsistencies are uncovered

automatically by these systems.

—14-



A major difference between these two systems is that in RSL [Tr76],
the specification language provided by REVS, it is possible to specify
time-related performance criteria. This is accomplished by first
specifying abstract algorithmsl for the various system functions. Then

timing relationships between points in these algorithms may be specified

1" 1"

by additional algorithms, in the form of "checking programs,' which define
the desired relationships between the times that control passes these
points. The algorithms may be "executed" by a decision making tool which
uses a simulator to derive information about the feasibility of achieving

the timing relationships specified by the checking programs.

Language Classification and the Design Process

In Figure 1, we suggested that both specifications and designs could
exist within broad regions of descriptive detail, being refined and
elaborated as software development progressed. We also indicated that
the design process involved a transition from the region of specificatiomns,
oriented toward the problem domain, to the implementation oriented region
of designs. Having now considered three broad classes of languages for use
in this phase of software development, we here briefly relate those
classes to the spectrum of description stages depicted in Figure 1.

Generally speaking, the languages which we have characterized as

relational are most appropriate to descriptions toward the left, or

lAlgorithmic specification of a system is generally not desirable since
it is prescriptive of the system's modular structure and eventual
implementation. It is, however, consistent with a relational scheme
since the algorithm provides a definition of the relationship between
system output and system input. Algorithmic specification is consistent
with the aims of the specification task, however, only if the algorithms
are viewed as non-prescriptive definitions of relationships, possibly
orthogonal to the system's eventual modular and algorithmic structure.

-~15~



specifications, end of the spectrum while those we classify as state-
based find thelr most natural application in descriptions toward the
right, or designs, end. Relational schemes typically possess very limited
means for combining and structuring subparts of a description, a situation
conducive to stating specifications but impeditive to the software
domain oriented description found in a design. Similarly, the notion
of states, while quite natural to an implementation oriented description,
is an encumbrance to problem domain oriented statements of specifications.
The event~based class of languages can conceivably be used anywhere
within the spectrum of descriptions associated with the design process.
The choice of a set of events and operators largely determines the
orientation of a description formulated in such a scheme. In practice,
however, the majority of examples employing path expressions, flow
expressions, event and event sequence expressions and Grief's formalism
have tended toward the design end of the spectrum. While these examples
have indicated that event-based languages can be useful in software domain
oriented descriptions, the demonstration of their utility for stating
specifications awaits the development of appropriate, problem domain

oriented, sets of events.

Conclusion

The design of large-scale software systems is a complex task which
demands both an orderly approach and some assistance in assessing whether
or not the evolving design is acceptably related to system specification.
Both these needs are partially satisfied by the use of languages which

allow the unambiguous, well-defined statement of specifications and designs.

~16-



The languages are even more effective when there are well-defined relation-
ships between constructs in the specification language and constructs

in the design language. This permits the definition of techniques for
passing from a specification to a design and the development of computer-
based tools for assisting in both the use of these techniques and the
assessment of the quality of the evolving design.

We have reviewed several schemes for describing software specifications
and designs. In the review, we have limited attention to those languages
which have been used as a basis for software development toolboxes--a few
closely-related languages have also been reviewed although they themselves
have not been used in this manner. We have not tried to cover the
languages in detail, but have rather tried to indicate the utility of the

languages as a basis for software system development tools.

-17-



[Ca74]

[Da77]

[Gr77]

[He75a]

[He75b]

[Pa71]

[Pa72]

[Ri76]

[Ri77a]

[Ri77b]

[Ri77c]

[Ri77d]

[Ro75a]

REFERENCES

Campbell, R.A. and Habermann, A.N. The specification of process
synchronization by path expressions. Lecture Notes in Computer
Science, 16, Springer Verlag, Heidelberg, 1974.

Davis, C.G. and Vick, C.R. The software development system.
IEEE Trans. on Software Eng., SE-3, 1 (Jan. 1977), 69-84.

Grief, I. A language for formal problem specification. Comm.
ACM, 20, 12 (Dec. 1977), 931-935.

Henderson, P. Finite state modelling in program development.
Proc. 1975 International Conf. on Reliable Software, Los Angeles,
April 1975.

Henderson, P. et al. The TOPD system. Technical Report 77,
Computing Laboratory, University of Newcastle upon Tyne, England,
September 1975,

Parnas, D.L. Information distribution aspects of design
methodology. Proc. IFIP Congress 71, Ljubljana, August 1971,
TA3-26-TA3-30.

Parnas, D.L. A technique for software module specification with
examples. Comm. ACM, 15, 5 (May 1972), 330-336.

Riddle, W.E. An approach to software system modelling, behavior
specification and analysis. RSSM/25, Department of Comp. and Comm.
Sci., University of Michigan, Ann Arbor, July 1976.

Riddle, W.E. A formalism for the comparison of software analysis
techniques. RSSM/29, Dept. of Comp. and Comm. Sci., University of
Michigan, Ann Arbor, July 1977.

Riddle, W.E., Sayler, J.H., Segal, A.R. and Wileden, J.C. An
introduction to the DREAM software design system. Software
Engineering Notes, 2, 4, (July 1977), 11-23.

Riddle, W.E. and Wileden, J.C. Behavior modelling during software
design. RSSM/56, CU-CS-119-77, Dept. of Comp. Sci., University
of Colorado at Boulder, November 1977.

Riddle, W.E. DREAM--a software design aid system. RSSM/68,
Dept. of Comp. Sci., University of Colorado at Boulder, December
1977.

Robinson, L., Levitt, K., Newmann, P. and Saxena, A. A formal
methodology for the design of operating systems software. SRI,
Menlo Park, September 1975,

18-



[Ro75b]

[Ro77]

[Sa77]

[Sh77]

[Te71]

[Tr76]

[Wi78]

Robinson, L. and Levitt, K. Proof techniques for hierarchically
structured programs. Tech. Rep. CSL-27, SRI, Menlo Park,
November 1975.

Robinson, L. and Roubine, 0. SPECIAL--a specification and
assertion language. Tech. Rep. CSL-36, SRI, Menlo Park, January
1977.

Sanguinetti, J.W, Performance prediction in an operating system
design methodology. RSSM/32 (Ph.D. Thesis), Dept. of Comp. and
Comm. Sci., University of Michigan, Ann Arbor, May 1977.

Shaw, A.C. Software descriptions with flow expressions. Technical
Report #77-10-03, Dept. of Comp. Science, University of Washington,
Seattle, October 1977.

Teichroew, D. and Sayani, H. Automation of system building.
Datamation, August 15, 1971.

Requirements Engineering and Validation System Users Manual, TRW
Defense and Space Systems Group, Huntsville, July 1976.

Wileden, J.C. Behavior specification in a software design
system. RSSM/43, Dept. of Comp. and Comm. Sci., University of
Michigan, Ann Arbor, in preparation.

-19-



