EVALUATION DURING MACHINE DESIGN:
A CASE STUDY

by

Gary J. Nutt
Bruce W. Sanders
Kimbal S. Smith
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309
(303) 492-8728

CU-CS-125-78 October, 1977

ABSTRACT

A case study of an emerging design methodology for multiple pro-
cessor computer systems is described, where the technology is based on
bit slice microprocessors. The evolving techniques emphasize multi-
Tevel simulation models. At the Towest level is a bit slice micropro-
cessor interpreter for detailed investigation of the functions which
can be microprogrammed and designed into these components. The next
higher Tevel model is a machine language interpreter whose detailed
characteristics are determined by the results gained from the Towest
level model. At the highest Tevel are several models to investigate
operating system and architectural strategies. The same approach is
applicable to many design studies of multiple processor systems imple-
mented as VLSI chips or bit slice microprocessor technology.

KEYWORDS

simulation modeling.

parallel processors

multiprocessor architecture design
design evaluation

INTRODUCTION

An important consideration in the design of computer systems has
been to enable the combined software and hardware system to utilize the
processor(s) as much as possible. Multiprogramming was introduced so
that several processes could share a common processor, thus ensuring
that a costly resource (the processor) was more heavily utilized, per-
haps at the expense of some less costly resource (e.g. memory). This
approach of maximizing processor utilization has had a profound influ-
ence on the direction of operating system and architecture research.
One basic argument for employing virtual memories was that multiple
level memories could be used to more effectively utilize both the pro-
cessor and the first level of store, [2]. Large scale integration of
circuit components has changed the set of design criteria for computer
systems; the costs of memory components and processors have decreased
to the point that these parts of the system are relatively insignifi-
cant and their utilization need not be a constraint for optimization.
Although many current aspects of (operating) system design will continue
to be important, others such as multiprogramming or otherwise multi-
plexing a processor will be deemphasized.

The changing character of the economics is not the only reason
for altering design constraints; although processors and memories are
now much less costly, their architectural components are vastly dif-
ferent. Constraints on the amount of primary memory are no longer
determined by cost, power dissipation, etc., but by the address space
in a processor that accesses the memory. Processor technology has also
changed drastically; eight bit, fixed instruction set microprocessors
are now available for twenty dollars. These microprocessors will
probably never replace large scale main frame processors, but they have
become a popular way to build units to handle peripheral devices, [18,
19]. Future microprocessors will incorporate larger and larger word
sizes, as well as incorporating more comprehensive instruction sets;
even now, sixteen bit MOS microprocessors have become available, [20].

There are two other developments in hardware that will also have
an impact: The first is Very Large Scale Integration (VLSI),and the
second is the availability of bit slice (bipolar) microprocessors. VLSI
circuits are expected to be up to 100 times as dense as current technolo-
gies, allowing multiple functional units to be incorporated into a

-o-

single chip, [4,5]. For more units to be placed on the chip, the
logic designer will have to be familiar with the software systems that
the chip will support, (or operating system designers will have to
start designing VLSI chips). In order for the density to be used
adequately, well planned system architectures will have to be used.

VLSI technology is still in the future, but bit slice micro-
processors are currently available, [19]. These units are modularly
constructed so that several bit slices can be cascaded in order to
form Targe word length processors with relatively fast processor
cycles. Because of the lack of apriori knowledge as to the end use
of these components, these chip sets are intended to be microprogrammed.
It is possible to construct a fully microprogrammed, 64 bit word pro-
cessor for a very modest cost (a few thousand dollars), e.g. see [18].

The result of these technology advances is that future computer
architectures are likely to employ several processors, and the design
of the processors themselves, their interconnections, and their support-
ing facilities will be strongly influenced by memory costs, micropro-
cessors, and VLSI technology. The system designer will have to be able
to work with LSI and VLSI components in order to design the total
software/hardware system; integration of the two fields can no longer
be delayed.

The design methodology will also have to evolve in order for
computer architectures to be successfully built in this environment.
Circuit designers and Togic designers have often used simulation models
to aid them in their design, e.g. see [17]; similarly, operating system
designers have used analytic and simulation models for designing soft-
ware systems, e.g. see [15]. The mew methodology must incorporate
new tools for modeling and evaluating systems during the design phases;
the components are at a higher level than those normally associated
with logical design, yet, at:alower level than those of operating system
design.

At the University of Colorado, a project has been in progress in
which we have been forced to devise approaches to design incorporating
bit slice microprocessor components. In the remainder of this paper,
we discuss our experiences with this design project as they relate to
an emerging methodology for designing architectures with (V)LSI components.

-3-

CHOOSING A FAMILY OF ARCHITECTURES

There are a number of very high level choices that can be made
about the general family of machines in which to design. For example,
in a multiple processor machine, how closely coupled should the pro-
cessors be? The spectrum ranges from SIMD machines which synchronize
at the beginning of each instruction cycle, through MIMD machines in which
the processors may synchronize at task or job initiation, to networks
of processors where the processors may never synchronize. A number of
papers have been written about parameters which should influence the
choice of one architecture over another at this general level, e.q.
see [3]. In the case study discussed here, the general architectural
family that was chosen was a variant of the SIMD machines. The Multi
Associative Processor (MAP) family of machines all incorporate multiple
control units (multiple intruction streams) each of which uses a set
of processing elements to implement a SIMD computation. Details of
MAP are available elsewhere, [1,9]; only a brief synopsis of the machine
is given here.

Figure 1 is a block diagram of the MAP architecture; the main
components are an input/output system, a main memory, a set of control
units, a distribution switch, and a set of processing elements. The
machine operates without the aid of a host machine, hence the operating
system program is executed by a combination of one or more control units
and one or more processing elements, [13]. Programs and data are loaded
into the main memory by the input/output system; data that are to be
operated on in parallel (by a single instruction stream) are loaded
into a subset of processing elements allocated to one control unit.

The control unit decodes a single instruction stream from the main
memory, broadcasting commands to the appropriate subset of the proces-
sing elements over the distribution switch.

The first Tevel of refinement to the overall design was to specify
the main memory and distribution switch organizations in more detail.
This refinement initially consisted of specifying the memory system as
consisting of multiple, distinct modules that might be interleaved or
organized as blocks of consecutive addresses. (It was not known how
many such modules should exist in the system.) The distribution switch

-4

was specified to be a variant of a crossbar switch, since the unit

was required to allow any control unit to broadcast a set of commands
or other 1nformation to any arbitrary subset of the processing elements
simultaneously. In order to further investigate the applicability of
these decisions and to refine the details to a lower level, models
were constructed of the designs, [12]. The results from these models
indicated that the approaches were feasible provided that certain
design parameters were used. The main memory system would have to be
composed of at least as many (consecutively-addressed word) modules as
there existed control units. The crossbar switch variant, in which
groups of processing elements shared a crossbar bus, was feasible pro-
vided that suitable processing element allocation algorithms were used
in the operating system.

Once these two critical portions of the design were analyzed,
more detailed modeling and evaluation could take place within the
family of architectures. These models essentially indicated that the
family was worth further, more detailed study.

The methodology used for this phase of the study was a prototype
for modeling and evaluation work on MAP since that time (1974-1975).
The system was modeled at two levels: the Towest level was an inter-
preter executing a primitive instruction set. This interpreter was
used to test potential applications of the architecture and to provide
a realistic workload for such a machine. The workload was monitored,
and used to drive the second level of models of MAP. These second
level models were explicitly prepared to investigate memory and bus
contention. The technique was very successful in the sense that archi-
tectural family characteristics could be thoroughly tested. ‘However,
the interpreter did not model an exact hardware implementation; it
relied on detailed designs that were unrealizable at the
time. As work progressed within the particular family of architectures,
the modeling methodology became more precise, (as described in the next
section).

-5-

DESIGNING WITHIN THE MAP ARCHITECTURE

The MAP architecture incorporates multiple control units, each
of which can fetch and decode a single instruction stream, causing
execution of that instruction stream to be applied to myjtiple data
streams implemented in processing elements (one data stream per pro-
cessing element). In order to have a testbed for application programs,
a number of different MAP assemblers and interpreters have been developed.
The software is used to create a programming environment similar to that
provided by one control unit in conjunction with an arbitrary number of
processing elements, i.e., the interpreter is strictly a SIMD interpreter,
(except in the Version III system described below). In order to speed up
the interpreting process, all programs to be executed are translated
into an absolute binary object program; source programs are written in
a symbolic assembly language.

The Version I assembler and interpreter were written in 1974 1in
the assembly language of the Control Data 6000 series computers.
This "backward" approach to software development was justified by the
classic reasons for choosing an assembly language over a higher level
language, namely, the sequential computer would have to simulate
parallel execution of individual instructions of the MAP machine, there-
fore the simulator would have to be as time-efficient as possible.
The Version I instruction set was derived by comtemplating the pro-
posed architecture and by hypothesizing the character of programs.
The first instruction set was, therefore, designed with no detailed
knowledge of the structure and character of progréms for tﬁe machine;
this circumstance is not unlike that of hardware designers building a
machine without carefully discussing the applicability of the design
with the software designers. (The result is predictable.) One other
basis for the Version I instruction set was that it could be imple-
mented on a microprogrammed machine; microinstructions, rather than
machine instructions, could be broadcasted to the processing elements.
Unfortunately, the detailed design of the underlying machine were in-
complete due to missing detail or a reliance on better technology
before a part of the system could ever be implemented. During these
first days of the design, the goals of the architecture were to test

-6-

its feasibility for construction sometime in the future, and to provide
a medium for studying measurement and evaluation techniques. Thus, the
impracticality of the design was not of serious consequence.

The Version I study was educational and set the stage for a
viable methodology for investigating the machine. The object program
interpreter not only provided a testbed for investigating app1ications
based on an experimental instruction set, but it offered a mechanism
by which detailed measurements of machine. performance could easily be
taken. These measurement data were then used to drive several of the
higher Tevel models relating to the asynchronous, parallel operation
of the control units, as described above. One other technique that
was "discovered" during the Version I studies was that of applying the
Control Data 6000 COMPASS assembler macro capability to build symbolic
assemblers for MAP, [14]. This technique was subsequently used on other
versions of the machine, and has also been used by others to assemble
code for fixed instruction set microprocessors, e.g., see [16].

The Version II Study

The Version II interpreter and assembler were written in the
latter part of 1975. Version II employed the same techniques developed -
during the previous phase of modeling and presented a more realistic
instruction set with regard both to software design and current hard-
ware sophistication.

Whereas the Version I software had been designed with space and
execution cost constraints (a rigidity which led rapidly to the design
of Version II), the new interpreter was created almost entirely by
deeply nested macro expansions thereby facilitating the ease with which
the instruction set could be adjusted, i.e., one motivation for redesign-
ing the interpreter was to provide for easier maintenance and alteration.
Furthermore, Version II supplied the programmer with a virtual machine
environment closely modeling true hardware configuration (multi Tevel
memory, distinct processors,etc.).

Included in Version II was a simulated hardware monitor which
served primarily for program tracing, but also enabled one to perform

-7-

crude statistical analysis of hardware utilization. The interpreter
also included instruction count mechanisms and, in an attempt to cate-
gorize execution times, the execution path was monitored using the

CDC 6000 series specifications to model reasonable instruction timings.
(The CDC 6000 specifications were intended to provide reasonableratios
of execution time between any two MAP machine instructions.)

Version II became the center of a small, though intense experiment
in software design. Early programs attempted to implement algorithms
designed for serial machines on the SIMD architecture. It became
apparent, though not suprising, that a considerable "twist" in many
algorithms is required to make efficient use of the multiple processor
architectures; those transformations are not always obvious (for ex-
ample, the use of Gauss Jordan elimination rather than Gaussian
techniques for the solution of linear systems.) [8].

Several major codes were written including software designs for
network simulations and studies in artificial intelligence, (the latter
remains :an active research project). All codes exceeded 1000 assembly
statements and executed in times measured in hundreds of virtual run-
time seconds. These codes provided sound tests of both the hardware
configuration and the instruction set.

While Version II was able to establish the viability of the MAP
architecture, it left many questions unanswered and had, in a period
of some eighteen months, accumulated a significant number of grievances.

Of primary concern was the fact that the MAP architecture is
truly a vector of SIMD machines creating a MIMD configuration. The
Version II design included several constraints barring a simple exten-
sion to a MIMD (multiple control unit) interpreter. Foremost, data
structures and FORTRAN supporting modules had been designed without
considering expansion of the model, therefore, neccessitating a major
rewrite if an extension was to be successful. While the use of macros
to implement the instruction set enabled ready modification to individ-
ual facets of the interpreter (the instruction set in particular),they
produced an unwieldy mask clouding the internal workings of the

interpreter.

These problems aside, an attempt was made to extend the Version II
interpreter so that it would simulate the activity of multiple control

-8-

units. However, the extended Version II interpreter had significant syn-
chronization problems since the SIMD interpreter was inherently designed
with the single virtual instruction step being indivisible.

A second problem which plagued the Version Il interpreter was
its inability to provide accurate definitions for those instructions
needed to test systems designs. While a reasonable representation of
the MAP architecture was presented for pure applications codes,
Version II fell far short when regarded in this light. As implemented,
all system functions were provided by appeals to the FORTRAN run time
environment and were therefore inflexible to experiment. (Indeed, it
had been tacitly assumed that the MAP architecture would perform
poorly where I/0 bound processes were concerned. As a result, no
serious attempt was made to provide for a reasonable file capability.)

Irregularities and deficiences in the instruction set became
more apparent with the writing of large codes. Problems stemming from
antisymmetric instructions were easily corrected howeyer, certain miss-
ing operations could not be easily implemented, partially because of
the host machine's hardware. Further, a notable lack of registers
became a severe problem in the more massive applications. Finally, the
lack of computing power in the control unit instruction set forced any
operation more complex than integer addition and subtraction to be dis-
tributed to one or more processing elements.

Yet another problem with the Version II software was its size and
execution speed. Assembly and simulation of MAP programs were quite
costly. Since no reasonable method for correction of object files was
developed, errors almost always necessitate reassembly of entire soure
programs.

The problems with the Version Il assembler, and in particular,
the interpreter,led to a decision that a new simulation package was
needed.

The rapidly increasing availability ofmicroprocessors and LSI
components made the possibility of realizing a prototype processing
element more tangible. If such a device was constructed, it would
be desirable to interface it with the interpreter. This approach
pointed away from an interpreter executing on a large host machine
towards one implemented on a dedicated processor.

The Version III Design

Until design work on the third version of MAP was initiated, an
underlying assumption was that the machine need not be realizable 1in
current technology. This resulted in a number of portions of the
machine being ignored or assumed to be built with some future technology.
As interest increased in the pending third version, (in which the new
interpreter was to support multiple control units), it became necessary
to consider several of those details more carefully. For example, it
was not reasonable to implement a multiple control unit interpreter
without considering a mechanism for interprocess communication. The
simulation study had become sufficiently detailed that
results could be obtained only after the architecture became defined
nearly to the point of prototype construction. Versions I and II had
been designed "top down", i.e. the underlying hardware details were
never firmly defined; Version III is the first in the series of MAP
designs to combine "bottom up" techniques with an existing top down
design. The Version III design rests squarely on current LSI technology,
and in particular, on the generous application of bit slice micropro-
cessors to the design of MAP, [10,11].

Bit slice microprocessors are not as compactly packaged as the
more widely known fixed instruction set MOS microprocessors, but such
microprocessors are faster and more flexible. The basic chips required
to construct a CPU include a sequencer (or control unit), an
arithmetic-logical unit, and a control store. Each bit slice ALU
can perform a few arithmetic and Togical operations on 2-4 bit operands.
The ALU will contain Togic to perform the operations, to shift operands,
and to incorporate a bank of internal registers. Multiple ALUs can be
interconnected to form a single ALU that operates on words with 64 or
more bits. These resulting ALUs perform relatively fast arithmetic
operations, since carry lookahead logic can be used to combine the
individual bit slices.

The control unit of a bit slice microprocessor may have a fixed
design, (as in the case of the Intel 3001), or it may also be expand-
able in a manner similar to the ALU, (as in the case of the AMD 2909).
The first option restricts the flexibility of design, and the second
option forces the designer to provide more chip interconnections. In

-10-

either case, the control unit is microprogrammed, and it can be used
to economically implement any of a wide variety of instruction sets
once the data paths for the hardware have been established.

Bit slice bipolar microprocessors have typical microinstruction
cycle times in the range of 100-200 ns. A register-register integer
add operation may require as 1ittle as one microinstruction for word
widths of arbitrary size. The cost of bit slice microprocessor chips
varies from about $5/bit (for the control unit and ALU) up to about
$15/bit excluding the cost of control store.

The Version III design incorporates microprocessors in a number
of portions of the architecture. A MAP control unit implemented as a
microprocessor can easily perform the requisite tasks of instruction
stream fetching and decoding, while retaining considerable local
processing ability. A processing element implemented as a microprocessor
can be designed to receive a machine instruction from a control unit and
cause that instruction to be executed on a local data stream. Although
one tends to rely on SIMD machines to minimize the instruction fetch
and decode task, the microprocessor approach actually allows decoding
to overlap control units and processing elements. Control units tend
to be used as a program counter manager and a main memory access
mechanism. A third application of microprocessors to the MAP architec-
ture is a unit to implement interprocessor (control unit) synchroniza-
tion, [10].

By committing to a microprocessor implementation of MAP, a number
of questions in the design began to be answered, e.g., the number of
registers available to a MAP programmer is a function of the micropro-
cessor (and microprograms) employed. One goal of the Version III design
was to determine an exact set of instructions, with timings, which could
be implemented in the microprocessor-based MAP machine. In trying to
attain this goal, it became necessary to add another (Tower) level to
our hierarchy of simulation models, viz.,-an interpreter for micro-
programs executed in the bit slice machines.

-11-

The Microprocessor Interpreter

The major reason for constructing the microinterpreter was to
make it easier to write and test the microcode that would drive the
MAP components. Due to the constant evolution of the detailed archi-
tecture of the machine (some of the evolution occurring as a direct
result of the knowledge gained from implementing the microinterpreter
itself), flexibility was needed in the simulator. An easily change-
able software interpreter served this purpose much better than a hard-
to-change hardware one (viz., the actual microprocessor chips). The
study required a simulator to observe the behavior of the isolated
components on the microprocessor level without including all the detail
of the machine, evaluating architectural.aswell as logical design of
the component. A PL/I-GASP interpreter written by Jayakumar and
McCalla, [6], would serve this purpose, but it was structured to
reveal detailed timing and system overload problems; a functional repre-
sentation of the processor that could be molded into the various con-
figurations that would 1implement the MAP components was needed. The
interest was in two aspects of the MAP machine in relation to the
microprocessor implementing it: 1) the macroinstruction set and
2) the hardware configuration.

There were several properties of the Version III instruction
set that were to be evaluated with the microinterpreter; the major
property was determining the difficulty and feasibility of implementing
it in microcode. Were there any strange instructions or instructions
that were nearly impossible to implement? How much microcode was re-
quired for the entire instruction set? What type of actions could be
performed quickly and easily? Were there unconsidered instructions
that could be performed = which' might be useful? The answers to these
questions could provide information that might effect change in the
MAP instruction set. Although critical timing constraints were not
considered, timing on a higher level, the microcycle, was considered.
The microcycle count for each instruction is direct input into the
next higher level model, enabling more realistic system timing analysis
at that level.

Architectural propertdies of the microprocessor implementation of
MAP components were to be evaluated also. What was the difficulty of

-12-

implementing parts of the MAP hardware with bit-slice microprocessors?
Did certain configurations make macroinstructions easier (or more dif-
ficult) to implement and faster (or slower) to execute? How could
certain parts of the MAP hardware be implemented with microprocessors?
How much additional hardware was needed (besides that included in the
microprocessor chip set)? Of course, the properties of the instruction
set and the properties of the hardware configuration are not totally
independent; in fact, the hardware configuration has a direct effect

on the answers to the questions in the preceding paragraph concerning
the macroinstruction set.

The microinterpreter is an interactive program written in the
PASCAL programming language [7]. PASCAL was chosen mainly because of
its control structures, which aided in the design of clear, well-
structured programs. There were two major difficulties encountered in
the implementation of the microinterpreter--1) handling configuration
dependencies, and 2) ensuring proper sequencing of events.

The interpreter was written for the microprocessor, not for the
MAP components, so that gross changes in the MAP architecture would not
render the interpreter useless without major modifications. The inter-
preter would then be used to simulate the microprocessor in a possible
MAP component configuration. Thus, there were many aspects of the
interpreter which could not be finalized until some definite configura-
tion was to be simulated. This situation was remedied by the division
of the interpreter into distinct parts (viz. user-interface, configura-
tion dependent, configuration independent, and microcycle Toop) such
that changes in the internal workings of each part had essentially no
effect on the other parts. The user-interface part contained all pro-
cedures that controlled interaction between the user and the interpreter.
The configuration dependent part contained all procedures that were
not constant, i.e. all procedures that changed according to changes in
the hardware configuration of the MAP component being simulated. The
procedures that were not affected by hardware changes were placed in
the configuration independent part. The main program was a short
sequence of procedure calls representing steps in the microcycle.
With this separation of procedures, routines in each part could be
altered without having to worry about possible effects on procedures

-13-

in other parts. In particular, the configuration dependent part
(which tended to be a relatively small collection of noninteracting
procedures) could be easily changed.

Ensuring proper event sequencing tended to be a Tittle more dif-
ficult. Events were divided into sequences of "related" events that
could occur without any interaction with other "non-related" events.
For example, microinstruction fetch had to be done before microinstruc-
tion execution; microinstruction execution had to be done before flags
(e.g. carry, shift) could be set. Each of these three events could be
represented by a sequence of sub-events (procedure calls) that did not
interact with any other sequence. Thus the main program (microcycle)
was just a loop containing calls to events (executed by a sequence of
procedures) in their proper order. In particular, a call to the fetch
sequence preceded a call to the execute sequence, which preceded a
call to the flag control sequence. This allowed easy insertion
and deletion of events necessitated by configuration changes in the
MAP component.

The Version III Interpreter

Reasons have been suggested for implementing the machine
language interpreter on a dedicated minicomputer system; perhaps the
most significant one is concerned with the incremental development
of a prototype system. If a multiple control unit interpreter is
written on a small dedicated system, then one can begin to substitute
actual hardware components of the machine for simulated components as
the development progresses. Inasmuch as a Data General Nova 1200
minicomputer system was available for an extended period of time, the
Version III interpreter was implemented on that system.

The goal of the Version III interpreter is to exactly model a
stand alone MAPmachine executing at the microprogram level. This
will enable the interpreter to be easily modified to reflect changes
in the architecture and microprograms as they are developed.

Since a great deal of hardware design preceded the actual develop-
ment of the Version III interpreter, it seemed reasonable to build a

-14-

model which reflected the detailed schemes currently available while
including such flexibility as required for further alterations and
refinements.

The MAP Version III instruction set was built on sound hardware

principles and fortunately, could be emulated on the NOVA 1200 proces-
sor with a minimum of difficulty. Perhaps the most elaborate device
used on the Version III interpreter was the implementation of the in-
struction cycle by a series of reentrant coroutines. As details of the
microcode actually needed to implement MAP on microprocessors become:
known, the coroutines can be altered to effect changes in the instruc-
tion speed and execution organization. Of equal importance is that the
coroutine model provides the necessary synchronization of the virtual
control units by simulating the microcycles of the microprocessor.
Since the simulation is based on the notion that the smallest functional
time unit of the microprocessor is the microcycle, the NOVA machine code
group represented in one coroutine block corresponds to the microprogram
steps executed by the microprocessor in one microcycle.

The Version III interpreter also provides precise definitions for
all interprocess and interprocessor communication instructions as well
as a rigorously defined I/0 mechanism. However, as with the other in-
structions, these facets of the interpreter are extremely flexible should
design modifications occur.

The Version III interpreter then, is a flexible model of a rigid
design which provides a mechanism for experimenting with various archi-
tectures. Furthermore, it provides a tool suitable for research of
system software design on MIMD hardware configurations as well as for
investigating the algorithmic problems arising when writing software
for SIMD processors.

SUMMARY

In this paper a chronology of events in the (continuing) design
of a parallel processor has been discussed. The emphasis has been on
the various models used to investigate facets of the architecture of

-15-

MAP during the design phases. The process of constructing models of
the components has been a never-ending educational process pointing
to inadequate designs, and to the need for a design methodology at
the Tevel of hardware and software systems.

In the informal pursuit of a methodology, we have learned
several things about modeling during the design process. First, when
one investigates the activity of some portion of a system, it is
useful to be able to have a flexible Tevel of modeling so that one will
not be fooled into designing a machine on unrealizable components; (a
lesson hard learned in Versions I and II). In order to be able to
change the level of modeling, hierarchical sets of models have been
extremely useful; at the lowest level is an interpreter to test
microprograms. By using this testbed, one can obtain insight into the
uses of such components as well as provide realistic performance data
to drive the machine language interpreter. The same application of
the second Tevel model, i.e. the interpreter, allows one to understand
the utility of an instruction repertoire and the organization of pro-
grammable units. It is also possible to observe the interpretation at
the middle Tevel to provide realistic driving data for the top level
models.

The MAP design work is a case study in design methodology for
multiple processor computer systems. The ideas of hierarchical modeling
techniques need to be applied to other systems in order to see which
‘parts of our approach are general and which parts are specific to the
project at hand.

ACKNOWLEDGMENT

The authors wish to thank the National Science Foundation for
support of this work under grantnumber MCS74-08328.

-16-

BIBLIOGRAPHY

[T1 Arnold, R. D. and G. J. Nutt, "The Architecture of a Multi
Associative Processor", University of Colorado, Department of
Computer Science, Technical Report No. CU-CS-070-75, October, 1976.

[2] Dennis, J. B., "Segmentation and the Design of Multiprogrammed
Computer Systems", in Programming Language and Systems, edited
by S. Rosen,McGraw-Hi1l Book Co., 1967, pp.699-713.

[31 Flynn, M. J., "Some Computer Organizations and Their Effectiveness",
IEEE Transactions on Computers, Vol.C-21, No.9, pp.948-960,
September, 1972.

[4] Helbig, W. A. and J. D. Stringer, "A VLSI Microcomputer: The
RCA ATMAC", IEEE Computer, Vol1.10, No.9, pp.22-29, September, 1977.

[5] Henle, R. A., I. T. Ho, W. S. Johnson, W. D. Pricer, and J. L. Walsh,
"The Application of Transistor Technology to Computers", IEEE Trans-
actions on Computers, Vol.C-25, No.12, pp.1289-1303, December, 1976.

[6] Jayakumar, M. S. and T. M. McCalla, Jr., "Simulation of Microprocessor
Emulation Using GASP-PL/I", IEEE Computer, Vol.10, No.4, pp.20-26,
April, 1977.

[7] Jensen, K. and N. Wirth, PASCAL User Manual and Report, Springer-
Verlag, 1974.

[8] Nutt, G. J., "Sample Programs for a Hypothetical Computer",
University of Colorado, Department of Computer Science, Technical
Report No. CU-CS-058-74, October, 1974.

(91 ----- , "A Parallel Processor for Evaluation Studies", AFIPS
Proceedings of NCC, Vol. 45, pp.769-775, 1976.

[10] ----- , "Notes on a MAP Microprocessor Implementation", University
of Colorado, Department of Computer Science, Technical Report No.
CU-CS-102-77, January, 1977.

(M1 ----- , "Microprocessor Implementation of a Parallel Processor",
Proceedings of the ACM-IEEE! Fourth Annual Computer Architecture
Symposium, pp.147-152, March, 1977.

[12] ----- , "Memory and Bus Analysis of an Array Processor", IEEE Trans-
actions on Computers, Vol.C-26, No.6, pp.514-521, June, 1977.

[15]

(16]
[17]

[18]
[19]
[20]

-17-

————— ,"A Parallel Processor Operating System Comparison", to
appear in IEEE Transactions on Software Engineering.

Nutt, G. J., W. A. Schulz, and K. H. Williamson, "Generating
Code for a Hypothetical Computer Using a Production Assembler",
Software--Practice and Experience, Vol.7, No.l, pp.147-148,

January - February, 1977.
Rose, C. W., "LOGOS and the Software Engineer", AFIPS Proceedings

of the FJCC, Vol.41, pp.311-324, 1972.

Shustek, L., personal communication, September, 1977.

Szygenda, S. A. and E. W. Thompson, "Modeling and Digital Simu-
lation for Design Verification and Diagnosis", IEEE Transactions
on Computers, Vol.C-25, No.12, pp.1242-1253, December, 1976.

————— » Proceedings of the IEEE Spring Compcon 76, February, 1976.

————— » Intel 3000 Series Reference Manual, Intel Corporation.

----- » 990 Computer Family Systems Handbook, Texas Instrument
Inc., 1975.

INPUT/QUTPUT

SUBSYSTEM
MAIN

MEMORY
CUO cu CU7

DISTRIBUTION

SWITCH

PEO PE1 . PE_ .
PEMg PEM] PEMn

MAP ORGANIZATION
FIGURE 1

