An Improved Method For Finding The
K Smallest Cost Assignments in Order

Frank Fussenegger & Harold N. Gabow

CU-CS-124-78 September 1977

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE

ACKNOWLEDGMENTS SECTION.

AN IMPROVED METHOD FOR FINDING
THE K SMALLEST COST ASSIGNMENTS IN ORDER

by

Frank Fussenegger
Martin Marietta Corporation
Data Systems
Denver, Colorado

Harold N. Gabow
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado

#CU-CS-124-77 September, 1977

Abstract

An assignment is a perfect matching on a bipartite graph.
An algorithm is given that outputs the K smallest cost assignments
in order of increasing cost. The time is O(K min(V3,VE log V)) and
the space is O(E+K), where V and E are the number of vertices and
edges. This compares favorably to a previous algorithm with run time
0(KV*). The speed-up is achieved by using a shortest path calculation
to generate one optimal assignment from another. Two special cases of
the problem are also discussed: finding all assignments in order, and
finding all minimum cost assignments. The latter is done in
0(min(V3,VE log V) + ME) time and O(E) space, where M 1is the number
of minimum cost assignments. A previous algorithm for finding all
perfect matchings is used. The algorithms extend to ranking maximum
matchings. The closely related problems of find?ngathevth smallest
‘assignment and finding an assignment of given cost C are shown NP-hard.

1. Introduction

In the classic assignment problem, n men must be paired with
n jobs, so the cost is minimum; here the cost of assignment is the
sum of the costs of each man-job pair. This paper gives an algorithm
for finding the K smallest assignments, in order of increasing cost
(where K is some given number). The algorithm can be used to find
an assignment satisfying certain constraints, with minimum cost.

To do so, just generate assignments in order of increasing cost, until
one satisfies the constraints. This approach can be attractive, if
the constraints are so complex they cannot be incorporated directly
into a minimum cost assignment algorithm.

The basic algorithm for K assignments, given by Murty [M], runs
in time 0(KV4). We improve this to 0(K min(Vs,VETOQV)), using space
O(E+K). Here V and E denote the number of vertices and edges. The
speed-up is achieved by using one assignment to find the next.

We make further improvements for two special cases. The first
is finding all assignments in order. Our algorithm is not necessarily
faster than an alternate approach, based on an algorithm of Itai,
Rodeh, and Tanimoto [IRT] for finding all perfect matchings. However,
it does afford other advantages, such as a smaller guaranteed time
delay between consecutive assignments. The second special case is
finding a1l assignments of minimum cost. Here the time is
O(min(v3,VElogV) + ME), and the space is O(E), where M is the

number of minimum cost assignments. This algorithm incorporates

the algorithm of [IRT]. A1l three algorithms are shown to extend
to ranking maximum matchings.

We show the problem of finding just the Kth

smallest assignment
is NP-hard. Similarly, the problem of finding ankassignment of given

cost C is NP-complete. These results are similar to those in [JK].

Section 2 gives background definitions and results. Section 3
presents an algorithm for generating one assignment from another. Sec-
tion 4 applies this algorithm to ranking assignments, and also matchihgs.

Section 5 gives the NP-hard results.

2. Preliminaries

This section gives some basic definitions and results, emphasiz-
ing matchings. We are given a bipartite graph G, with vertex sets X
and Y. (Thus an edge joins vertices in X and Y.) V and E denote the
number of vertices and edges, respectively. We are also given a cost
function assigning a real-valued cost c(e) to each edge e.

A matching is a set of edges, such that each vertex is on at most
one edge. The cost of matching M is c¢c(m) = £ c(e). In a perfect

eeM
matching, or assignment, each vertex is on exactly one edge. Throughout

this paper, we assume G has a perfect matching. Fig. 1 shows a nerfect
matching with cost 4; this is a minimum cost assignment. Matched edges
are drawn wavy.

An alternating cycle is a sequence of edges (v1,v2), (V2°V3)'-"

(v2n,v2h+1), such that :v]=v2n+1,a11 other vertices Vj are distinct,
and (V21_1’V21) eM, (v21,v21+q) £M. We usually write this cycle as
'(Vl’VZ""’VZn)' The cost of an alternating cycle C s

c(C) = z cle) - x cle).
eeC-M eeCnM

If M is a perfect matching and C1""’Cn are vertex-disjoint
alternating cycles, then N = M@ C]... @ Cn is another perfect match-

ing. Further, c(N) = c(M) +

[Biling i1

C(Ci)' Conversely, if M and N are
i= ' ;
perfect matchings, then N can be written as M ® C]... @ Cn’ where

Cysevv»C, are vertex disjoint alternating cycles. [L]. In Fig. 1, let

M be the matching shown. Another matching is N = {(1,6),(2,5),(3,4)};
an alternating cycle is C = (1,4,3,6,1). We have N =M@ C, and
c(N) =6=4+2=c(M + c(C).

3. A Matching Problem

This section presents an algorithm for amatching problem that arises
in ranking assignments. We are given a minimum cost perfect matching M,
and an edge eeM. We must find a perfect matching not containing e,
with smallest cost possible. An approach is indicated by the follow-

ing result.

Lemma 1: Let C be an alternating cycle containing e, with smallest
cost possible. Then M ® C is a perfect matching not containing e,

with smallest cost possible.

Proof: A perfect matching not containing e can be written in the
form N = M® C] @ CZ... () Cn’ where for 1<1i<n, C; 1s an alterna-
ting cycle with non-negative cost, all cycles are vertex-disjoint, and
ecC,. Thus c(N) = c(M)-*c(C]) +i§2c(ci)2vc(M)-+c(C) =c(M®C), as
desired. 0
The Lemma is illustrated in Fig. 1, where for e = (3,6), the
cycle C = (3,6,2,5,3), with cost 0.
Thus we seek a smallest cost alternating cycle C containing e.
We treat this as a shortest path problem on a directed graph, as

follows. For a vertex ve XuY, Tet M(v) be the vertex matched to v,i.e.,

(vom(v)) eM. The derived graph D is a directed graph with vertices X,

and edges (x,x'), where (x,m(x')) is an unmatched edge in G. The

derived graph for Fig. 1 is shown in Fig. 2.

There is a 1-1 correspondence between alternating cycles in G

and directed cycles in D: a cycle in G,

CG = (x],m(x]),xz,m(xz),...,xn,m(xn),x1)

corresponds to a cycle in D,

CD= (X s X

N n_],..,,x],xn).

Further, let edge e = (z,m(z)). Then it is easy to see the desired
cycle C (containing e) corresponds to a cycle in D containing z.

We wish to define edge lengths 2(x,x') in D, so C corresponds
to a shortest cycle containing z. One possibility is to let 2(x,x')
be c(x,m(x")) = c(x'.m(x"')). In this case C corresponds to a
shortest length cyc]e,‘since c(CG) = z(CD). However some edges may

have negative length. (For example in Fig. 2, edge (2,3) would have

length -1.)

It is desirable that all edge lengths be non-negative. Then a
shortest cycle containing z can be found in time O(VZ), (The time is
0(V3) if some lengths can be negative.) To achieve this, we make use

of dual variables.
Originally the minimum cost matching M is found by the Hungarian
method [L]. This method defines a dual variable u(v) for each vertex

ve XuY, satisfying this condition:

(1) For any edge (x,y), c{x,y) = u(x) + u(y). If (x,y)eM, then
c(x,y) = u{x) + uly).
To define edge lengths, set
(2) a(x,x") = clx,m(x")) = u(x) - u(m(x")).
These lengths are non-negative, by (1). Further, it»is easy to check that

for corresponding cycles CG and CD’ C(CG) = Q(CD). So £ has the desired

properties. In Fig. 2, edge lengths are derived from the dual variables
u of Table I.

We use a version of Dijkstra's algorithm [AHU] to find the
shortest cycle containing z. As usually presented, this algorithm finds
the shortest path from z to each vertex x, and computes the correspond-
ing distance, w(x). For x = z, this path is empty, so w(z) = 0. It
is easy to extend the algorithm to compute the shortest non-empty path
to z. We do so. The algorithm still sets w(z) = 0, but also sets W
to the Tength of the shortest cycle containing z.

Depending on the context, it may be necessary for the algorithm
to compute dual variables for the new matching M(® C. There is an
optional step for this. Note M(:) C is a minimum cost matching on
G- (z,m(z)), so the new dual variables should satisfy (1) for all
edges (x,y) except (z,m(z)).

Now we state the algorithm. We use a style similar to that of

[AHU].

Algorithm EXCLUDE

Input: A bipartite graph G with edge costs c¢; a minimum cost perfect
matching M, and dual variables u satisfying (1); also a matched edge

(z,m(z)).

Output: A perfect matching N, not containing (z,m(z)), with cost as
small as possible; also if desired, new dual variables v, satisfying

(1). (If N does not exist, this is indicated.)

Method:. 1. Prm the derived graph D, with edge lengths given by (2).
2. Find the shortest path from z to each vertex x, of Tength
w(x), and also, the shortes cycle containg z, of Tength W.

(Use Dijkstra's algorithm as modified above.)

3. Let C by the alternating cycle corresponding to the cycle
found in Step 2. If no such cycle exists, indicate this
and stop. Otherwise set N« M @®C.

4. (This step is optional.) Set v(z) <« u(z) + W. For
each vertex xe X - {z}, if w(x) < W, set v(x) <« u(x) +
+ W - wix), vim(x)) < u(m(x)) + w(x) - W; otherwise if

w(x) = W, set v(x') <« u(x"), vim(x') < u(m(x")).

For Fig. 1, with (z,m(z)) = (1,4), the cycle (1,3,2,1) is found
in Fig. 2, so C = (1,6,3,5,2,4,1). Matching N = {(1,6),(2,4),(3,5)}.

Updated dual variables are shown in Table I.

Lemma 2: EXCLUDE satisfies its input-output specifications. It uses

O(min(VZ,E Tog V)) time and O(E) space.

Proof: Lemma 1 implies N is constructed correctly. Now we show the
dual variables v computed in Step 4 satisfy (1) for all edges of

G = (z,m(z)). Let (x,y) be such an edge. Let y = m(x'), so edges
(x,y) and (x',y) correspond to edge (x,x') in D. By the definition

of shortest paths,
wix') = w(x) + 2(x,x").
Substituting (2) gives
c(x,y) = u(x) - w(x) + ufy) +w(x").

Now we proceed by a case analysis. First suppose x,x' # z and

w(x), w(x') <W. Then by Step 4, the above inequality is equivalent to
c(xsy) = v(x) + v(y).

Thus (1) is true if (x,y) ¢ N. If (x,y)eN - M, then (x,x') is on

the shortest cycle; equality holds in the three above inequalities, so
(1) is true. Last, if (x,y)vaNer, (1) is true by inspection of step
4. The remaining cases (x or x' = z, or one or both of w(x), w(x') =
> w(z)) follow similarly. Thus the dual variables v are correct.

For the time bound, note step 2 is O(min(v2

, E Tog V)) [AHU],
while the remaining steps are 0(E). The space bound follows since D

uses O(E) space, and O(V) further auxiliary storage is needed. O

4. Ranking Assignments

This section describes an algorithm for ranking assignments. The
algorithm is similar to Murty's [M], and incorporates the algorithm of
the previous section. Further improvements are discussed for two
special cases.

The basic approach is branch and bound: the algorith partitions
all assignments into disjoint sets, and keeps track of the minimum
assignment in each set. Suppose the algorithm has output the first i-1
assignments, and has partitioned the remaining assignments into sets S.
Then the set S associated with the smallest minimum cost assignment A
is found. A is the ith assignment, so it is output. Then the partition
is updated: S is replaced by sets Sj, r<j<t, that partition S - {A}.
Associated with each Sj is its minimum assignment. Now this procedure
is repeated to output the i + 1St and subsequent assignments.

A set S is defined by requiring that an assignment in it includes
certain edges and excludes others. More precisely, let I(e],...,er)
denote the set of all assignments including each of the edges S EERRN

Tet X(f],...,fs) denote the set of all assignments excluding each of

the edges f}""’fs' Then a set S in the partition has the form

"er) n X(f],...,fs),

where edges f1,...,fs are all incident to some vertex v. Thus r,s <V.
Associated with S is the minimum cost assignment A ¢S.

The set S-{A} is partitioned into sets Sj’ using the edges in
A—{el,...,er}. (Note €ys...,e are the edges in the above equation.)

We denote the edges used as e s where t = V/Z’ and edge e,

r+l” +1

is incident to v. The new sets Sj’ r<j<t, are

e) n X(f

1008, 1,...,f

5281)

S. = He]“..ﬁjJ)r\X@jL r+l<j<t.

(Note for r+1<j<t, .4 @s an included edge, so it is unnecessary

+1

to exclude f],...,fs explicitly, since all these edges are incident
to v.) These sets are disjoint, since if i<k, 31 excludes e, while

t-1
Sk includes it. Also, S- k_) S. = I(e
j=r+1 Y

so these sets partition S-{A}.

1""’et) n X(f1,...,fs) = {A},

For example, in Table II, set 1 is the set of all assignments in
Fig. 1. After the minimum assignment is output, it is partitioned into

sets 2 and 3.

Now we state the algorithm.

Algorithm RANK

Input: A bipartite graph G, with edge costs ¢, and a positive

integer K.

Output: The K smallest cost assignments, in order of increasing cost.
If G has fewer than K assignments, all assignments are output, in

order.

Method: A partition P 1is maintained, as described above. A set

S = I(e],...,er) n X(f .,fs) is associated with the following informa-

100
tion: a list of included edges ej; a Tist of excluded edges fj; the
minimum cost assignment AeS; its cost c(A); the dual variables u.

This information may be explicitly stored, or computed (see Lemma 5

below).

1. Find a minimum cost assignment A1. (Use the Hungarian method.)

2. Initialize P to contain one set, the set of all assignments, with
minimum assignment A], cost c(A]), and dual variables from step 1.
Set i+<1.

3. If P is empty, stop. Otherwise, remove a set SeP, with minimum
assignment A, such that c(A) is smallest among all sets in P.

4. let S = I(e],...,er) n X(f],...,fs), with minimum assignment A, and
dual variables u. Let A = {ekll <k=st}, where edge e, = (xk,yk), and
er+}’f1""’fs are all incident to v.

5. Output A as the jth assignment. If i = K, stop.

6. Form the graph H = G - {xk,ykll <k<r} - {fk[1 <k=<s}, with perfect
matching A - {ek lT<k<r}., Set j<r+1.

7. Let Sj be the set I(e],...,ej_]) n X(f ..,fs,e.). (Note if j>r+1,

1°° J
excluding fj,...,fs is redundant.) Find a minimum assignment Bs:Sj.
(Use EXCLUDE on graph H, with ej as the edge to exclude. Form B by
by adding edges e],...,ej_1 to the assignment found). If no B exists,
go to 9.

8. Add the set Sj’ with minimum assignment B, cost c(B), and dual vari-
ables from step 7, to P.

9. Delete vertices Xj’yj’ from H. Set j<«j+1. If j<t, go to 7.

Otherwise set i«1i+1 and go to 3.

-10-

Table II illustrates the algorithm. As already noted, set 1 is

partitioned into sets 2 and 3; the former is partitioned into set 4.

Lemma 3: RANK satisfies its input-output specifications.

Proof: First we check EXCLUDE works correctly in step 7. An assignment
in graph H corresponds to an assingment in Sj, by adding edges
e1,...,ej_]. This correspondence is 1-1, onto, and preserves rank
by cost. So EXCLUDE performs as desired.

The partition P is maintained according to the remarks preceding

the algorithm. Thus the RANK works correctly. 0

3

Lemma 4: RANK requires 0(K min(V”, VE log V)) time.

Proof: In step 1, the Hungarian method uses O(min(VB,VE Tog V)) time.
(An O(V3) bound is shown in [L]; an O(VE log V) bound is obtained by
using a priority queue, as in [AHU,p.220,ex.21].)

Next we discuss the time for operation on P. These include initiali-
zation (step 2), finding and removing the smallest set (step 3), and adding
a set (step 8). We implement P as a priority queue [AHU]. If P contains
k sets, each operation can be done in 0(log k) time.

At any point in the algorithm, P need not contain more than K ele-
ments, since only the K smallest assignments are of interest. Soin step 8,
if adding a set to P causes it to contain K+1 sets, the maximum cost set
is removed. Finding and removing the maximum set requires 0(logK) time.
Thus the total time for the 0(K) operations on P is 0(K Tog K).

Note K is at most V!, the greatest number of assignments possible.

So the time for operations on P is O(K V log V).
The rest of the time is dominated by steps 6-7. Step 6 is done

once in O(E) time. Step 7 is done in O(min(VZ,E log V)) time (Lemma 2).

-11-

Since steps 6-7 are repeated at most V times for every assignment output,

the total time is O(K min (V3V E log V)). 0

Now we examine the space requirement. For a set SeP, 0(V) space
is needed to represent S-explicitly. Thus P may require O(KV) space.
We reduce this, without increasing the aymptotic run time, as follows.

Define the partition history tree T to contain a node corresponding

to every set ever in P. The root of T corresponds to the initial set
(see step 2). The sons of the node corresponding to S correspond to the
sets Sj,r-<j <t, that partition S - {A} (see step 8). We say Sj is a
younger brother of Sk if j<k. The node for Sj is labelled with the
edge e; that Sj excludes (see step 7). (The root of T is unlabelled.)
Fig. 3 gives the partition history tree for the example.

From T, we can construct the lists of included and excluded edges
for a set S. Let P be the path in T from the node for S to the root.
Let S' correspond to the first node in P that is not a youngest son.
The excluded edges for S are the labels of nodes in the path from S to
S'. The included edges are the labels of younger brothers of nodes 1in
the path from S' to the root.

The partition history tree gives this result.
Lemma 5: RANK uses O(E+K) space.

Proof: Graphs G and H use O(E) space. The remaining space is dominated
by sets in P. For each set, we store the cost of a minimum assignment.
We also store the tree T, using father, son, and younger brother
pointers. Now we must check that T can be maintained in 0(K) space, and
further, the information for a set S can be computed without increasing

the time bound of Lemma 4.

-12=

First we show how T is maintained to contain a node for each set
that may include one of the K smallest assignments, but no others. In
step 8, when Sj is added to P, a corresponding node is added to T.

Note if Sj is empty, step 8 is skipped. In this case it is unnecessary
to add a node for Sj to T. For Sj = @ implies ej is included in any
older brother of Sj (and in any older brother's descendents). Thus e;
need not be put on the included 1ist for any of these nodes.

Also in step 8, when a set S is removed from P (as indicated in
Lemma 4) the corresponding node is removed from T. (Note this node is
a leaf, since it corresponds to the maximum set.)

Maintaining T in this way, no more than K nodes are needed. Thus
the space is 0(K).

Next we check the time. 1In step 4, the included and excluded
edges for S are computed from T, as described above. In T, a path from
a node S to the root contains at most E nodes, since no edge label is
repeated. Also, there are less than V included edges for S. These
facts imply the time to construct the included and excluded edge 1ists
is 0(E). The minimum perfect matching A is computed, using the Hungarian
method on graph H of step 6. This also gives the dual variables. The
time is O(min(VB,V E Tog V)). Thus the additional time for computing
the information for S is 0(K min(V% V E log V)). Hence the time bound

is unchanged. O
We summarize Lemmas 3-5.

Theorem 1: RANK outputs the K smallest assignments, in order of increas-
ing cost. The time is O(K min(v3,V E Tog V)), and the space is
O(E+K). 0

-13-

Now we consider two special cases of our problem. The first is
ranking all assignments of G, rather than K. We describe an algorithm,
RANK-ALL, derived from RANK by making three main changes. Let N be the
number of assignments. The first change is simple: set K to a value
of N or more, e.g., K= V!, so all assignments are generated.

The purpose of the second change is to avoid fruitless searches.
In RANK, some sets Sj are empty, i.e., in step 7, graph H—ej contains
no assignment. The time spent by EXCLUDE searching for such an assign-
ment is wasted. RANK-ALL avoids this, using an approach first proposed
in [IRT]: Given the graph H, we search for an alternating cycle. If
one is found, any matched edge in it is chosen as ej, the next edge
to exclude; then EXCLUDE is executed, to find the minimum cycle contain-
ing ej. To find an alternating cycle in H, we use the derived graph.

Thus, for the second change we insert the following steps after
the current step 6 of RANK:

’6.1 For the derived graph D of H.

6.2 Find a cycle in D (use depth-first search [AHU, pp.

189-195 or p. 218, ex. 7(c)] or topological sort

[K, pp. 258-65, and p. 268, ex. 23].). If none exists,
set i«i+1 and go to 3. Otherwise, let x be a vertex
in the cycle; set ej4~(x,m(x)).

Note the time to execute steps 6.1-2 is O(E) (see references).
Steps 6.1-2 become part of the loop in steps 7-9; thus in step 9, "go
to 7" becomes "go to 6.1".

The third and final change trades space for time. In Lemma 5,
we save space for a set S by using the Hungarian method to recompute

assignments and dual variables. For the purposes of RANK-ALL, this

recomputation takes too much time. So the third change is to store

-14-

all information associated with a set in the partition. This increases
the space for the partition from O(N) to O(NV).
We summarize the characteristics of the algorithm RANK-ALL defined

by these three changes.

Theorem 2: RANK-ALL outputs all assignments in order of increasing

cost, in time O((V+N) min (VZ,E log V)) and space O(E+NV).

Proof: It is easy to check the changes preserve correctess of the
algorithm. For the time, we proceed as in Lemma 4, except we account for
the time in steps 6.1-2 and 7 in a slightly different way, as follows.

In the course of the algorithm, each assignment is found once as
B in step 7. The time for this execution of EXCLUDE, and for the cor-

2,E log V))) is charged to

responding execution of steps 6.1-2, (O(min(V
assignment B. Also, when each assignment is A in step 3, steps 6.1-2
indicate no edge ej exists exactly once. The time for this, O(E), is
charged to A. This accounts for all the time in steps 6.1-2 and 7. The
total charge to an assignment is O(min(VZ,E Tog V)), except A] is charged
O(min(VS,E log V)) in step 1. The time bound follows.

The space bound is obvious. 0

An alternate approach to the problem of ranking all assignments is
the following: First, generate all assignments of Gl’ disregarding cost;
then sort the assignments in order of increasing cost. Itai, Rodeh and
Tanimoto [IRT] show the first step can be done in O(V]/ZE-+NE) time
(also, see Corollary 1 below). Then the sort requires O(N log N) =
= O(N V Tog V) additional time. So the total time is 0(V'/2E+N(E + V Tog V)).
The space is O(E+NV), since each assignment must be stored for the sort.
(Note if this were not necessary, the algorithm of [IRT] uses only O(E)

space.)

-15-

In general, the alternate approach uses less time and the same
space as RANK-ALL. However, two features may make RANK-ALL preferable:

1. For the common special case of a dense graph, where E = Q(VZ)
and N>>V, RANK-ALL is as fast as the alternate approach. Also for
sparse graphs (E = 0(V)), the set-up time for RANK-ALL 1is slightly more
(O(min(v3,v Elog V)) versus O(V]/ZE)), but then assignments are generated

at the same rate.
2. In RANK-ALL, the maximum time delay between outputting two

3

consecutive assignments is O(min(V~,V E Tog V)) (the time for the loop

in steps 6.1-9.). In the first approach, O(V”2

E+NE) time elapses
before the first assignment is output.

The second special case we consider is ranking all assignments that
have the minimum cost c(A]). To analyze this problem, let u(v) be the
dual variables corresponding to assignment A]. Define a graph H to con-

tain all edges (x,y) of G where c(x,y) = u(x)+u(y).

Lemma 6: Every minimum cost assignment in G is a perfect matching in

H, and vice versa.

Proof: A minimum assignment B in G can be written as B = A;@C,; @
CD"“CD(%V where each Cj is an alternating cycle of cost 0, and all
cycles are vertex-disjoint. An edge (x,y); Ci satisfies c(x,y) =
ulx) + u(y) (otherwise, it is easy to see C. has positive cost).
Thus each Ci is a cycle in H, and B is a perfect matching in H.

The argument on the reserve direction is similar. U

Thus the problem is reduced to finding all perfect matchings on a
graph H. This can be done by RANK-ALL, by just ignoring costs. In

this case, step 7 is unnecessary and can be deleted; the assignment B

-16-

can be taken as A@C, where C is the alternating cycle found in step 6.2.
This modfication reduces the time to find the next assignment, from
O(min(VZ,E log V)) to O(E) (see Theorem 2).

The space can also be reduced, to O(E). The idea is to take
advantage of the fact that assignments can be output in any order. An
efficient order is given by traversing the partition history tree T
depth-first [AHU,p.176-179], outputting an assignment at each node of T.
Then instead of maintaining the complete partition P, the algorithm
need only keep track of the edges included and excluded at the current
node. A stack can be conviently used for this. The size of the stack
never exceeds E. Hence the space is O(E).

Filling in the details of this approach gives an algorithm equiva-
lent to that of Itai, Rodeh and Tanimoto [IRT]. We refer the reader to
their paper.

To summarize, let M be the number of perfect matchings of G.

Theorem 3: A1l minimum cost perfect matchings of G can be output in

time O(min(v3,V E log V)+ME), and space O(E). 0

Corollary 1: In a bipartite graph without costs, all perfect matchings

can be output in time O(V]/ZE-kME) and space 0(E).

Proof: Using the algorithm of Hopcraft and Karp [HK], the first perfect
matching can be found in time‘O(V]/ZE). 0

We close thié section by exténding the aTQorithms to rank maximum
matchingé on an arbitrary bipartite graph; First we give some definitions.

A matching coVers a vertex v if v is on a matched edge.

-17-

A maximum matching covers the greatest number of vertices possible.

An even alternating path P is a sequence of edges (v],vz), (vz,v3),
”"(VZn’V2n+1)’ where all vertices vj are distinct, vy 1s not
covered, and (v21_1,v21) £ M, (v2i,v21+]) e M. The cost of an even
alternating path P is c(P) =) c(e) - } c(e).
eeP-M eePnM

The following subproblem arises in ranking matchings:
We are given a maximum matching M covering vertices v],...,vp,
with smallest cost possible, and a vertex z not covered by M.

We must find a maximum matching covering z,v ..,vp, with smallest

1°°
cost possible.

Lemma 7: Let P be an even alternating path from z to a vertex
different from vy,...,v , with smallest cost possible. Then M P

is a maximum matching covering z, Vis oees vp, with smallest cost

possible.
Proof: Similar to Lemma 1.

Path P can ’be found using the derived graph D. An even alter-
nating path PG from z to z' in G corresponds to a directed path PD
from z to z' in D. Also, when the Hungarian method is used to find
a maximum matching of smallest cost, the dual variables satisfy
(1) (in addition to other linear programming duality conditions).

So non-negative edge lengths can be defined by (2). Thus we have
c(PG) = E(PD) +u(z) -u(z'). It is easy to modify EXCLUDE so it
finds the desired path P, and forms the matching M(® P, and the new

dual variables.

-18-

The partition is defined as in RANK, but we also require
matchings to cover certain vertices and not cover others. More
precisely, let C(v1,...,vp) denote the set of all maximum matchings
covering vertices VT,..,Vp; Tet U(w],...,wq) denote the set of all

maximum matchings not covering any of the vertices w1,...,wq.

A set S in the partition has the form

S = I(e1,...,er) n X(f],...,fs) n C(v1,..,vp) n U(w],...,wq).

As in Section 4, edges f.,.., fs,are incident to some vertex v,

1°°
and S is associated with the minimum cost matching MeS.

When M is output, the set S - {M} of remaining matchings is

partitioned, as follows. Let w FoWy be the uncovered vertices

q+-l,~;

1N be the edges in M - {el,...,e I

of X-{w],...,wq}; let e -

r+1°°"

where e, is incident to v. Then the new sets are Ti,q<isa, and

+1

Sj,r<j<t, where

T = I(e1,...,er) n X(f1,...,fs) n C(v],..,vp,wj) n U(w],..,wj_]),q<1sa,
Spp1 = Ileyseine) 0 X(fy,.,.f e 4] n Uwysesw,)s
Sj = I(e],..,ej_1) n X(ej) n U(w],..,wa),r+1<3<t.

The smallest matching in Sj can be found as in RANK, using the
original version of EXCLUDE; the smallest matching in Ti can be

found using the modified version of EXCLUDE.

-19-
We obtain the following result:

Theorem 4: The K smallest maximum matchings can be output, in order

of increasing cost, in the same time and space bounds as Theorems 1-3.

Proof: The details of the algorithms, beyond those given above,

are Teft as an exercise. 0

5. Relation to NP-hard problems

This Section relates ranking assignments to some intractable
problems. The results are similar to those of Johnson and. Kashden [JK]
for ranking spanning trees and circuits.

We begin by defining two problems that can be solved by RANK:

COST C MATCHING: Given a bipartite graph, integer edge costs, and an
integer C, is there a perfect matching with cost exactly C?

KthLARGEST MATCHING: Given a bipartite gkaph, integer edge costs, and

integers K,C, are there at Teast K perfect matchings with cost C or Tess?

To solve COST C MATCHING, apply RANK, until a matching with cest at
least C is found. Unfortunately the time is exponential, since each

Eh L ARGEST MATCHING,

RANK can be used to solve the problem, but again the time is exponential,

of (V/2)! assignments may be generated. For K

since it is proportional to K rather than Jog K.

However it is easy to show a polynomial algorithm for either
problem is unlikely, since it would imply P=NP. To do this, recall
these two problems:

SUBSET SUM: Given integers as, I<i<n, and S, is there a subset of the in-
tegers ai'that sums - to exactly S?

KthLARGEST SUBSET: Given integers as, 1<i<n, and K,S, are there at least

K different subsets of the integers ass each summing to at most S?
SUBSET SUM is NP-complete [AHUJ; KEh LARGEST SUBSET is NP-hard [GJ,JK].

From a set of integers as, it is easy to construct a graph, so
that subsets of integers a correspond 1-1 to perfect matchings of the
graph, and corresponding integer sums and matching costs are identical.

-20-

To do this, just represent each integer a; by a cycle of length 4, where
one edge has cost a; and the others have cost 0. (If desired, the graph
can be made connected, by choosing a vertex from each cycle, and joining
these vertices by a path.) The graph can clearly be constructed in

polynomial time. This polynomial transformation gives following result.

TEEEEET*6= COST C MATCHING is NP-complete, and Kth

is NP-hard.

LARGEST MATCHING

-21-

References

[AHU] A. Aho, J. Hopcroft and J. Ullman, The Design and Analysis of

[GJ]

[HK]

[IRT]

[JK]

[K]

[L]

[M]

Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

M.R. Gareya.d D. S. Johnson, Computers and Intractability:

A Guide to the Theory of NP-Completeness, to be published by

W.H. Freeman & Co., San Francisco, Calif.

J. Hopcroft and R. Karp, "An n5/2a1gor1thm for maximum matchings

in bipartite graphs." SIAM J. on Comp. 2, 1973, pp. 225-237.

A Itai, M. Rodeh and S. L. Tanimoto, '"Some matching problems
for bipartite graphs", J. ACM, to appear.

D.B. Johnson and S. D. Kashdan, "Lower bounds for selection in
X + Y and other multisets", SIAM J. On Computing, to appear.

D.E. Knuth, The Art of Computer Programming Vol. 1, Ed. 2,
Pr. 2, Addison-Wesley, Reading, Mass., 1975.

E. L. Lawler, Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart and Winston, New York, 1976.

K. G. Murty, "An algorithm for ranking all assignments in order
of increasing cost", Op. Res. 163, 1968, pp. 682-687.

Fig. T Matched graph

2(1,4) »3 (2,5)

4(2,5)

Fig. 3 Partition
history Tree.

Fig. 2 Derived graph

i 2 6 |
u 112101010
v 2 13 10 +1 ¢1
Table I. Dual variables
set c(A) minimum assignment A I edges X edges
1 4 (1,4),(2,5),(3,6)
2 (1,6),(2,5),(3,4) (1.4)
3L 4| (1,40,(2,6),(3,5) | (1.4) | (2.5)
4 6 (1,6),(2,4),(3,5) (1,4),(2,5)
TabTe II. Partition sets

