Algorithms for Edge Coloring Bipartite Graphs

Harold N. Gabow
Oded Kariv

CU-CS-123-78

&y
?@University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

- ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS

EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO

NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

ALGORITHMS FOR EDGE COLORING
BIPARTITE GRAPHS
“ by
Harold N. Gabow*
and

Oded Kariv**

#CU-CS-123-78 January, 1978

Abstract
A (minimum) edge coloring of a bipartite graph is a partition of the

edges into A matchings, where A is the maximum degree in the graph. Coloring
algorithms are presented that use time O(min(|E|A Tog n,lElVﬁﬁTaﬁwﬁ?'nz Toa
A)) and space 0 (nA). This compares favorably to the previous 0(/E|vn log A)
time bound. A coloring algorithm finds a maximum matching on a regular

graph. These algorithms compare favorably to the O(1E|vn) matching algorithm,

except when v/h

Togn ° A < Vn log n.

* Harold N. Gabow, Department of Computer Science, University of
Colorado at Boulder, Boulder, Colorado 80309

** Oded Kariv, Dept. of Mathematics and Computer Science
Drexel University, Philadelphia, Pennsylvania 19104

1. Introduction

We investigate the problem of finding a minimum edge coloring on a
bipartite graph (or multigraph). Here an (edge) coloring is an assignment

of a color to each edge of the graph so the colors occurring at any given
vertex are distinct; equivalently, each color forms a matching. A minimum
coloring uses the fewest number of distinct colors possible.

Many schedulingproblems can be formulated in terms of edge coloring.
An example is the "class-teacher timetable problem". [Go] Here the bipartite
multigraph contains vertices representing classes and teachers; there is an
edge joining a class and a teacher for each required meeting of the two. A
coloring gives a schedule, i.e., all meetings of a given color occur during
the same time slot. A minimum coloring gives a schedule with the fewest
number of time slots. In practice such scheduling problems incorporate
additional constraints, making them quite difficult. For example, if some
teachers are available only during a restricted set of hours, the timetable
problem is NP-complete [E]. Other common types of constraints that are diffi-
cult to handle are "preassignments" of meetings [Go].

In contrast, the basic problem of finding a minimum edge coloring can
be solved efficiently. Let n, JE| , and A represent the number of vertices,
the number of edges, and the maximum degree of any vertex, respectively.
(Thus A = n,lEl< n2). The Kéﬁig-HaT] theorem [B] leads to an algorithm that
finds a minimum coloring by finding A matchings; the run time is O(|E[avh).
A second approach derived from classic graph theory uses augmenting paths;
the time is O(|EIn) [0]. A previous algorithm based on a divide-and-conquer
strategy, uses time O(]E|/n log A) and space O (n+|E|) [Ga]. This paper pre-
sents several improved coloring algorithms. The first algorithm uses aug-
menting paths, organized in stages to prevent duplication of effort; it uses
O(IEIA Tog n) time. The second algorithm applies the first to the divide-and
conquer strategy of [Gal; it uses O(IE|vn Tog n) time. The third algorithm
elaborates on the divide-and-conquer approach, and uses O((En log A)/a), or
O(n2 Tog A), time.

Figure 1 gives an informal comparison of these asymptotic run times,
assuming all constant coefficients are 1. It shows that collectively the
algorithms are strictly better than [Ga], and each of our three algorithms is
best over some interval. The third algorithm has broadest range; it also
gives the best estimate in terms of the single parameter n,O(nZ Tog n).

Our results apply to the problem of finding a maximum cardinality
matching on a regular graph. The algorithms find a maximum matching in
time O(min(n? log A,na% Tog n))(In terms of just n, O(n2 log n)). Except

n
Tog n
general O(|E|Vn)matching algorithm [HK].

when < A <vn log n, this improves the 0(nvnA) bound achieved by the

2. Preliminaries

This Section introduces terminology and reviews previous coloring
algorithms as a basis for the algorithms in Sections 3-4.

Throughout this paper, G denotes a given bipartite graph, and
A denotes its maximum degree. A coloring of G that uses exactly k colors
is a k-coloring. Recall these basic facts from graph theory [B].
Fact 1: G has a matching that covers all vertices of degree A.

Fact 2: A minimum coloring of G is a A-coloring.

Fact 1 follows from the well-known Konig-Hall theorem. It justifies
line 1 in the following procedure, that finds one color in a coloring.
procedure one-color;

begin
find a matching M that covers all vertices of maximum degree;

NS -

assign a new color to the edges of M;

(]
.

remove the edges of M from the graph;
end;
To find a A-coloring, it suffices to call one-color A times. This proves
Fact 2, and gives the first coloring algorithm.
In procedure one-color, Tine 1 can be implemented in time 0O(IE|Vh).
The approach is to find two matchings M;,Mp: if G has vertex sets Vi,Vo,
(so each edge joins V; to V,), matching Mi covers all maximum degree
vertices h\Vi. These matchings are combined to give M, the desired
matching, using a construction of Mendelsohn and Dulmage [L]. The time
is dominated by finding each M.; this is O(1EIvn) [HK]. With this imple-
mentation of one color, a minimum edge coloring is found in time O(IE|/n 4).
A second well-known algorithm is based on augmenting paths,
resembling algorithms for network flows and matchings [L]. We begin
with some definitions. Suppose a subset of the edges of G are k-colored,
for some k < A. A color o is missing at vertex x if no edge colored o is in

cident to x. An uncolored edge e has type o if color o is missing at
one end of e and color B is missing at the other end. (Note an edge
may have more than one type.) If e is typeaB,anag(augmentingy path (from e)

is a path that starts at one end of e, has edges that alternate between
colors o and B8, and has maximal length. (Note the first edge of an ag
path may have color o or B ; we only require that consecutive colors
alternate). An of path starts at a vertex of e; however it never ends
at a vertex of e (If it did, G would contain an odd cycle). This justi-
fies the following procedure to color e:

procedure augment (e);

begin
1. let e be of type aB;
2. let P be an aB path from e; comment if o = B, Tet P be empty;
3. interchange colors a and 8 on the edges of P; comment now either
o or B is missing at both ends of e;
4, color edge e;
end;

(Note the comment in line 3 follows since P does not end at e.)

With the appropriate data structure, path P can be found in Tine 2
in time proportional to its Tength, 0(n). For example, one possibility
is to maintain a vertex-color incidence matrix: for vertex v and color o,
the matrix specifies the edge, if any, incident to v with color a. Thus
augment works in time O(n). Starting with all edges uncolored, we can use
augment to color each edge e. This gives an algorithm using time O([E|n),
and space 0(na).

A third approach [Ga] uses the method of divide-and-conquer. Recall
an euler partition is a partition of the edges of G into open and closed

paths, so that each vertex of odd (even) degree is the end of exactly one
(zero) open path. Any graph has an euler partition, which can be found in
time O(n+|E|)[B,Ga]. This can be used to divide G into two subgraphs, G

and G»: traverse each path of the partition, placing edges alternately in
G, and G,. It is easy to see G; and G, both have maximum degree either
%Jorf%] This suggests the following coloring algorithm (Note the algorithm
is 1n€omp1ete; insertions will be made at Tlabels A,B,C to complete the

P —

algorithm.)

procedure euler-color (G);

begin
1. let A be the maximum degree in G;
2. if A = 1 then color all edges in G, using a new color
else begin
A:
3. divide G into subgraphs G;, G,, each with maximum degree at most[éf]
(use an euler partition); 2
4, euler-color(Gy);
C:
5. euler-color (Gy);
B:
end;

Before discussing how to complete this algorithm, we define a use-
ful way to represent a computation of euler-color. The partition tree T

for G is a binary tree. Its nodes represent subgraphs passed to euler-color
as arguments. The root node represents G. A node representing a subgraph
G' with maximum degree at least 2 has 2 sons in T; they represent subgraphs
G{ and G5 of Tine 3. A node representing a subgraph G' with maximum degree
1 is a leaf in T.

Now consider a node on level i of the partition tree* representing
subgraph Gi,with edges Ei and maximum degree A The following relations
are easy to check:

EL]. . [CIE
(1) _?:_]Ei‘~ m2i
A L. — A —
(2) h~—21--,s A i

Further, there are at most 21 nodes on level i; the edges of G are par-

titioned among the nodes on level i, and T has at most [logh]+1 Tlevels.
Now we discuss how to complete euler-color. First suppose the

original graph G has maximum degree a power of 2, i.e., A = 2k. Then

euler-color finds the desired minimum coloring. This is true because

all subgraphs in the partition tree (except leaves) have A even.

Thus in line 3 both Gjand Gy have maximum dearee A/2; the A/2-coTorings of

Gy, G, give a A-coloring of G. Further, it is easy to see the time re-

quired is O(|ElToga), i.e., O(IEl) on each Tevel of the partition tree.

*By convention, a node on level i is at distance i from the root. Thus
the root is on level 0, its sonsare on level 1, etc.

_5-

A difficulty arises whenever A is odd. In this case subgraphs Gj; and G,
of line 3 can both have degrees as large as‘-%]. It is not sufficient to
[%} -color each subgraph, since this gives a (a+1)- coloring of G. Some
action must be taken to eliminate the extra color.

The approach of [Ga] eliminates this color before dividing
the graph. Thus, at label A, if A is odd, procedure one-color (given
above) is called. It assigns a new color to a matching that covers
all maximum degree vertices. Then line 3 only partitions the remaining
edges of G, which form a graph with A even. So the algorithm finds
a minimum coloring on any graph. The time 1is O(1E|Vn Togh), since
in the worst case, one-color is called at each node of the partition
tree, using time O(]E|/n) on each Tlevel.

Now we present our algorithms. Section 3 gives two algorithms
that eliminate the extra color after dividing and coloring the graph,
(at Tabel B). Section 4 gives an algorithm that repartitions the graph,
at label C, and also eliminates the extra color at B.

3. Recoloring Methods

This section presents recoloring methods that, used in procedure
euler-color of Section 2, give edge coloring algorithms. The best
times for these algorithms are 0(/E|ATog n) and O(IE|v/n Tog n).

A recoloring method solves the following problem: Given is (1)
a bipartite graph G, with maximum degree A; (ii)_a partition of G into
subgraphs G;,G,,each with maximum degree at mos?{%1 ﬁiii)}7%1 - colorings
of G1G,. The problem is to find a A-coloring of G. We assume A is odd
(else there is no problem). Thus the colorings of GG, give a (A+1)-
coloring of G. To get a A- coloring, the recoloring method chooses a
color, whose edges are denoted by M; these edges are then recolored with
the remaining A colors. A recoloring method that successfully accomplishes

this is called valid. If R is a valid recoloring method, we get a
correct edge coloring algorithm by inserting in procedure euler-color,
at label B, the statement .

if o is odd then R;

-6-

The first method simply uses augmenting paths to recolor edges
one-by-one.

procedure sequential-recolor;

begin
1. let M be the color with the fewest edges;
2. for each edge eeM do
3. augment (e)
end;

Lemma 1: Procedure sequential-recolor is a valid recoloring method
that uses time O(|E|n/A) and space 0(na).

Proof: The method is obviously valid. The time and space bounds

follow from those of augment. 0
Procedure euler-color, with sequential-recolor, gives an

edge coloring algorithm that runs in time O(|E |n). To show this,

note the time spent on all subgraphs on level i of the partition tree

s (by (1)-(2))
el /2t - o2t

BT

The time spent recoloring edges in Tevels 0 through k is

rm

in).

(3)

i

i ba=

0(2% [Eln) = 0(2K|E[n).
0 A A

Taking k = log A shows the total recoloring time is O(|E|n). This
dominates the run time.
The O(|E|n) bound does not improve known methods. However (3)
is a good bound if k<<log A. We will use this fact to get better bounds.
A source of inefficiency in sequential-recolor is that two ag

paths can overlap. Thus an edge can change colors many times. Now we
eliminate this inefficiency, by coloring all edges of one type, aB,
together. V
To do this, define a subgraph H066 containing the edges involved
in aB augments: Edge e is in HO£B when either
(i) e isan uncolored ap edge, or

(ii) e is on an aB path starting at an uncolored ag edge.

-7-

A vertex has degree at most 2 in Has’ S0 Ha is a disjoint union

B
of paths and cycles. This leads to the following algorithm for

coloring all aB edges.

procedure TR(a,B8):;

begin
1. form subgraph HuB;

[A)

for each connected component C of Hue do

begin

3. let 5.l be the sequence of ap edges in C; let P; be the aB
path joining‘ei to e1+],1$i%k; let Py be the aB path starting
at e, Pk # Pk-l;

4. for i := 1 step 2 until k do

begin

interchange colors in Pi;

6. color ey and € (if € exists);
end end end;

l
and e, are uncolored. Figure 2(b) shows the recolored cycle. In Figure

3(a), C is a path, containing edges € €5, €. Note f is an uncolored
edge, but not type ag. Figure 3(b) shows the recolored graph.

In Figure 2, component C is a cycle. In Figure 2(a), edges e,
1

In the time estimates below, we use this notation: c, is the

number of edges colored a; u is the number of (uncolored) edges in M

o
of type oB.

Lemma2: TR(w,B) colors all ap edges in M in time 0(C6+ua8) and space O(na).
Proof: First we discuss correctness. TR is clearly correct if C is a
path or if C is a cycle with an even number of aB edges. Now we show C
is not a cycle with an odd number of oB edges. We do this by contradic-
tion as follows.
Suppose k (in line 3) is odd. After lines 5-6 are executed for

i=1,3,...,k-2, the edges in the sequence Pk’ e P],..., € 1> Pk-]
form an oB path joining the ends of the «f edge e.. This gives an

odd cycle, the desired contradiction.

For the time bound, first note the time is O(IEa

E _ is the edge set of H
aB a

6[)’ where

" This is clear for lines 2-6. For line 1,

-8-

we shall see TR is called with a 1ist of type oB edges available to
it. Using this 1ist and the vertex-color incidence matrix, H o8 is
formed in 0(IE&B}) time.

Now note iEa | = 0(c tu, For the number of o edges in Ha is at

B B B)' 8

g Thus lEaB]s 2 (C8+ua6)'

The desired time bound now follows. The space is dominated by

most ¢ _tu
B “a
the vertex-color incidence matrix. [
Note TR can be appreciably better than sequential-recolor. In
Figure 3, suppose sequential-recolor colors edges €35 €55 €4, in that

order, always choosing an augmenting path that goes clockwise. The edges
between e, and e, are traversed twice, and those between e, and f are
traversed three times. But in TR, all edges are traversed once. Extend-
ing this example to k edges e, increases the disparity between the
algorithms.

Now we use TR to get a second recoloring method. Note it is
not sufficient to apply TR to every color pair ag. Again consider
Figure 3. Edge f is type By in Figure 3(a), and ay in Figure 3(b).

So if TR(a,B) is executed before TR(a,y), edge f will not get colored.

The following algorithm handles this problem correctly.

procedure typed-recolor;

begin
1. while there are uncolored edges in M do
begin
for each color ade
3. for each color 8=o do
if there is an edge of type ag then TR(a,B);
end end;

Lemma 3: Procedure typed-recolor is a valid recoloring method that uses
time O0(]E|Aalog n), and space 0(na).

Proof: Correctness of the algorithm is obvious. Now we prove the time
bound. First note the algorithm maintains 1lists of aB edges, for every
pair of distinct colors aB. These lists are used by TR(in Tine 1, to
). They are also used by typed-recolor, to do the test of Tine

form HuB
4 in 0(1) time. The Tlists are initialized when M is chosen, in time
O(A2+n). They are updated by TR(in 1ine 6), when an edge f changes

type (see discussion above); the updates do not change the time estimate

of Lemma 2.

-9-

Now we show an execution of the loop in lines 3-4 for a fixed o,
is O(|E|). The time to loop through all colors g is 0(a). A call TR(a,8)
takes time O(CB 8), where these quantities are calculated immediately
before the call (Lemma 2). When TR(a,8) is called, the B edges have not
changed since the beginning of the Toop (in lines 3-4); thus Zc, < [E|-|M].

Z0," .
Bprevwous

+u
Qo

When TR (a,B) is called there may be new aB edges, created in
executions of TR (e.g., when TR (a,y) is called, a By edge can become
aB). However, it is easy to see I Uyg S IM|. Thus the total time in

, , Bza
Tines 3-4, for a fixed o, is £ O(c_+u__) = O(|E|).
Bz B "aB

It follows that the loop in lines 2-4 is executed once in O(|E|a)
time. So for the desired time bound it suffices to show lines 2-4 are
executed at most log n times. To do this, we show each execution of
1ines 2-4 colors at least half of the edges that are uncolored when the
loop begins.

Suppose an uncolored edge e is not colored by the loop. It must
be that e changes type, say from By to ay, before TR(B,y) is called but
after TR(a,y). The change occurs in TR(a,B8), when an aB path P gets
recolored. Edge e is at the end of Pk’ and so becomes an ay edge At the
beginning of Pk is an edge €y s that gets colored. Now associate edge
ey with e. Then every edge that does not get colored is associated
with one that does. So at least half the edges get colored.

The space is dominated by the vertex-color incidence matrix.
(The 1ists of dB edges only require O(AZ) extra space for Tist heads,
and AzsnA). 0

Now we estimate the time to color a graph using this method.

Theorem 1: Procedure euler-color with typed-recolor finds a minimum
coloring in time O(|E|ATog n), and space 0(na),

Proof: The total time for recoloring graphs on Tevel i of the par-
tition tree is O(|E|A Tog n). So the time for all levels greater k is

2
log A
(4) % 0(JE|A Tog n) = O(JE[A Tog n)
ikt i oK

Taking k = -1 gives the desired time bound. [J

-10-

Since sequential-recolor works well for large A and typed-

recolor works well for small A, we can combine them to get another
efficient algorithm.

procedure combined-recolor;

begin

n .
1. - if Ae:j?ﬁ@”ﬁ‘ then sequential-recolor else typed-recolor
end;

Theorem 2: Euler-color with combined-recolor finds a minimum coloring
in time O(|E[{n Tog n) and space 0(na).

Proof: Consider a graph on level i of the partition tree.

If i < log (A log 1), the maximum degree is at least A= Ifwﬁwﬁg»

; n) ol Log n
thus sequential-recolor is used. Otherwise, typed-recolor is used.
The bound now follows from (3) - (4). O

4. A Repartitioning Method
This Section presents a version of euler-color that uses two

partitions of the graph. The run time is O(nzlogA)= This is usually
the best of all algorithms presented in this paper.

The main idea is to take advantage of the fact that graphs
with maximum degree a power of 2, i.e., A = Zk, are easy to color.
As noted in Section 2, the unmodified procedure euler-color works
correctly, in time Oi!E{]ogA), on such graphs.

Suppose the graph G, with maximum degree A, is partitioned
into Gi’ i=1,2, each with maximum degree [%} , and G1 is [%]— colored.
Subgraph G, can be colored in time O(|E|min(aTog n, Jn T0g n)), using
the algorithms of Section 3. However, we can do better, by enlarging Gzl
Suppose we make G2 a graph with maximum degree a power of 2, by trans-

ferring the correct number of colors from G. to GZ' The enlarged G2

. 1
can be colored in time O(|E|loga) (faster than the original GZ)' This
coloring, plus the coloring of the remainder of G1, can be combined to

get a coloring of G, This gives the following algorithm.

procedure binary-color (G);

begin
1. Tet A be the maximum degree in G;
2. if A =1 then color all edges in G, using a new color

else begin

-11-

3. divide G into subgraphs G1 and GZ’ each with maximum degree
at most [-%- , Where G1 has no more edges than G2 (use an euler
partition);
- binary-color (G1);

5. C: transfer_ the edges of»2i-[%§1co1ors from G] to G,, where
i= |log 5 |
6. binary-color (GZ);
7. B: if A is odd then sequential-recolor;
end end;

Labels B and C show the relationship of this algorithm to
euler-color.

Figure 4 illustrates binary-color. It shows the "spine" of

the partition tree for a graph G with maximum degree 13. Line 3
divides G into subgraphs 81, GZ’ with maximum degree 7. G] is represented
by the left son of the root. In line 4, recursive calls to binary-color

divide G into subgraphs of degree 4, etc. Eventually G1 is 7-colored.
Then line 5 transfers one color from G] to GZ' The maximum degree of
G1 becomes 6, while that of 62 becomes 8 (a power of 2). Line 6
8-colors GZ‘ This gives a 14-coloring of G. Finally line 7 finds a
13-coloring.

Theorem 3: Procedure binary-color finds a minimum edge coloring in
time O(|E|n TogA)/n) = O(n21ogA) and space 0(na).

Proof: First we discuss the correctness of the algorithm. We begin by

noting the transfer in line 5 can aTways be done. For subgraph G2 has

maximum degree at 1eastl‘%1 , and

l%_‘ . [§= 2(109 %f)ﬂ_ [%] . Zﬁog -éq) l’%‘] -

Thus 62 contains a sufficient number of colors to transfer.

Now we check binary-color finds a A- coloring. Let Ai be
the maximum degree of subgraph Gi’ i=1,2 . Although the trans-
fer in Tine 5 changes Af, the quantity AT + A, stays the same. So if
A is even, the coloring of G after 1ine 6 is minimum. If A is odd, this
coloring uses one extra color, which is eliminated in 1ine 7. So in
either case, binary-color finds a A- coloring.

-12-

For the time bound, we refer to the spine of the partition
tree illustrated in Figure 4. (Define the spine as follows: The root
represents the original graph. A node representing a G] subgraph 1is
a left son, and a G2 subgraph is a right son. A1l descendents (in the
partition tree) of 62 subgraphs are omitted from the spine.) Now we
break the time up into two parts: that spent in the 61 subgraphs, and
that spent in the 62 subgraphs, in the spine.

Consider a G1 subgraph on level i. We estimate the time spent
in all lines of binary-color, excluding the recursive calls. Let As

and Ei represent the maximum deégree and the edge set of 61, respec-
tively. It is easy to see lines 1-3 and 5 are O(|E;|), while Tine 7
is O(]Ei!n/Ai), by Lemma 1. Since n>Ai’ Tine 7 dominates. Using
(1)-(2), we see Tine 7 is O((JE|n/A). Summing over all log A Tevels
of the partition tree gives a total time of O((|E|n Toga)/a).

Now consider a 62 subgraph on level i. We estimate the time
spent by binary-color to color the enlarged graph, with maximum degree

a power of 2. Let Aj and Ei represent the maximum degree and the edge
set of GZ’ before it is enlarged. Then after enlarging, the maximum
degree is at most 2Ai’ and the number of edges is at most ZlEiI (see
Tine 3). In general, the time for binary-color to color a graph with
A a power of 2 and edges E is O(|E|logs) (Lines 5 and 7 do nothing,
so the algorithm works identically to those in Section 3) So using

(1)-(2) of Section 2, the time to color all G, subgraphs is
Toga el :
z O([LE%] 109{;é§]) = 0(|E|Toga).
i=o0 2 2

Adding the times for the G] and G2 subgraphs gives the de-
sired bound.

The space is dominated by the vertex-color incidence matrix. [

5. Application to Matching

In a regular graph, each color of a minimum edge coloring is
a maximum matching. So any coloring algorithm finds a maximum match-
ing. This gives the following result.

Lemma 4: If G is regular, a maximum matching can be found in time

O(min(nAZ]og n,na §n Tog n;n21ogA)) and space 0(na). [

-13-

When G is regular and A is a power of 2, euler-color can
be simplified to find a maximum matching in time linear in the number
of edges, 0(na), [Ga]. When A is close to a power of 2, we can also
improve the above bounds:

Lemma 5: If G is regular and A = 2kic, where ¢ is constant, a max-
imum matching can be found in time O(n2+|El1ogA) and space 0(na).

Proof: If A=2k+c, proceed as follows: First form a subgraph H with
ASZK, by removing c or more edges from each vertex. Then use euler-
color to 2K cotor H. Finally use sequential-recolor for the edges
in G-H. The time is O(|Elloga) for euler-color, and O (n2) to

sequential-recolor at most cn edges.

If A=2 FSc, proceed similarly: First cho1or G; then seqg-
uential-color the extra ¢ colors. (]

-14-

References .

[B] Berge, C., Graphs and Hypergfaphs, North-Holland, Amsterdam, 1973.

[E] Even, S., Itai, A., and Shamir, A., "On the complexity of timetable
and multicommodity flow problems," SIAM J. Comput. 5,4, Dec. 1976,
pp. 691-703. '

[Ga] Gabow, H., "Using euler partitions to edge color bipartite multi-
graphs," International Journal of Computer and Information
Sciences 5, 4 Dec. 1976, pp. 345-355.

[Go] Gotlieb, C.C. "The construction of class-teacher time-tables,"
Proc. IFIP Congress 62, Munich, North-Holland, Amsterdam, 1963,
pp. 73-77.

[HK] Hopcroft, J.E. and Karp, R. "An n5/2a1gorithm for maximum
matchings in bipartite graphs," SIAM J. Comput. 2, 4, Dec. 1973,
pp. 225-231.

[L] Lawler, E.L., Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart and Winston, New York, 1976.

[0] Ore, 0., Theory of Graphs, Amer. Math. Soc. Collog. Publ. 38,
Providence, R.I., 1962.

time

| | §
Pal LA '
1 T 4N log N n
N iﬁgf‘x A
Fig. 1 Asymptotic times of coloring algorithms
¢ 3 . A,
e, & B &
-—i [»
o | oA
(@) &)

Fig. 2 First recoloring example

R
(3 of
A
— 1
‘g_ K ea
@)
ol g A
5
‘/——-—\ !
S e a4
A £} o &
< *
e) °
0—»—55—————0
§ LR
()
B ¥ ‘ R
P 4
v | R o

Fig. 3 Second recoloring example

Fig. 4 Partition tree spine

