AN ALGORITHM FOR DETECTING UNEXECUTABLE PATHS
THROUGH PROGRAM FLOW GRAPHS

by
Lee A. Bollacker
Department of Computer Science

University of Colorado at Boulder
Boulder, Colorado 80309

#CU~CS-112~78 January, 1978

Introduction

Data flow analysis techniques such as those employed by DAVE [1] can
be wvery wuseful in discovering certain anomalies in data flow through a
program. When such an anomaly is discovered by DAVE, a message is
issued along with a description of a path containing the anomaly.

One unfortunate aspect of these techniques, however, is that there is
no guarantee that the path on which an anomaly occurs is executable.
This phenomenon effectively reduces the credibility of a system such as
DAVE in the eyes of the user, because each path output by DAVE must be
inspected by hand in order to verify its executability. In addition,
messages for anomalies which occur only on unexecutable paths represent
a waste of the user’s (and of DAVE’s) time.

In order to reduce the work required for DAVE and the user, and to
increase the quality of information provided by DAVE, it would be
useful, then, to eliminate all unexecutable paths from consideration in
the data flow analyses. For the general case, the problem of
determining the executability of a given path has no solution, being
equivalent to the Halting Problem [2]. It is possible, however, to
detect certain classes of paths which are unexecutable because of the
branching conditions which must be satisfied in order to traverse them.

The paths with which we will concern ourselves here are those which
contain pairs of edges for which traversal of the first precludes
traversal of the second. These pairs of edges fall into two categories.
First, if the above condition regarding traversal of the edges holds for
all paths between the edges, then the pair of edges is called an

unconditionally impossible pair (UIP). 1If the condition holds only for

a subset of all paths between the edges, then the pair is called a

pathwise-impossible pair (PIP). An example of each type of pair is

shown in Figure 1.

An algorithm based on techniques presented in [3] for detecting UIP’s
and PIP’s from the branching conditions on the flow graph is described
below. A high-level language description of the algorithm is contained

in the Appendix.

[1=70]°
1

=11’
[1rx .EQ. V) 1 =1+ 1id
[TF(1 .EQ.)% L =1L + 1}f
TF(J .EQ. O [K =K + 11"
Figure la. A segment of FORTRAN code containing a

UIP and a PIP. The pair of statements, J=1 and
K=K+1 can never be executed, while the pair, I=0 and
L=L+1 cannot be executed if X=Y.

Figure 1b. Flow graph representation of the code
segment of Figure la. The conflicting branchin
conditions are shown on the edges. FEdges el and e
are a PIP, while edges e2 and elQ are a UIP.

Algorithm

The algorithm takes as input a program unit represented as a flow
graph and a set of token~lists (which represent the syntactic
composition of each statement), and a set of descriptions of paths to be
checked for unexecutability. Then, in four major processing phases
(ANNOTATE_GRAPH, DETECT_PIPS, DETECT UIPS, and TEST PATHS) and two
initialization phases (INII“PIPS and INIT UIPS), the algorithm produces
1) a table of PIP's, 2) information as to which PIP’s are also UIP’s,
and 3) for each path read in, an indication as to whether it is

uniexecutable based on the PIP/UIP analysis.
Phase One: ANNOTATE GRAPH

The first phase of processing takes the flow graph and annotates it
in a manner similar to the flow graph segment in Figure 1b. (We will
refer to this flow graph throughout the discussion which follows.) This
involves parsing each statement (in token-list form) and deriving from
it the conditions (called predicates) required for traversal of the
various edges leaving the node representing the statement. These
predicates are attached to the appropriate edges for further processing

by INIT PIPS.
Phase Two: INIT PIPS

Using the predicates generated during ANNOTATE _GRAPH, the second
phase of processing creates bit vectors which represent the state of
affairs at each node and edge in the flow graph. These vectors are the

kill and gen vectors. A description of each vector follows. Selected

vectors created for the example in Figure 1 are shown in Table 1.

For each node a bit vector called a kill vector is created and
attached to the node. FEach component in the kill vector corresponds to
an edge. The i-th component of the kill vector for node n, then, is set
to one if execution of the statement at node n assigns a value to one or
more of the variables in the predicate attached to edge ei. In the kill
vector for node a, for example, bit 6 is set to one because execution of
node a causes one of the variables in the predicate on edge e6 to be

assigned a value.

Table 1.
Selected Bit Vectors
Created by INIT PIPS

gen(el) = (1,0,0,0,0,0,0,0,0,0,0)
inc(el) = (0,0,0,0,0,1,0,0,0,0,0)
gen(e2) = (0,1,0,0,0,0,0,0,0,0,0)
inc(e2) = (0,0,0,0,0,0,0,0,0,1,0)
gen(e6) = (0,0,0,0,0,0,1,0,0,0,0)
inc(e6) = (1,0,0,0,0,0,1,0,0,0,0)

kill(a) = (1,0,0,0,0,1,1,0,0,0,0)
kill(b) = (0,1,0,0,0,0,0,0,1,1,0)
kill(d) = (1,0,0,0,0,1,1,0,0,0,0)

Table 2.
Selected Bit Vectors
Created by DETECT PIPS

live(el) = (0,0,1,1,1,1,1,1,0,0,1)

live(e2) = (0,0,1,1,1,1,1,1,1,1,1)

live(e3) = (0,0,0,0,0,1,1,1,1,1,1)

live(e4) = (0,0,0,0,1,0,0,1,1,1,1)

live(e6) = (0,0,0,0,0,0,0,0,1,1,1)

pip(el) = live(el) and inc(el)
= (0,0,1,1,1,1,1,1,0,0,1) and (0,0,0,0,0,1,0,0,0,0,0)
= (0,0,0,0,0,1,0,0,0,0,0)

pip(e2) = (0,0,0,0,0,0,0,0,0,1,0)

pip(e6) = (0,0,0,0,0,0,0,0,0,0,0)

PIP{1] = (1,6)
PIP[2] = (2,10)

-5—

For each edge a bit vector called a gen vector 1s created and
attached to the edge. The i-th component in the gen vector corresponds
to edge ei. For an edge, the predicate attached to the edge is said to
be gen"d at that edge. To indicate this, the algorithm sets a one 1in
the i-th component of the gen vector for edge ei.

One more vector, the inc vector, is created and attached to each
edge. Like the gen vector, each component of the inc vector corresponds
to an edge. The j-th component of the inc vector for edge ei is set to

one if the predicate on edge ej 1is mutually inconsistent with the

predicate on edge ei. A pair of predicates is said to be mutually
inconsistent if, when the predicates are compared lexically, they cannot
both be true. An example of such inconsistency is the pair of
predicates on edges el (I=0) and e6 (I#0) in Figure 1b. Table 1 shows

that inc(el) has a one~bit in position 6.
Phase Three: DETECT_PIPS

The purposes of the third processing phase are 1) to determine which
pairs of edges in the flow graph are PIP’s, and 2) to build a table of
PIP’s for use in later processing phases. TFor this, the bit vectors
created by INIT PIPS are used, and some new bit vectors are created.
Examples of the vectors created are in Table 2.

Before describing the processing performed by DETECT_PIPS, let wus
first consider the conditions which must hold in order for a pair of
edges (for example, edges el and e6 in Figure 1b) to be a PIP. First,
edges el and e6 must have mutually inconsistent predicates attached to
them. Second, it must be possible to reach edge e6 from edge el via at
least one path on which no variable in either predicate is assigned a
value. The procedure used in DETECT _PIPS, then, must determine the
pairs of edges for which these conditions hold.

The processing begins by determining the LIVE sets [4, p.314} for the
flow graph wusing the kill and gen vectors attached to the nodes and
edges, respectively. For each edge ei the LIVE algorithm, in effect,
moves down the flow graph from edge ei looking for a gen (i.e., a
predicate attached to an edge ej) without first encountering a kill
(i.e., an assignment to a variable in edge ej’s predicate). If it

succeeds in finding a gen without an intervening kill on at least one

-

path starting at edge ei, then edge ej is said to be "live" at edge ei.
In Table 2, the live vector for edge el has bit 6 set to one indicating
that there is at least one path from el to e6 (namely, through nodes a,
b, ¢, and e) on which no variable in the predicate on edge eb6 1is
assigned a value (i.e., edge e6 is live at edge el). On the other hand,
bit 9 of live(el) is set to zero because the value of J is changed at
node b on all paths from el to e9.

Once the live vectors have been created, it 1s possible to detect

PIP’s. This 1is done for each edge by anding together the live and inc

vectors for the edge. The pip vector for edge ei has a one~bit in
position j 1if and only if edge ej 1s both live at, and mutually
inconsistent with, edge ei. Note that these properties satisfy the
conditions stated above for PIP’s.

Finally, the pairs of edges which are PIP’s are stored in the PIP
table for wuse in subsequent processing phases. This 1is done by
examining the pip vector for each edge. TFor edge ei, each one-bit in
pip(ei) represents an edge which is the second edge of a PIP (edge ei
being the first edge)e. The analysis for the flow graph in Figure 1b

shows that edges el and e6, and edges e2 and el0, are PIP’s.

Phase Four: INIT UIPS

During this phase, the flow graph is marked in a different fashion
from that wused to detect PIP’s, Instead of creating bit vectors
containing information about predicates, the bit vectors wused for
detecting UIP’s contain information about PIP’s. As a result, the bits
in the vectors created by INIT UIPS correspond to PIP's instead of edges
or nodes. The placement of the wvarious vectors on the flow graph
differs from that of earlier phases as well. Table 3 contains
descriptions of the vectors created by INIT UIPS for the flow graph of
Figure 1b.

First, gen and kill vectors are created for each edge. In these
vectors each bit corresponds to a PIP: in the kill vector for edge ei,
bit p is set to one if edge ei is the first edge of PIP p; similarly, in

the gen vector for edge ei, bit p is set to one if edge ei is the second

edge of PIP p.

Next, the killers of each PIP are determined. For each node, a

killed vector is created. As in the gen and kill vectors, each bit in

the killed vector corresponds to a PIP. In the killed vector for node
n, bit p is set to one if a variable in either of the predicates of the
pair is assigned a value at node n, i.e. if PIP p is "killed" at node n.
In the example, bit one of killed(a) is set to one because execution of
the statement at node a causes a variable (namely, I) in PIP[l] to be
assigned a value.

Finally, a second set of gen vectors is created. These vectors are
attached to the nodes of the flow graph, rather than to the edges. For
the start node, the gen vector contains all ones; for all other nodes,
the gen vector contains all zeros. In the example, we are assuming that

node a is the start node.

Table 3.
Selected Bit Vectors
Created by INIT UIPS

gen(a) = (1,1)
killed(a) = (1,0)
gen(b) = (0,0)
killed(b) = (0,1)
gen(d) = (0,0)
killed(d) = (1,0)

For all other nodes, gen = (0,0) and killed = (0,0).

kill(el)

i

(1,0)
gen(el) = (0,0)

kill(e2) = (0,1)
gen(e2) = (0,0)

kill(e6) = (0,0)
gen(e6) = (1,0)

kill(el0) = (0,0)
gg_g(el()) = (Osl)

For all other edges, kill = (0,0) and gen = (0,0).

Phase Five: DETECT UIPS

This phase determines which of the PIP’s found by DETECT PIPS are
also UIP’s. To do this, it must be shown that the conditions giving
rise to a PIP, namely 1) mutual inconsistency and 2) no variable of
either predicate assigned a value, hold for all paths between the pair
of edges. This determination is made by wusing the LIVE and AVAIL
algorithms [4] and by combining the resulting vectors. These vectors
are listed in Table 4.

The LIVE algorithm determines the LIVE sets for each node in the flow

graph, using the gen and kill wvectors on the edges as created by

INIT _UIPS. In the 1live vector for node n, bit p is set to one if and
only if node n is situated such that, on at least one path starting at
node n, the second edge of PIP p is reached without traversing the first
edge. (Node "c¢" in Figure 1b is such a node.) This means that if node
n is reachable from the first edge of the PIP, then on some path node n
falls between the first edge and the second in PIP p. Whether or not
node n is reachable from the first edge will be determined next.

After the live vectors have been created, the AVAIL algorithm is run
on the flow graph, using the gen vectors on the nodes and the kill
vectors on the edges, as created by INIT UIPS. This algorithm creates
an avail vector for each node defined as follows: bit p of the avail
vector for node n is zero if and only if node n is reachable from the
first edge of PIP p. The AVAIL algorithm, in effect, searches the flow
graph upward from each node n, looking for a gen on all paths leading
into node n. If, on all paths, a gen (which is only on the start node)
is found without first encountering a kill (i.e., the first edge of a
PIP), then the algorithm sets a one-bit in the avail vector for node n.
If a kill is seen on any path leading into node n, then the bit is set
te zero: 1if this is the case, it means that the node is reachable from

the first edge of a PIP.

Once the live and avail vectors have been created, it is possible to

determine for which PIP"s a killer node can lie on a path from the first
edge to the second. If no killers can lie on any path, then the PIP is
also a UIP. The procedure for making this determination produces a
vector, called nip, for each node. The nip vector for a node n is the

result of anding together 1) the complement of avail(n), 2) killed(n),

and 3) live(n).

Table 4.
Selected Bit Vectors
Created by DETECT UIPS

live(a) = (0,0) avail(a) = (1,1)
live(b) = (1,0) avail(b) = (0,1)
live(c) = (1,1) avail(c) = (0,0)
live(d) = (1,1) avail(d) = (0,0)
live(e) = (1,1) avail(e) = (0,0)
Live(f) = (0,1) avail(f) = (0,0)
live(g) = (0,1) avail(g) = (0,0)
live(h) = (0,0) avail(h) = (0,0)
live(i) = (0,0) avail(i) = (0,0)

nip(a) = (not avail(a) and killed(a) and live(a))
= (not (1,1) and (1,0) and (0,0))
= ((0,0) and (1,0) and (0,0))
= (0,0)

nip(b) = (0,0)

nip(d) = (not avail(d) and killed(d) and live(d))
= (not (0,0) and (1,0) and (1,1))
= ((I,1) and (1,0) and (1,1))
= (1,0)

faro)all other nodes, nip = (0,0), since for all other nodes killed =
s L]

nipairs = (1,0)

uip = (0,1)

] (e

The nip vector for node n has bit p set to one if and only if 1) node
n is reachable from the first edge of PIP p; 2) PIP p is killed by node
n; and 3) node n is between the first and second edges of PIP p on at
least one path. This means that if bit p is set to one, PIP p cannot be
a UIP because at least one path from the first to the second edge must
pass through the killer node n.

If the npips for all nodes are then ored together, the resulting
vector has a one-bit in position p if and only if PIP p cannot be a UIP.
Therefore if this vector is complemented, the resulting wvector, called
uip, has a one-bit in position p if and only if PIP p is also a UIP.
This information is stored for later wuse 1in detecting unexecutable

paths. In the example in Figure 1, edges e2 and el0O (PIP[2]) are shown
to be a UIP through this analysis.

Phase Six: TEST PATHS

The TEST PATHS processing phase performs unexecutability analyses on
the paths supplied to it. The method makes use of the information
obtained by the foregoing processing phases to determine for each dinput
path whether or not it is unexecutable based on the presence of PIP’s or
UIP’s on the path. (Note that the presence of a UIP alone is enough to
declare the path to be unexecutable; however, in the case of a PIP
occurring on the path it must also be determined that the given path
does not pass through a killer node on the way from the first edge of
the PIP to the second).

The sixth processing phase begins by creating a bit vector, called
killers, for each edge. In the killers vector for edge ei, bit n is set
to one if node n kills (i.e., causes assignment of a value to a variable
in) the predicate on edge ei. The paths are then read 1in, one at a
time, and inspected.

The procedure used in determining the unexecutability of a path is as
follows: first, two bit vectors are created to facilitate manipulation

of the path description. These vectors are <called nodesreached and

edgesreached. In the nodesreached vector, bit n is set to one if the

path passes through node n. Similarly, in the edgesreached vector, bit

i is set if edge ei is traversed on the path.

~11-

Next, the path is examined edge by edge to determine if any two edges

on the path are a PIP. This is done by anding the edgesreached vector

and the pip vector for each edge ei. If the resulting vector has a one-
bit in position j, then the PIP (ei,ej) is on the path being tested.
Since the existence of a PIP implies that one or more paths between
edges ei and ej are unexecutable, it must be determined whether the
given path contains one of those paths.

To make this determination, the following procedure is used: first,

the nodesreached vector is anded with killers(ej). If the result of

this operation is a vector of all zeros, then the given path does not
pass through any of the nodes which kill the predicate on edge ei. This
means that the path is unexecutable.

If, however, there are one-bits in the resulting vector, this
indicates that the path passes through one or more of edge ei’s killers.
For the path to be declared unexecutable, then, it must be shown that
none of the killer nodes fall between edges ei and ej. The simplest way
to make this determination, it appears, is through inspection of the
path, mnode by node. If a killer node is found to lie between edges ei
and ej, then no definitive statement can be made about the
unexecutability of the path; it may be executable, or unexecutable for
reasons which are beyond the scope of this analysis.

A path which does not traverse any PIP°s, of course, cannot be
declared to be wunexecutable by this analysis. Similarly, a path
containing a UIP ("abceghi", for example) is always unexecutable and the
above analysis concerning PIP’s need not be performed.

To illustrate and further clarify the above discussion, let us follow
the processing which would be done for an actual path, say "abcegi'.
Figure 5 contains the bit vectors which would be created for the
processing of this path.

First, the algorithm builds the edgesreached and nodesreached

vectors. Next, the path is inspected edge by edge. The first edge to
be considered, edge el, is the first edge of a PIP, as can be seen by

the result of edgesreached and pip(el). The vector has a one-bit in

position 6, indicating that the PIP (el,e6) 1is on the path.

Furthermore, the result of nodesreached and killers(el) contains a one-

bit in the first bit position (indicating node a). The implication of

-12-

these two results is that the path is unexecutable provided that node a
does not lie between edges el and eb6b. Since this is the case, the path
"abcegi' is declared to be unexecutable by the algorithm,

That the path is indeed unexecutable can easily be seen by visual
inspection of the FORTRAN code in Figure la. If variable 1 is set to
zero at node a and is not reset (by passing through node d), then any
path which does not pass through node £ (the true branch of IF(I.EQ.0))

must be unexecutable. The given path, "abcegi", is such a path.

Table 5.
Selected Bit Vectors
Created by TEST PATHS

killers(el) = (1,0,0,1,0,0,0,0,0)
killers(e2) = (0,1,0,0,0,0,0,0,0)
killers(eb) = (1,0,0,1,0,0,0,0,0)
killers(e7) = (1,0,0,1,0,0,0,0,0)
killers(e9) = (0,1,0,0,0,0,0,0,0)

killers(el0)= (0,1,0,0,0,0,0,0,0)

Given path:
abcegi

i

nodesreached (1,1,1,0,1,0,1,0,1)

(1,1,1,0,0,1,0,0,1,0,0)

it

edgesreached

edgesreached and pip(el) = (0,0,0,0,0,1,0,0,0,0,0)

nodesreached and killers(el) = (1,0,0,0,0,0,0,0,0)

~13-

Predicate Characteristics

The algorithm presented here is based largely on the concepts and
algorithms presented in [3]. As noted there, the methods used for
detecting PIP’s and UIP"s represent a heuristic approach based on what
can reasonably be expected to occur in a typical program.

One major assumption made by this approach 1is that the predicates
which are dinvolved in PIP’s and UIP’s are simple enough that the
determinatibn of mutual inconsistency (which is, in the general case, an
unsolvable problem [3, p.16]) can easily be made by means of a simple
truth table (see INC in the Appendix).

This assumption seems to be borne out by empirical evidence,
collected through examination of a considerable amount of program code
[5,6], which indicates that most of the predicates found in an ordinary
program are indeed quite simple, often in the form 'variable relop
constant", where relop stands for a relational operator, such as ".EQ.".
In light of this evidence, and in order to keep the determination of
mutual inconsistency as simple’as possible, the algorithm contains a
function which will decide whether a particular predicate is "useful" to
the analyses to be performed. This function will declare as useful only
simple predicates such as those noted above and will reject all others,
which will be replaced with the predicate true (which cannot be
inconsistent with any other predicate). This raises the possibility of
missing some PIP’s and UIP’s, but will not introduce fallacious PIP’s or
UIlP’s.

The canonical form to be used for storing and comparing predicates is
also, to a certain extent, affected by the assumed simplicity of
predicates. The form to be used is patterned after the expected form of
most predicates, stated above. This form will have the variable highest
in alphanumeric order to the left of the relational operator, and the
remainder of the predicate on the right. This will produce a predicate
of the most desirable form (i.e., "variable relop constant') in most

cases.

~14—

Future Work

It is currently proposed that the algorithm described here be
implemented and integrated into the DAVE system for testing. During
this testing phase, it will be determined whether the assumptions made
concerning the predicates 1n an ordinary program are borne out by
empirical evidence. It 1is also hoped that data can be collected
concerning the frequency of PIP’s and UIP’s in programs, and the
efficacy of the heuristic static analysis techniques in detecting these
phenomena.

If experience with the dimplemented algorithm shows that the
techniques used are inadequate, there are several courses of action
which may be taken.

Should the predicates in a typical program prove to be more complex
than expected, the algorithm could be changed to allow these more
complex predicates to be analyzed and the inconsistency determination
made more sophisticated by taking more special cases into account.
These cases can be determined by using the data collected during the
testing phase.

Other possible improvements and additions to the algorithm described
here dinclude 1) an analysis of conditions which hold on all paths into
the first node in a path being tested; 2) additional sophistication in
handling predicates of the form '"variable = variable + constant',
including folding of constants and using known values for variables; and
3) the ability to perform the analyses across program unit boundaries.
Fach of these improvements would result in some increase in the power to
detect wunexecutable paths, but the cost of adding such features should
be carefully weighed against the potential benefits. The information
needed to make decisions concerning these additions will be provided, at

least in part, by the basic algorithm described in this paper.

Conclusion

An algorithm for detecting impossible pairs of edges and for
determining the unexecutability of some paths through a program flow
graph based on the branching conditions of the graph has been presented.
The technique, while simple, is believed to be sufficiently powerful to
improve the quality of the data flow analyses performed by the DAVE

system by eliminating many unexecutable paths from consideration.

Acknowledgements

The author wishes to thank Lee Osterweil for giving much-needed
advice on how to go about constructing the algorithm presented here.
Thanks also go to Lloyd Fosdick for his help in reading and correcting

several drafts of this paper.

~16-
References
Osterweil, L. J. and Fosdick, L. D., "DAVE-~A Validation Error

Detection and Documentation System for Fortran Programs',

Software-~Practice and Experience, 6(4) (1976), pp. 473-486.

Hopcroft, J. E. and Ullman, J. D., Formal Languages and Their

Relation to Automata, Addison Wesley, Reading, Mass., 1969, pp.

108-109.

Osterweil, L. J., "The Detection of Unexecutable Program Paths
Through Data Flow Analysis', University of Colorado Department of

Computer Science Technical Report No. CU-CS-110-77.

Fosdick, L. D. and Osterweil, L. J., "Data Flow Analysis in Software
Reliability", ACM Computing Surveys, 8(3) (September, 1976),
pp. 305-330.

Knuth, D. E., "An Empirical Study of FORTRAN Programs",
Sof tware~-—~Practice and Experience, 1(2) (1971), pp. 105-135.

Elshoff, J. L., "A Numerical Profile of Commercial PL/I Programs",

Software-~Practice and Experience, 6(4) (1976), pp. 505-525.

Appendix

Algorithm for Detecting
Unexecutable Paths

Notation:

The language used in the following description is a mixture of ALGOL 60 and
PASCAL. Where appropriate, constructs from both languages have been used.
The following conventions have been used in the code:

1. Procedure names which are defined in this description are
printed in upper case; other procedures, printed in lower
case, are not defined but are simple enough that the reader
should have no trouble supplying an appropriate mental
definition.,

2. A single entry in a table is referenced with the construct,
"table[n]"; a field within the table entry is referenced by
"table([n].field".

3. Variables are not declared. Their types are assumed to be
whatever is necessary to fit the situation (e.g, integers for
loop indices, vectors to hold bit vectors, etc.)

4. All predicates are assumed to fit into one storage location,
but the tokens making up a predicate may be addressed by their
position in the predicate. For example, in the predicate
"I=0", predicate[2] is "=".

Input:
1. Source program, reduced to a flow graph and token lists
2. Path descriptions for testing for unexecutablity

OQutput:
l. Impossible pairs

2. Executablity information (i.e., "unexecutable" or "can’t tell')
for each input path

Procedure:

begin

ANNOTATE_GRAPH;
INIT PIPS;
DETECT_ PIPS;
INIT UIPS;
DETECT UIPS;
TEST PATHS

end.

Input:

l‘

Procedure:

ANNOTATE GRAPH
Generates predicates and
attaches them to flow graph

Token-list representation of a program unit

Node
9]
2)
3)

Edge
1
2)
3)

Edge
1)

Node

begin

table, containing the following fields:

Statement label associated with this node (if any)
Ptrs to predecessor nodes

Ptrs to successor nodes

table, containing the following fields:

Ptr to head node of this edge

Petr to tail node of this edge

Predicate (unset)

table fields:
Predicate

table, possibly with new nodes added

while stmt type # “END’ do

begin

get statement;

case stmt type of
assignment: ASGMNT;
data: DATA;
arith~if: ARITHIF;
logical~if: LOGIF;
comp. goto: CGOTO;
assigned goto: AGOTO;
assign: ASSIGN;
do: DO;
goto: GOTO;
else: OTHER;

end

end

A=

ASGMNT
Handles predicate generation for
assignment statements

Input:
l. Token-list representation of an assignment statement
2. Node # ["N"] of node representing the statement
3. Edge and Node tables

Output:

l. Predicate in canonical form, attached to the appropriate edge

Syntax of Assignment Statement:

stmt ::= var ‘=" expr
var ::= simple var | subscripted var
simple var ::= ident)
subscripted var ::= ident ‘(’ subscript list “)~
subscript list ::= subscript |
subscript “,” subscript |
subscript ”,” subscript “,’ subscript

subscript ::= int const | int const “*° sum | sum

sum ::= ident | ident 4+’ int const | ident ‘-’ int const
Procedure:

begin

parse statement;

predicate := statement;

get edge(N -> N+1);
CHECKANDSTORE(predicate,edge)

end.

Input:

Output:

Syntax of

Procedure:

DATA
Handles predicate generation for
DATA statements

Token-list representation of a DATA statement

Node # ["N"] of node representing the statement
Edge and Node tables

Predicate(s) in canonical form, attached to the appropriate
edge(s). Note: new edges may be constructed to hold the
predicates, since only one predicate is allowed per edge.

DATA Statement:

stmt ::= “DATA® datalist
datalist ::= varlist "/’ valuelist “/° | datalist °
varlist ::= var | var °,° varlist
valuelist ::= constant | repcount “*° constant | valuelist 7,
var ::= simple var | subscripted var
simple var ::= ident
subscripted var ::= ident “(° subscript list ‘)’
subscript list ::= subscript |

subscript “,” subscript |

subscript “,” subscript “,” subscript
subscript ::= int const | int const “*° sum | sum
sum ::= ident | ident ‘4’ int const | ident ‘-’ int const
repcount ::= int const

, datalist

begin

set ptrl to token following “DATA’;
set ptr2 to token following “/";

while token[ptr2] # eos do
begin
while token[ptr2] # “/° do

begin
parse value;
if token[ptr2} = “*° then
begin
repcount := value;
parse value;
end

valuelist

else
repcount := l;
for i :=1 to repcount do
begin
parse var;
construct predicate "var=value';
construct edge(N -> N+1);
CHECKANDSTORE (predicate, edge)
end
end;

if token[ptr2+l] # eos then
begin
ptrl := ptr2 + 2;
while token[ptr2] # */° do
ptr2 := ptr2 +1;
ptr2 := ptr2 + 1
end

end

end.

Input:
1.
2.
3.

OQutput:
l‘

Syntax of

Procedure:

ARITHIF

Handles predicate generation for
arithmetic IF statements

Token-list representation of an arithmetic IF statement

Node # ["N"] of node representing the statement
Edge and Node tables

Predicates in canonical form, attached to the appropriate edges

Arithmetic IF Statement:

'

stmt ::= “IF" “(° expr)’ int const ‘,’ int const

begin
parse expr;

construct predicate “expr < 0"

set ptr to first integer constant;

get edge(N -> node labelled with token[ptr]);
CHECKANDSTORE (predicate,edge);

construct predicate "expr = 0";

set ptr to second integer constant;

get edge(N -> node labelled with token[ptr]);
CHECKANDSTORE(predicate,edge);

construct predicate "expr > 0';

set ptr to third integer constant;

get edge(N -> node labelled with token[ptr]);
CHECKANDSTORE (predicate,edge)

end.

b

“ int const

LOGIF
Handles predicate generation for
logical IF statements

Input:
1. Token-list representation of a logical IF statement
2. Node # ["N"] of node representing the statement
3. Edge and node tables

Qutput:

l. Predicates in canonical form, attached to the appropriate edges

Syntax of Logical IF Statement:
stmt ::= “IF" “(° boolean expr ‘)’ statement
Procedure:
begin
parse boolean expr;
comment true branch;
get edge(N -> node representing "statement');
predicate := boolean expr;
CHECKANDSTORE (predicate,edge);
comment false branchj
get edge(N -> N+1);
predicate := not boolean expr;

CHECKANDSTORE (predicate, edge)

end.

CGOTO
Handles predicate generation for
computed GOTO statements

Input:
1. Token-list representation of a computed GOTO statement
2. Node # ["N"] of node representing the statement
3. Edge and node tables

Output:

l. Predicates in canonical form, attached to the appropriate edges

Syntax of Computed GOTO Statement:

stmt ::= “GOTO" ‘(" label list 7)” 7,7 ident

label list ::= integer const | integer const “,” label list
Procedure:

begin

set ptr to token following “(";
counter := (;
parse ident;

while tokean[ptr] # 7)7 do

begin
counter := counter + 1;
construct predicate "ident = counter";
get edge(N -> node labelled with token[ptr]);
CHECKANDSTORE (predicate,edge);

ptr := ptr + 1;
if token[ptr] = 7,7 then
ptr = ptr + 1;
end

end.

AGOTO
Handles predicate generation for
assigned GOTO statements

Input:
l. Token~list representation of an assigned GOTO statement
2. Node # ["N"] of node representing the statement
3. Edge and node tables

OQutput:

1. Predicates in canonical form, attached to the appropriate edges
Syntax of Assigned GOTO Statement:

stmt ::= “GOTO" ident 7,7 “(° label list “)°
label list ::= integer comnst | integer const “,” label list

Procedure:

begin

parse ident;
set ptr to token following “(”;

while token[ptr] # 7)° do

begin
construct predicate "ident = token[ptr]";
get edge(N -> node labelled with token|ptr]);
CHECKANDSTORE (predicate,edge);

ptr := ptr + 1;
if token([ptr] = 7,” then
ptr := ptr + 1;
end

end.

A-10

ASSIGN
Handles predicate generation for
ASSIGN statements

Input:
1. Token-list representation of an ASSIGN statement
2. Node # ["N"] of node representing the statement
3. Edge and node tables

Output:

1. Predicate in canonical form, attached to the appropriate edge
Syntax of ASSIGN Statement:
stmt ::= “ASSIGN” integer const “TO’ ident
Procedure:
begin
parse integer constant, ident;
construct predicate "ident = const";
get edge(N -> N+1);
CHECKANDSTORE (predicate,edge);

end.

A-11

DO
Handles predicate generation for
DO statements

Input:
l. Token-list representation of a DO statement
2. Node # ["N"] of node representing the statement
3. Edge and node tables

Output:

lI. Predicates in canonical form, attached to the appropriate edges
2. New entries in the Node table, for test and increment nodes

Syntax of DO Statement:

stmt ::= ‘DO’ termstmt index ‘=" paramlist
termstmt ::= integer const
index ::= ident

’

paramlist ::= initial 7, final | initial “,” final ‘,’ increment
initial ::= integer const | simple var
final ::= integer const | simple var
increment ::= integer const | simple var
simple var ::= ident
Procedure:
begin
parse termstmt, index, initial, final;
if token[ptr] = “,” then
parse increment
else
increment := 1;

comment edge from DO to lst stmt in loop;

construct predicate "index = initial";
get edge(N => N+1);
CHECKANDSTORE (predicate,edge);

comment fall-through edge;

create node(y);
node := node labelled with termstmt;
get edge(node -> node+l);
insert node(y,edge):
if increment = 1 then
construct predicate "index = final"
else
construct predicate "index + increment > final";
get edge(y -> node+l);
CHECKANDSTORE (predicate,edge);

comment edge from termstmt node to increment node;

create node(z);
get edge(y ~-> N+1);
insert node(z,edge);

if increment = 1 then
construct predicate "index < final"
else

construct predicate "index + increment < final";
get edge(y ~> z);
CHECKANDSTORE (predicate,edge);

comment edge from increment node back to top of loop;
get edge(z -> N+1);
construct predicate "index = index + increment';

CHECKANDSTORE (predicate,edge)

end.,

A-13

GOTO
Handles predicate generation for
GOTO statements

Input:
1. Token-list representation of a GOTO statement
2. Node # ["N"] of node representing the statement
3. Edge and Node tables

Output:

l. Predicate true, attached to the appropriate edge.
Syntax of GOTO Statement:
stmt ::= “GOTO" integer const

Procedure:
begin
parse integer const;
get edge(N -> node labelled with integer const);

CHECKANDSTORE (true, edge);

end.

A-14

OTHER
Handles predicate generation for
statements not handled elsewhere

Input:
1. Token-list representation of a statement
2. Node # ["N"] of node representing the statement
3. Edge & Node tables
Output:
l. Predicate true, attached to the appropriate edge.
Procedure:

begin

get edge(N => N+1);
CHECKANDSTORE (true, edge) ;

end.

A-16

USEFUL(predicate)
Determines the "usefulness" of a predicate
for use in later processing

Input:
1. Predicate, in token-list form
Output:
1. true if predicate is usable for detecting PIPs, UIPs;
false otherwise.
Procedure:

begin

if length of predicate < 3 then
USEFUL := true
else
begin
if length of predicate = 4 then
case form of predicate of
‘v relop =c¢”, “.NOT. v relop v°, “.NOT. v relop c’,
“.NOT. c relop v’, “.NOT. c relop c”: USEFUL := true;
else: USEFUL := false
else
USEFUL := false

end

end.

A-17

CANON (predicate)
Converts a predicate to
canonical form

Input:
1. '"Useful" predicate, in any form
Output:

1. Predicate, in canonical form

Procedure:

begin

case length of predicate of

1: pred := predicate + "= true’;
\ 2: pred := predicate[2] + “# true’;
3: case predicate[l].type of

variable : if predicate([3].type = variable
and predicate([l] > predicate([3] then
pred := REVERSE(predicate)
else

pred := predicate;
constant : if predicate[3].type = variable then
pred := predicate
else

if predicate(l] > predicate[3] then
pred := REVERSE(predicate)
else
pred := predicate;
“(" : pred := CANON(predicate[2]):
end;
4: case form of predicate of
".NOT. v relop v°, “.NOT. v relop c”, ".NOT. ¢ relop v’,
".NOT c relop ¢”: begin
case predicate[2] o
f=t relop :=
relop
¢ relop
relop
: relop
¢ relop

h

-
we

a4

~
ViA AlA 1
-

i

L4 4

A
s

e we We we we

L

~
~
-

it

4 ,

~
~

L4 4

Y

I

In Alv v &

es ss ee se

end;
pred := predicate[2} + relop + predicate[4];
pred := CANON(pred)

end;

‘v relop -c’: begin
c = predicate[4]; ¢ 1= ~c;
pred := predicate[l] + predicate[2] + c;
pred := CANON(pred)
end;

CANON := pred

Input:

Output:
1.

Procedure:

A-18

REVERSE(predicate)
Reverses the order of the two operands
in a relational expression

Predicate of length 3, of one of the following forms:

v relop v’ ‘v relop ¢ “c relop v’ “c relop ¢’

“bv bop bv”’ “bv bop be’ “bec bop bv”’ “bec bop be’
where v, ¢ are arithmetic variable, constant and relop is a
relational operator; and bv, bc are boolean variable, constant and
bop is a boolean operator.

Predicate with tokens 1l and 3 interchanged and relop (if present)
changed to reflect the interchange.

begin

case predicate[2] of

rd

“
»

> ¢ relop = "<

">" ¢ relop = "<’

<’ relop := ">";

‘<’ relop = ">7;

=" : relop = ‘=";

“#£7 ¢ relop = "#7;

“.OR.” : relop := “.0R.":
".AND.” : relop := “.AND.";

end;

REVERSE := predicate[3] + relop + predicatel[l]

end.

A-19

INIT PIPS
Builds bit vectors needed
for DETECT PIPS

Input:

l. Node table from ANNOTATE GRAPH
2. Edge table from ANNOTATE GRAPH

l. Node table, with the following fields set:
1) Ptr to KILL vector

2. Edge table, with following fields set:
1) Ptr to GEN vector
2) Ptr to INC vector

Procedure:

begin

comment N = # nodes in the flow graph. E = # edges;

for n := 1 to N do
SET KILL(n);

for e := 1 to E do

begin T
SET_GEN(e);

SET_INC(e);
end;

end.

A-20

SET_KILL(n)
Creates KILL vector for a node

Input:

1. Ptr to node ["n'"].

2. Edge table
Output:

1. Bit vector, ptr stored in Node table
Procedure:

begin
v := newvector(E);

for e :=1 to E do
if node n resets a variable in edgetable[e].predicate then
setbit(e,v);

nodetable [n] .kill := v

end.

A-21

SET_GEN(e)
Creates GEN vector for an edge

Input:
1. Ptr to edge ["e"]
Output:
l. Bit vector, ptr stored in Edge table
Procedure:
begin
v := newvector(E);

setbit(e,v);
edgetablefe}.gen 1= v

end.

A~22

SET _INC(e)
Creates INC vector for an edge

Input:
l. Ptr to edge ["e"]
OQutput:
l. Bit vector, ptr stored in Edge table
Procedure:
begin
v := newvector(E);

for i :=1 to E do
if INC(e,i) then
setbit(i,v);

edgetable(e].inc 1= v

end.

A=23

INC(el,e2)
Determines mutual fnconsistency
of a pair of predicates

Input:
l. Ptrs to edges ["el","e2"]
2. Edge table fields:
1) Predicate attached to the edge
Output:

l. true, if predicates on edges el and e2 are mutually inconsistent;
false, if not inconsistent or can’t tell.

Procedure:

begin

INC := false;

it

edgetable[el] .predicate;
edgetable[e2] .predicate;

pl
p2

1

if variables used in pl = variables used in p2 then

case form of pl of

v relop ¢’: Dbegin
if plec = p2.c then

INC := tablel[pl.relop,p2.relopl;
if pl.c pZ2.c then

INC := table2{pl.relop,p2.relop];
if pl.c < p2.c then

INC := table3{pl.relop,p2.relopl;

v i

i A B

end;
‘v relop v”: 1INC := tablel[pl.relop,p2.relop];
“bv relop bc’: begin
if plebe = p2.bc then
case pl.relop of

r_ s

=": if p2.relop =

i
~
“t
~
r
=
©
=

INC := true;

“#7: if p2.relop = ‘=" then INC := true;
end:
if pl.be # p2.bc then
case pl.relop of
‘=": if p2.relop = ‘=" then INC := true;
“#7: if p2.relop = “#’ then INC := true;

end;
“bv relop bv’: case pl.relop of

‘=": if p2.relop = “#’ then INC := true;
“#°: 1if p2.relop = ‘=" then INC := true;

A=24

Table 3.

Table 2.

Table 1.

A
A H
257
o VoI
2 =
B

relop

2

FFFFFF

FFFFFF

pl.relop < T FFFTTplirelop < FFFFFF plerelop < T FFFTT

TFFFFF

IS
o
I b
Iy Py
Foy o
B
VA
Py oy
B Iy
B B
By B
Py Iy
Fzs £
ViA
By Iy
B
Fry
B B
Fry fx
<
viA

>FFFFFF

>TFTTFF

FFTFFF

2

A=-25

DETECT_PIPS
Creates a table of PIPs

Input:
1. Edge table fields:
1) Ptr to GEN vector
2) Ptr to INC vector

2. Node table fields:
1) Ptr to KILL vector

Output:
1. Edge table fields:
1) Ptr to LIVE vector
2) Ptr to PIP vector

2. PIP table fields:
1) Edge # of first edge of PIP
2) Edge # of second edge of PIP

Procedure:

begin
LIVE(1);

for ei :=1 to E do
begin
edgetable[ei] .pip := edgetable[ei].live and edgetablelei].inc;
for ej := each l-bit in edgetable(ei].pip do
store (ei,ej) in piptable;

A~26

INIT_UIPS
Builds bit vectors needed
for DETECT_UIPS

Input:
1. Node table from ANNOTATE GRAPH
2. Edge table from ANNOTATE GRAPH
3. PIP table from DETECT PIPS
Output:
1. Node table, with the following fields set:
1) Ptr to GEN vector
2) Ptr to KILL vector
3) Ptr to KILLED vector
2. Edge table, with following fields set:
1) Ptr to GEN vector
2) Ptr to KILL vector
Procedure:

begin

comment P = # entries in PIP table;

fore :=1 to E do
begin
edgetable[e].gen := newvector(P);
edgetable[e]l .kill := newvector(P);
end;

for p := 1 to P do
begin
setbit(p,edgetable [piptable[p].first].kill);
setbit(p,edgetable{piptable[p].second].gen);
end;

for n :=1 to N do
begin
MARK _PIPS KILLED(n);
if n = start node then

nodetable[n] .gen := not newvector(P)
else
nodetable [n].gen := newvector(P)

end;

A=27

MARK_PIPS KILLED(n)
Creates KILLED vector for a node

Input:
1. Ptr to node ["n"].

Output:

1. Bit vector, ptr stored in Node table. FEach 1-bit in KILLED represents
a PIP which is "killed" by the node n (i.e., a variable in either
the first edge or the second edge’s predicate is reset),

Procedure:

begin

nodetable [n].killed := newvector(P);

i := piptable(p].first;
j ¢= piptable([p].second;
if bit 1 or bit j of nodetable[n].kill is set then

setbit(p,nodetablen].killed)
end

end.

A~28

DETECT UIPS
Determines which of the PIPs are
unconditionally impossible pairs

1. Node tagble fields:
1) Ptr to KILLED vector
2) Ptr to GEN vector

2. FEdge table fields:
1y Ptr to KILL vector
2) Ptr to GEN vector

Output:
1. PIP table fields:
1)y UIP —--= 1 if PIP is a UIP, otherwise 0

Procedure:

begin

LIVE(2);
AVAIL;

nipairs := newvector(P);

forn := 1 to N do
begin
nip[n] := (not nodetable[n].avail and nodetable[n].killed and
nodetable[n].live);
nipairs := nipairs or nip[n];
end;

uip := not nipairs;

or i :=1 to P do

piptable[i].uip := bit i of uip;

end.

A-29

LIVE(4i)
Determines LIVE sets for a flow graph

Input:
l. Flag ("i") indicating how the flow graph is marked:
l1: KILLs on nodes, GENs and LIVEs on edges;
2: KILLs and GENs on edges, LIVEs on nodes
2. Edge table
3. Node table
Output:
1. LIVE vectors, placed on edges or nodes
Procedure:
begin

comment The procedure used here is adapted from the algorithm of the same
name in Fosdick, L.D., and Osterweil, L.J., "Data Flow Analysis
in Software Reliability", Comp. Surveys 8(3) (Sept. 1976) 305-330;

case i of

l: begin
for e := 1 to E do
edgetable[e].live := newvector(E);

change := true;
while change do

begin
change := false;
for e := 1 to E do
begin
previous := edgetablele].live;
v = newvector(E);
for k := each exit edge from edgetable[e].head do
v = v or (edgetable([k].live or edgetable([k].gen);
v = v and not nodetable[edgetable[e].head] .kill;
edgetable[e] .live := v;
if v # previous then
change := true;
end
end

end;

A=30

2: begin

for m := 1 to N do

nodetabigfn}elive 1= newvector(P);

change := true;
while change do
begin
change := false;
for n := 1 to N do
begin
previous := nodetable([n].live;
v := newvector(P);
for k := each exit edge from node n do
v := v or {((nodetable[edgetable([k].head].live and
not edgetable(k].kill) or edgetable([k].gen);
nodetable[n].live = v;
if v # previous then
change := true;

end
end

end

end.

A-31

AVAIL
Determines the AVAIL sets for
a flow graph

Input:
1. Node table
2. Edge table

Output:
1. Node table fields:
1) Ptr to AVAIL vector

Procedure:
begin
comment The procedure used here is adapted from the algorithm of the same

name in Fosdick, L.D., and Osterweil, L.J., "Data Flow Analysis
in Software Reliability", Comp. Surveys 8(3) (Sept. 1976) 305-330;

for n := 2 to N do
nodetable[n].avail := not newvector(P);
nodetable(l].avail := newvector(P);

change := true;
while change do

begin
change := false;
for m := 2 to N do
begin
previous := nodetable[n].avail;
v = not newvector(P);
for k := each in-edge of node n do
v = v and ((nodetable[edgetable(k].tail].avail and
not edgetable(k].kill)
or nodetable[edgetable(k].tail].gen);
nodetablen].avail := v;
if v # previous then
change := true;
end
end

end.

A-372

TEST_PATHS
Tests paths for unexecutablity

Input:
1. Descriptions of paths to be tested

Output:
1. Statement of results of test, either "unexecutable" or "can’t tell"

Procedure:

begin

for e :=1 to E do
MARK EDGE KILLERS(e):

while more paths do
begin
read(path);
if path contains UIP or UNEXEC(path) then
Output ("path is unexecutable:",path)
else
Output("cannot determine executablity of path:",path)
end

A~-33

MARK _EDGE_KILLERS(e)
Creates KILLERS vector for an edge

Input:
l. Ptr to edge ["e"]
OQutput:

l. Bit vector, ptr stored in Edge table

Procedure:

begin
v = newvector(N);

for

i =1 to N do

if bit e of nodetable[i].kill is set then
setbit(i,v);

edgetable[e] .killers := v

end.

