Static Detection of Deadlocks *

Ashok R. Saxena

CU-CS-122-77

1)
@ﬂFUniversity of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

* This work supported by NSF grant DCR 75-09972.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

STATIC DETECTION OF DEADLOCKS

Ashok R. Saxena
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

CU-CS-122 -77 December 1977

This work supported by NSF grant DCR 75-09972

ABSTRACT

The problem of deadlocks is an important factor in the design
of multiprogramming computer systems. Current techniques for preventing
deadlocks, without run-time overhead, are based on violating one of the
necessary conditions for deadlocks to occur. One such technique 1is the
linear ordering of resources RP”"RM and therestriction that a process
cannot request resource Rj if it currently holds a resource R1 such that
j<i. In this paper we present an algorithm to detect if any such ordering
exists for a given set of flow graphs representing concurrent processes.
Even if no such ordering exists it can sometimes be shown that there
can be no deadlocks. A graph model for resource requests in a system of
processes is developed. It is shown that if this graph is acyclic then
there can be no deadlocks. Further, the notions of exclusive and re-
ducible components of the resource graph are defined. It is shown that
if the resource graph consists only of these two type of components
then there can be no deadlock. Algorithms to detect these components
are also given. It should be noted that these are static algorithms and
do not require run-time overhead.

I.

INTRODUCTION:

In a computer system allowing concurrent processes to share re-
sources, situations may develop such that the progress of one or more
processes will be blocked forever. Such situations are called deadlocks.
For example, consider a system with two concurrent processes P1 and P2,
each requiring exclusive access to resources R1 and R2 (R1 and R2 may
be files, for example). If process P1 requests resource R2 while hold-
ing resource R1 and process P2 requests resource R1 while holding re-
source R2, and neither process can release the resources they hold with-
out first acquiring the requested resources, the system will be in a
deadlock state as the progress of processes P1 and P2 will be blocked

forever.

Necessary conditions forexistence of deadlocks have been enunciated
[Coffman et al. 1971]. Algorithms for dynamic detection [Shoshani and
Coffman 1970a, Holt 1971] and prevention [Havender 1968, Shoshani and
Coffman 1970b, Habermann 1969,Holt 1971] of deadlocks under various
assumptions have also been reported. It is well known that if a system
has resource types R],...,RM, and they can be partitioned into classes
k1,...k2,zsm, such that if a process holds a resource in class ki’ it
can only request resources in classes kj, 1<i<j<g, then there will

be no deadlock.

In this paper an algorithm is presented to detect if an ordering
of resources can be obtained that satisfies the above condition, given
the flow graphs for the processes in the system. These flow graphs can
be derived easily if the processes are specified in a language like

concurrent PASCAL. Even when there is no ordering of resources that

satisfies the above condition it can sometimes be shown that there can
be no deadlocks. Algorithms to detect these conditions are also given.
These algorithms are applied to the flow graphs of the processes and
analyze the system statically. It is assumed that resources are re-
quested one unit at a time and are granted whenever resources are
available. It is also assumed that the resource allocation policy is
"fair" (such as first come first served) and does not discriminate

among competing processes.

GRAPH MODEL

Consider a system of N concurrent processes, Q1,...,QN and M

resources, R1,...,RM. A process consists of a series of acquisitions

and releases of these resources. R1,...,RM are types of resources.
There may be more than one unit of each type of resource. In the pro-

grams on],...,QN‘these resources will be represented by variables
r1,...,rm; rs initialized to count(ri); the number of units of resource

Ri in the system. Acquisition of resource Ri is represented by the state-

ment re <« ri-7“ and release of resource Ri by ”ri <« r1+1”. Resources

may be acquired and released only in single units. The statements
"ri <« r1—1“ and "ri <« r1+1" are indivisible. A release operation,

r. < ri+1, can always be executed. An acquisition operation, ry < ri-l,

can only be executed when the resource variable r. is greater than zero.

Thus resource variables are nonnegative integer variables. When an acquisi-
tion operation cannot be executed by a process because the resource variable,
say rys is zero, the process is blocked. Fukfhek, it is blocked on

resource ry A blocked process cannot continue its execution until it is
unblocked: it becomes unblocked when some other process in the system
executes a release operation on rj causing rj to become greater than zero,

thus permitting execution of the acquisition operation.

-4-
A blocked process is deadlocked if it can never be unblocked, that is, if it
can never execute the acquisition operation that caused it to be blocked. A
system of processes is deadlocked if one or more processes are deadlocked. In
the following it is assumed that if a resource is continually acquired and
released, then no process can be deadlocked on that resource, that is, the
resource allocation policy is "fair" (such as first come first served) and
does not discriminate among competing processes.

It is assumed that each process can be considered to execute a nondeter-
ministic sequential program that can be represented by a finite directed
acyclic graph G = (N,E) where nodes represent operations (acquire or release)

and edges represent transitions to next operations.

An acquisition operation P> v - 1, is written as P(Pi) and a release
operation, I 1, is written as V(ri). The graph G contains special
nodes S and F that represent a null operation. S is an entry (rodt)
node and no edge can be incident on S. F is a terminating node and no
edge Teaves it. If S,...,a is any path in a graph G, then the notation
IS""’a[P(rj) represents the number of acquire operations on the resource
ri in the path S,....,a; and the notation IS”"’aiV(ri) represents the
number of release operations on the resource r; in the path S,...,a. A
flowgraph G is an SR-graph if and only if it satisfies the following three
properties.

i) For all a such that S,...,a is a path in G, and for all ris 1515M:

]S"."aIP(Y‘i) > ;S,...,alv(ri)
ii) For all a such that 'S,...,a is a path in G, and for all ros 1<i<M:

|S’.'.’a|P(Y‘1') - !S,‘..’aiv(ri) SC0unt(r1)
jii) For all paths S,...,F in G and for all re T<i<M:

[Sae s Flpe) =]S,...,F[V(ri)

P(rl)

P(r,) P(rs)
' l
V(r,) V(r;)
|
V(r1)

-

Figuke 1

Flowgraph of a process using resources Fis Tps Ige

These restrictions imply that in an SR-graph a resource can never be
released unless it was acquired earlier and that all resources acquired are re-
leased when node F is reached.Further,no process can request more resources
than are available in the system. The SR-graph G is a model for a process
that acquires resources one unit at a time, in a system with serially reus-
able resources and with a resource allocation policy that grants requests
whenever resources are available and does not discriminate among competing
processes. An example of an SR-graph is given in Figure 1. A1l flow graphs

considered in this paper are assumed to be SR-graphs.

-6-

Generally, the processes of interest will be cyclic and execute
forever. However, it can be easily seen that if they satisfy the above
conditions then considering them to be acyclic does not affect any of
the results obtained in this paper, for before a process starts a new
iteration it would have released all resources acquired and the set of
system states considered will be identical. In fact, we can model any
Toop in the process as an acyclic segment in the flow graph if the
following condition is satisfied in the loop: all paths from an entry
to an exit in the Toop are such that the resources held by the process
at entry to the loop are the same as the resources held by it at exit

from the loop. That is if x,...,y is any such path, then

- Y'_i(‘X5..-9y{P(Y,.i) = 1X’.'.,‘Y‘V(Y‘_i))
An example is given in Figure 2.

Given the graphs Gi = (Nj’Ei) for each process Qi’ 1] <7 <N
in a system SN M with ‘N processes and M resources, construct a directed

graph GS = (Ns’Es) where

NS = {r],...,rM} and

(rj,rk) € Es if and only if HWGi and a path S,...,a,b in Gi such that

b = P(r,) and IS,.-.,alp(rj) gl IS’""’a\V(rj).

That 1is, in the graph Gs there is an edge from rj to P if, in any process,
resource r, is acquired while holding resource rj. An example 1is given in

Figure 3 for the flow graphs of Figure 2.

Process P1:
S
P(r])
¥ Y
P(r,) P(rs)
V(P2) V(T3)
V(ry)

Figure 2 part 1

Process P2:

P(ry)
! |
P(rz) P(T4)
V(rz) P(V3)
i r
R ¥
V(r3)

Acyclic graph for process Pl Acyclic graph for process P2

S S
P(r;) P(r;)

Y v Y v
P(ry) P(rs3) P(r,) P(ry)
V(rz) V(r3) . V(rz) +

$- 7 [
V(r,) V(ry) ;

| || b

F F

Figure 2 part 2

Figure 3

Graph GS for the system of Figure 2.

Theorem 1: if GS is acyclic then there is no deadlock in the system SN M

Proof': GS is acyclic implies that the nodes of GS can be arranged in a
Sequence ay,...,ay such that for 1 < i, j <mand j > i,(aj,ai) ¢ Es' Hence
no graph Gk(l < k < N) contains a path S,...,a,b such that:

b = P(ai) and [S,...,alp(a‘) > }S""’axv(a.)'
J J

That 1is, in every path in every process that resource 2y is acquired, it

is released before the acquisition of any other resource ai,1s i< M.

Hence no process can forever be blocked on the resource ay- By

induction no process can forever be blocked on resources CIYIEFERRCE R

Hence there is no deadlock in the system S

For exampie, the graph in Figure 3 is acyclic and its nodes can be
arranged in the sequence Pis gs Tos T3 No process requests a resource
while holding either resource ro or rs. No process requests resources
ryoorry, while holding ry and no process requests resource ™ while holding
ry Thus there is no deadlock in the system represented by the graph of
Figure 3. It should be noted that if GS is acyclic then only one unit of

a resource can be held by a process.

-]10-

Process P1: ; Process P2: Graph GS
S
P(r,) P(ry)
P(r,) P(rs)
P(rs) P(r,)
l l count(r1) =1
V(r,) V(r,) count(r,) =1
L l count(r3) =1
V(r,) V(rs)
V(r) V(ry)
s
Figure 4

If the graph Gs has cycles it does not necessarily mean that there
are deadlocks in the system. In fact,under certain conditions we can
demonstrate that there will be no deadlocks. In the example of Figure 4,
the cycle in GS arises because of resources s and rs. However, observe
that both processes, P1 and P2, attempt to acquire s and rs only after
acquiring resource ry Hence, the process that acquires ™ will be able

to acquire ro and rs without any competition from the other process and

-11-

Process P1: Process P2:

count(r]) = 2
count(r,) = 1
S S 2
l Graph GS:
P(ry) P(r,)]
P(r,) P(ry)
P J, ()
V(r,) V(r,)
V(ry) V(ry)
F F
Figﬁre 5

there can be no deadlock. An algorithm to detect such conditions is given

in the next section. In the example of Figure 5, process Pl needs to acquire
resource r, while holding resource " while process P2 needs to acquire &
while holding ro If there were only single units of * and ro in the

system, we would have a potential deadlock. However, in the example

there are two units of resource res hence if P2 acquires resdﬂr@é?%Zth will be
able to acquire one uwit‘of;resource'r] and eventually release resource ry for
use by process 1. In this case there is no deadlock even though there is a
cycle in Gg. An algorithm to detect such conditions is given in a following

sectinn.

IIT.

-12-

DETECTION OF EXCLUSIVE COMPONENTS OF THE GRAPH GS

let ¢ 5Cp be the strongly connected components of the graph

100
GS = (NSES). Let CD be the set of resources rs such that r is a single
unit resource. Let gk(rj,ri) be the minimum number of resources of type
rj held by process k while requesting a resource of type ri.

A component C; of the graph GS is an exclusive component if and only

'ifE!r'%fk’v‘r(rec]. ArteCy A T5ksN A g (r',r)>0).

D
That is, a component C; is an exclusive component if and only if there
exists at Tleast one single unit resource, say r', that is held by every
process k, T<k<N, before acquiring any resource, say r, of the component Cs-
The resource r' dominates the component Cse Note that resource r' cannot
be a member of the component Cj- The only access to resources of an ex-
clusive component o is through its dominating resource r'. If the dom-
inating resource r' 1is released by a process, then it must also release
all currently held resources of the exclusive component before re-
acquiring the resource r'.

It is clear that in a system represented by the graph Gs’ only one
process has access to resources in an exclusive component at any time.
As long as there are sufficient resources to satisfy the maximum demands
of each process, which is true for any SR-graph, the resources in an ex-
clusive component cannot lead to deadlock situations, as proved in the
Lemma below. Thus, the resources in an exclusive component can be ignored.
For the example of Figure 4, the components are: (r1) and(rz,rB). The com-
ponent (rz,r3) is an exclusive component, dominated by resource rys and

there is no deadlock.

-13-

Lemma 1:

The resources of an exclusive component cannot cause deadlock.

Proof:

The only access to resources in an exclusive component is through
a single unit resource, by definition of an exclusvie component. That
is, any process acquiring a resource in an exclusive component must
first acquire a particular single unit resource and if it releases the
single unit resource, then it must also release all resources of the
exclusive component before reacquiring the single unit resource. Thus a
process is either blocked on the single unit resource dominating the
exclusive component orit can have all its requests for the exclusive
component resources satisfied. Note that no process can demand more

units of a resource type than are available in the system.

IV.

-14-

REDUCIBLE COMPONENTS

A strongly connected component Cs of the graph GS is reducible
if no process can be blocked forever on the resources in the component
Pyseneslys provided no process can be blocked forever on resources in
other components requested while holding resources in Ci A procedure
to determine a reducible component is given below.

Let Piseeesly be the resources in a strongly connected com-
ponent of GS.

Let hk(ri) be the maximum number of resources of type r held
by process k while requesting some resource~rj; Pis rs e (r1,...,r'

J R)'
That is, hk(ri) = max

(S,...,b)in Gk<*s"“’b|P(ri) i ’5""""\/(1»1.9

where b = P(rj) and ris Iy e (r1,.¢.,r£)
N

Let H(ri) =k21 hk(ri).

Algorithm R:
0. Let C be the set of nodes (r1,...,r£).

1. Compute the functions H(ri) for all r. e C.
2. Remove all nodes r from the set C such that H(ri) < count(ri).

If any nodes were removed go to step 3 else the component is not reducible.

3. If the set C is empty then the componeﬂt'is reducible. If the set C is
not empty then in the flow graphs of all processes, replace all operations
on the resources represented by the nodes removed in step 2 by "null" oper-
ations (that is, in the flow graphs of all processes, eliminate the nodes
that represent operations on the removed resources by making an edge in-
cident on such a node incident on all nodes that had an edge from the

node to be eliminated) and go to step 1.

-15-

Lemma 2:

Algorithm R determines a reducible component.

Proof:

Let ra ,...,ri be a sequence in which the nodes Piseeesly
can be removed from the set C. Then initially H(ri) <count(r%)
hence the maximum number of ri units that can be acquired while wait-
ing for another resource in the set C, is less than the total number of
units of r; in the system. So no process can be blocked forever on
resource r{ Given that no processes can be blocked forever on resources
r{ ,...,r% it follows that if the recomputed H(r%+]) <count(ri ;)
then no process can be blocked forever on W%+1. Hence algorithm R deter-
mines a reducible component. For the example of figure 5, {r],rz}
is a reducible component, since

H(ry) = Hir,) =1

5)
count(r]) = 2, count(r,) =1
Initially, H(r1) <count(r7)
after removing rys H(rz) =0
and H(r,) = 0 <count(ry) = 1

The ordering rys T is rysty

Theorem 2:

There are no deadlocks in the system SN,M if all strongly con-
nected components of the corresponding graph Gs are either

(i) exclusive components or

(ii) reducible.

-16-

Proof:

The components of the graph GS (C1""’Cn) can be ordered such that
if component cj appears after component C; then there is no edge from any
node in C; to any node in Cj' That is, no process requests a resource in
the component cj while holding resources in the component Cse Let one such
ordering be CT""’CA’ No process can be blocked forever on the resources
in Cqo for if ¢y is an exclusive component then by Lemma 1 it can be ignored,
and if ¢ is a reducible component then, since no resources are requested
in other components while holding resources of ci, it follows from the
definition of a reducible component that no process can be blocked forever
on its resources. Similarly, given that no process can be blocked forever
on the components ci,...,c;, it can be shown that no process can be blocked

forever on the resources of component c% Hence by induction there is no

+1°

deadlock in the system SN "

-17-

CONCLUSION

The flowgraphs for the processes in the system can be constructed
automatically from their specification in a language 1ike PASCAL. It is
proposed that a system be built to construct GS from these flowgraphs.
If after applications of theorems 1 and 2 it cannot be shown that there
is no deadlock, that is, there are strongly connected components in GS
that are neither exclusive nor reducible, the exercise will help identify
the resources involved in such components. We can then either attempt to
redesign the system to eliminate the cycles or increase the available

resource units in the system so as to make the components reducible.

-18-

VI. ACKNOWLEDGEMENTS

The author would Tike to thank Lloyd D. Fosdick and William E. Riddle
for their comments on earlier drafts of this paper. Thanks are also due
to Lloyd D. Fosdick for his encouragement of the work reported here.
The support of National Science Foundation for this work is gratefully

acknowledged.

-19-

REFERENCES
[Coffman et al. 1971]

Coffman, E. G., Jr., Elphick, M. J., and Shoshani, A. "System
Deadlocks." ACM Computing Surveys 3,2 (June 1971), 67-78.

[Habermann 1969]
Habermann, A. N. "Prevention of System Deadlocks." Comm. ACM

12,7 (July 1969), 373-377, 385.

[Havender 1968]
Havender, J. W. "Avoiding deadlocks in multi-tasking systems."

IBM Systems Journal 2 (1968), 74-84.

[Holt 1971]
Holt, R. C. "On deadlock in computer systems." (Ph.D. Disserta-

tion) Department of Computer Science, Cornell University, Ithaca,

N. Y., Jan. 1971.

[Shoshani and Coffman 1970 a]
Shoshani, A. and Coffman, E. G. "Prevention, detection, and

recovery from system deadlocks." In Proc. 41 Annual Princeton

Conf. on Information Sciences and Systems, March 1970.

[Shoshani and Coffman 1970 b]
Shoshani, A. and Coffman, E. G. "Sequencing tasks in multi-

process systems to avoid deadlocks." In Proc. 1]§b-Annua1

Symposium on Switching and Automata Theory, Oct. 1970, 225-233.

