Abstract Process Types *

William E. Riddle

CU-CS-121-77

i/vw’ ”1.\

k%}ffjj[hniversity of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

* This work was supported by a grant from Sycor, Inc.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

RSSM/42

ABSTRACT PROCESS TYPES

William E. Riddle
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

CU-CS-121-77 December, 1977

This work was supported by a grant from Sycor, Inc.

(1)

Introduction

The design and implementation of large-scale software systems
requires description schemes which allow the abstract, high-Tevel
specification of the system. Without the ability to capture the
essence of the various processing and data structuring components, a
system's description quickly becomes complicated and incomprehensible.
It is only through a description of the system as a collection of
Tess-complex parts which interact in well-defined ways that anyone
trying to understand the system can succeed within a reasonable period
of time.

Abstract data types have recently emerged as an important facil-
ity for abstract description in the domain of sequential programs.
The basic concept originally appeared in the simulation language SIMULA
[77 and was introduced into programming languages as a facility to support
structured programming [T14]. Their recent refinement has taken three
directions. First, they have been developed to support top-down design
methods [17]. Second, they have been extended so as to provide a
basis for formal verification [40]. Finally, they have been used as
the basis for a tool to aid program development [12] which admits
rigorous, but perhaps incomplete, analysis [11]. The variety of these
uses indicates the breadth of the benefits which accrue from facilities
for high-Tevel, abstract description.

Abstract data types are ideally suited to the high-Tevel des-
cription of a software system's data storage components. But they are
not adequate for the succinct description of those system components
which are intended more for the processing of data than for the storage
of data. This is particularly true when the components operate con-
currentlyl. The major problem is that abstract data types are oriented
toward describing components as structures of data which are operated
upon via procedure calls. Many components -- e.g. a file system in a
multiprocessor computing facility -- are not naturally described as
collections of data objects which are accessed in a basically sequential
manner.

1By concurrent we mean parallelism which may actually be achieved by
running the system in a multiprocessing environment or which may only
be apparent at abstract levels of description of the system.

(2)

Extensions and modifications to abstract data types could be
developed to increase their effectiveness in describing processing
components in software systems -- this has been done in the Gypsy
system [1] and the Modula programming language [39]. In this paper,
however, we develop a description scheme that retains many of the
concepts of abstract data types but is based upon the concept of a
sequential process [16]. This leads to a means of abstractly des-
cribing processing structures which focuses upon describing a sys-
tem as collection of interacting, concurrent subsystems.

In the next section, the view of a system as a collection of
interacting subsystems is made more concrete as we describe the
various ways in which the subsystems may interact. Following
that, the various aspects of abstract process descriptions are
presented. First, the external description of a subsystem in terms
of how it interacts with other subsystems is discussed. Then, the
discussion turns to the manner in which an internal description of
a subsystem may be given in terms of coordinated interactions among its
(sub-)subsystems. In the final section, we suggest that the scheme admits
approaches to verification which are similar to those developed in

conjunction with abstract data types.

The constructs discussed here are part of the design Tanguage
developed for the Design Realization Evaluation and Modelling
(DREAM) system ([19], [247-[26]). DREAMis a tOo]ﬁorthédesignoflarge-
scale software systems, providing the designer with bookkeeping and
analysis aid. A description in the DREAM Design Notation (DDN) con-
sists of a collection of (nested) description fragments, called
textual units. DREAM provides facilities which allow the user (or users,

in the case of a design being carried out by a design team) to modify
the information in a data base on a textual unit basis.

The focus of this paper is upon the DDN constructs for des-
cribing abstract process types. Other aspects of DDN are discussed
in [22], [28], [32], and [38]. Also the focus is wpon
the use of the constructs -- their syntax is covered in [27]. Some
justifications for the constructs are given; others 1ie within the
DREAM system's general philosophy which is discussed in [26] and [30].

An Abstract View of Systems

A convenient view of software systems is that they are composed
of parts, subsystems, which operate concurrently and asynchronously.
This may be made concrete by viewing the subsystems as interacting
solely through the sending and receiving of messages and the sharing
of data objects. This is a bit redundant since the shared data objects
could be viewed as subsystems which receive read and write commands as
messages and send messages containing the requested value in response
to a read command. But recognizing shared data objects as distinct
from subsystems allows message exchange to be used to focus upon con-
trol interactions among subsystems. Also, data objects are needed to
describe the structure of the messages transmitted among the subsystems.

This paper focuses upon the description of control interactions
among asynchronously operating subsystems. We assume, therefore, the
existence of a scheme for describing data objects that may be shared by
a community of concurrent subsystems. (Several such schemes have been
developed, e.g., [2], [15], [39]. A scheme that was developed in con-
junction with the work discussed here is described in [28].) Only two
aspects of the scheme are dmportant here. First, a definition of a
data object specifies all the procedures which may be invoked upon it.
Second, data objects have built-in synchronization mechanisms which
can be used to preclude interference among the operations performed
upon the object.

Communication among asynchronous message senders and receivers .
requires a transmission controller that is able to store both messages
that have been sent but not yet received and requests for messages
which have been lodged but not yet satisfied. In DDN, an idealized
controller, called a 1ink, is provided. Links holdmessages and
requests in (unbounded) bag data structures. Thus they do not nec-
essarily pass messages on in the order the messages were sent, nor do
they necessarily service requests for messages in the order the requests
were Todged.

(4)

As an example of this view of software systems, consider the
following description of HEARSAY [9], a multiprocessor speech pro-
cessing system developed at Carnegie-Mellon University. HEARSAY may
be decomposed into two major parts. The first is a data base, called
the blackboard, which contains all the information about the utterance
being processed and the hypotheses which have been made as to its lin-
guistic structure. The second part is a collection of processing sub-
systems, each called a knowledge source. A knowledge source inspects
the information in the data base and augments or modifies it according
to rules which it is programmed to enforce. The subsystems in this
description of HEARSAY are therefore the blackboard and the knowledge
sources. Note that the blackboard could alternatively be described as
a shared data object since its primary function is the storage of data
and the operations performed upon it by the knowledge sources must be
synchronized in some way. We ignore this design choice and focus upon
the knowledge sources.

The interactions among the HEARSAY subsystems arise as follows.
It would be wasteful to have each knowledge source constantly inspect
the data base to see if it should perform any processing upon it.
Therefore, the data base is programmed to know which data base entries
are of interest to each knowledge source and to send a signal to a know-
ledge source when one of the data base entries of interest to it changes
value. When a knowledge source is awakened in this way, it inspects
the data base and makes any modifications deemed necessary.

Multiprocessing systems, such as HEARSAY, may naturally be des-
cribed in the manner advocated here since these systems actually
have subsystems which interact by message exchange. But this view
is also appropriate, as evidenced by two recent texts ([3], [10]),
when it is only a logical one and the system actually runs in a uni-
processor environment. In this case, the view facilitates the decom-
position of the system and hence the mastery of its complexity [33].
The transmission of messages may never really take place, and message
interchange may be used only as a model of the actual interactions.
This is the primary reason that a more sophisticated transmission -~
control mechanism is not defined within DDN.

(5)

In the following sections, a DDN description of the knowledge

source subsystems of HEARSAY2 will be developed. A1l of the knowledge
source subsystems are similar with respect to their interactions with

the data base. Therefore, the description is of the class of knowledge
source subsystems. To reflect that different instances of this class
vary with respect to their details, such as the number of entries in the
data base that are of interest to the knowledge source, we define a para-
meterized class. This means that part of the class definition is a speci-
fication of qualifiers which may be assigned values when an instance of
the class is created. Class definitions and qualifiers are discussed in [22].

External Description of a Subsystem

An external description of a subsystem defines the ways in which
the subsystem interacts with other subsystems in its environment.

In keeping with the principle of information hiding [18], the external
description indicates only the effect of the combined operation of the
subsystem's internal components and defines nothing as to the manner in
which the internal components are organized or actually interact.

The external description also serves to guide the implementation
of the subsystem. Being, by definition, a complete specification of
the subsystem, it provides the designer with a definition of the
(minimal) behavior which must be implemented. It may also guide the
designer's decision making, helping in the determination of the set
of decisions to be made and the inter-relationships among the decisions.

The external description must define three aspects of the subsystem.
First, it must specify the interfaces to the subsystem not only in terms
of the format of the information flowing through each interface but also
in terms of what information may legally flow through each interface.
Second, it must specify the correlation between the information flowing
through one interface and the information flowing through another inter-
face. Finally, it must relate the system's operation at one point in
time to its operation at a previous point in time -- that is, it must
specify the more global aspects of the subsystem's operation.

2 The description is an approximation of the structure and operation of
knowledge sources actually in HEARSAY. It reflects our understanding of
the description which appears in [¢], but has also been tailored'so as

to provide examples of the facilities in DDN.

Subsystem Interfaces

An interface to a subsystem is a port through which messages may
flow. Conceptually, a port is a named communication Tine along which
messages flow, one at a time, and which does not have any message
storage capabilities. Ports correspond to one-way communication 1ines
and therefore have a direction in or out.

The messages which flow through a port are sets of data objects.
Each port therefore has associated with it a set of buffers, each able
to store one data object. The set of buffers is ordered, in the same
sense and with the same implications as the ordering among a set of
parameters to a procedure. The set of buffers indicates the types of
data objects which comprise a message and the order in which the data
objects are composed to form a message. ‘

The messages that may legally flow through a port are specified
by giving buffer conditions for the port. A buffer condition is a

predicate over the buffer data objects, indicating the set of legal
values for the buffer data objects as well as the legal correlations
among the values. OR'ed together, the buffer cgnditiohs associated
with an in-port (out-port) are analogous to a pre-condition (post-
condition) [13]. ' '

In DDN, a port is defined by giving a textual unit which specifies
the port's name and direction and which has nested textual units which
specify the buffers and the buffer conditions associated with the port.
A set of perts is defined in figure 1 for objects of class® [knowledge.
source]. If an object of this class were created with #_values having
the value 4 and # servers having the value 3, then the object would
appear as picturea in figure 2. There are ten ports, grouped into
three arrays. and each port has a singleton set of buffers associated
with it. Notice that defining an array of ports implies that there is
an array of sets of buffers, one set for each port. The buffer condi-
tions associated with the make_request ports indicate that messages
flowing out through these ports will have only the values <nspect or
modify. The absence of buffer conditions associated with the other

® It is convention in DDN to enclose an identifier in square brackets
when it is used to name a class.

[knowledge source]: SUBSYSTEM CLASS;

QUALIFIERS;

DOCUMENTATION;
#_values is the number of values monitored
for this knowledge source; # servers is
the number of parallel servers in this
knowledge source
END DOCUMENTATION;

#_values, #_servers

END QUALIFIERS;

await: ARRAY [1::#_values] OF IN PORT;
BUFFER SUBCOMPONENTS
signal OF [on_off_switch]
END BUFFER SUBCOMPONENTS;
END IN PORT;

make_request: ARRAY [1::#_servers] OF OUT PORT;
BUFFER SUBCOMPONENTS;
request OF [data_base_operation]
END BUFFER SUBCOMPONENTS;
BUFFER CONDITIONS;
request=inspect,
request=modify
END BUFFER CONDITIONS;:
END OUT PORT;

get_answer: ARRAY [1::#_servers] OF IN PORT;
BUFFER SUBCOMPONENTS;
answer OF [data-base-response]
END BUFFER SUBCOMPONENTS;
END IN PORT,

END SUBSYSTEM CLASS;

Figure 1

signal(3)
signal(2)
await (1)
await (4)
signal(l) signal(4) \
\

\\ answer (1) /L/”
i //// §<i\ix request (3)

request (1)

make request(3)

get answer (1) answer (3)

answer (2) i K, request (2).

make request(l)

e
R

\\w n

get answer(3)

get answer (2) make request(2)

ports are represented by Tabelled arcs
buffers are represented by boxes attached to the arcs

Figure 2

(9)

ports indicates that there are no restrictions on the values of the
data objects which compose messages flowing throuagh these ports - this
freedom could be reduced as the subsystem is further desianed.

A port definition is comparable to a heading for a procedure
stated in a programming language. It is similar in that it specifies
a name by which the port (procedure) may be referenced and the number,
type and order of the data objects (parameters) in messages (parameter
Tists) processed by the internal components (procedure body). It differs
because ports allow one-way,asynchronous communication whereas proce-
dures provide two-way, synchronous communication.

The buffer conditions of DDN are analogous to entry and exit
specifications of Alphard [40] with the additional aspect that they
are required to be valid whenever a message flows through the port.
Buffer conditions may be viewed as assumptions which may be made while
formally verifying either a design of the subsystem or a design of
another subsystem which uses the subsystem. Or they may be viewed as
indicating checks to be made during the execution or simulation of
the subsystem. They have been included in DDN with the intent of
using them in both these ways.

Message Flow Through a Subsystem

The role that a subsystem plays within a community of subsystems
is specified by a definition of the correlations among the messages
flowing into and out of the subsystem. This can serve to define either
the facilities provided by the subsystem or its utilization of the
facilities provided by the other subsystems. Note that this means there
will be a redundant specification of the interaction among subsystems,
with a definition of the interaction within both the users and the
provider of a facility. This is useful redundancy, affording the
opportunity to perform verification as will be discussed later.

Succinct definition of the subsystem's control of message flow
is frequently procedural in nature -- this is especially true when
programmers are the intended audience, since such descriptions are
quite natural to them. This Teads to an ambiguity as to whether the
description is actually an external one or whether it is not also

(10)

describing the system's internal operation. While a procedural
definition may correspond very closely to the subsystem's internal
operation, it may also differ radically. Thus, it is serving as a
convenient description of the effect of the subsystem's internal
operation and, in and of itself, indicates nothing that may be relied
upon regarding the way that effect is achieved.

Some of the message flow characteristics of a subsystem may be
defined in terms of sequences of message transmissions through the
subsystem's ports. This is analogous to defining a procedure in
terms of a set of parameter/result pairs. More complex character-
istics, called global characteristics, must be defined in terms of

the correlations between transmissions occurring in different

message transmission sequences. This is analogous to specifying, for

a collection of stack manipulation procedures, that only certain com-
binations of procedure executions are legal-- for example, it should

be specified that each pop operation must be preceded, at some point

in time, by a corresponding push operation. In this section, the con-
cern is with the more easily specified sequential message transmission
characteristics.. The specification of global messaqe flow character-
istics is treated in the next section.

Sequential message transmission characteristics are specified
by a set of "programs", each of which is an abstract model of a sequen-
tial process. Although these control process models are in the form
of programs for an abstract machine, their purpose is not to provide
(or even suggest) a definition of the operational detail of the sub-
system. Rather, they provide a pseudo-procedural definition of the
effect of the subsystem's operation by means of an a]gokithmic defini-
tion of the message flow through the subsystem's ports.

Each control process model may be viewed as a sequential process
which controls communication between a subsystem and other subsystems
in its environment. This communication may generally be partitioned
into several message transmission streams which are arbitrarily inter-
leaved. A subsystem is therefore generally described by several con-

trol process models with each describing a single message transmission
Stream.

(11)

In a control process model, messages flow in and out through
ports as a result of operations called receive and send. When a send

operation is performed, a message is first composed using the values
of the buffers associated with the port that is named in the send
operation. Then, the message is placed in the link to which the port
is attached and thereby made available for reception by some subsystem.
(The 1ink is an object which is not a part of any of the subsystems
which utilize it. The process of attaching ports to links will be
covered in a subsequent section.) Control passes to the operation
following the send operation once the message is constructed and placed
in the Tink. Since 1inks have infinite storage capacity, this delay
is relatively short and the send operation can therefore be considered
to be a non-blocking operation.

When a receive operation is performed, flow of control is sus-
pended until a message is retrieved, decomposed and distributed among
the buffers associated with the port specified in the receive operation.
Since it is possible that a request for a message may be lodged when
none is currently available, the receive operation can cause relatively
Tong delays.

Prior to a send operation, the values of the data objects which
compose the message must be placed in the buffers. The computation
which is actually carried out to accomplish this may be Tengthy and
complicated, but neither its time consumption nor its detail are of
interest in defining sequential message transmission characteristics.
The only aspects of interest are the result of the computation and the
relationship of the result to any messages previously received. Thus,
in a control process model, computational detail is suppressed by
modelling it with a set-to operation which may be applied to a buffer
data object and which results in the buffer assuming a value prescribed
in the set-to operation. The dependency of the value upon previously
received or computed values is modelled by conditioning the flow of
control upon the values of the buffer data objects and hence upon
previously received or "computed" messages.

To describe the sequential message transmission characteristics
of [knowledge source] subsystems, two sets of control processes are

(12)

needed. The first, specified* in figure 3, models the consumption
of messages which arrive at the await port. This models the sub-
s}stem‘s operation with respect to signals sent to indicate a change
of some data base entry of interest to the knowledge source.

"[knowledge sourcel: -SUBSYSTEM CLASS'

Tistener: ARRAY [1::# values] OF CONTROL PROCESS;
MODEL: ITERATE 7 ’
RECEIVE await (MY IMDEX);
END ITERATE; -
END MODEL
END CONTROL PROCESS;

Figure 3

The second set of control processes is specified in figure 4.
These latter control processes model the operation of the servicers
of the incoming signals, indicating that they present a request to
the data base through one of the make request ports and receive
answers to the request through one of the get answer ports. The
entity MY_INDEX is a variable which has a value in the range de-
clared as the bounds of the array of control processes and is used
to make each control process model distinct with respect to the buffers
and ports to which it refers.

"[knowledge sourcel: SUBSYSTEM CLASS'
requestor: ARRAY [1::# servers] OF CONTROL PROCESS;

MODEL; ITERATE o
request (MY INDEX) SET TO modify OR inspect;
SEND make request(MY_INDEX);
RECEIVE get answer(MY_INDEX);
END ITERATE;

. END MODEL;
END CONTROL PROCESS;

Figure 4

* The quoted prefix in the textual unit of figure 3 indicates that
this textual unit gives further information about the class
[knowledge source].

(13)

The control process structure of a [knowledge source] subsystem
in which # servers is 3 and # values is 4 may be pictorially repre-

sented as in figure 5.

Each model 1is a control program over send and receive operations
on ports and set-to operations upon buffers. When necessary for the
accurate modelling of a subsystem's sequential message transmission
behavior, operations defined for the class of objects of which a buffer
is an instance can also be invoked upon that buffer. The control con-
structs used in control process models are Algol-Tike. There are con-
structs for definite iteration: an "ITERATE n TIMES" contruct and a
"FOR ALL i IN set of values" construct. WHILE and UNTIL constructs
are available for indefinite iteration. Since many subsystems are de-
signed to never terminate, there is also an "ITERATE" construct for
infinite iteration. Conditional control may be specified by the usual
forms of the IF construct. There is also a generalized CASE construct
which allows "Tabelling" of the cases with Togical expressions.

A11 of the control constructs have a nondeterministic version.
For example, the construct "ITERATE n OR MORE TIMES" indicates that
the number of times, while known before iteration begins, can be any
number greater than or equal to n. A nondeterministic variant of the
WHILE construct (see figure 6) is obtained in a way in which many of
the nondeterministic versions are obtained, by using the nondeterministic
boolean expression PERHAPS. Nondeterminism may also be specified in
the set-to operation (see Figure 4) by giving a logical expression
which specifies the set of values which could possibly be assigned to
the data object.

Control process models provide for the nondeterministic, pseudo-
procedural modelling of a subsystem. Nondeterminism is used because
it contributes to the clarity of the model, allowing succinct definition
of the subsystem. A pseudo-procedural description scheme is also used
to enhance the clarity of the description. The resulting procedure-
oriented modelling scheme is quite natural for describing the effect
of a subsystem's operation in terms of its sequential message trans-
mission characteristics. (As will be seen in the next section, DDN

e

.await(ii//////,w

await (1)

 Listenen|4)

nequeston(1) | nequeston|(3)

get_answe &9

! make request(3)

make request(l) get answer(3)

get answer(2) make request(2)

control processes are represented by circles containing the
control process name in script

Figure 5

(15)

relies heavily upon non-procedural specifications for defining global
message transmission characteristics.)

A multiprocessor system programming language (for example, [1]
and [8]) typically provides a variety of operations for the synchron-
ization of message transmission. In the DDN modelling language, how-
ever, we have provided only two relatively simple,but sufficient,
synchronization operations, send and receive. While this makes it
necessary for designers to develop DDN descriptions of other synchron-
ization operations, we feel that this has the beneficial effect of
forcing the designers to develop the details of the operations with
consideration given to the ways in which they will be used to effect

synchronization.

Global Behavior

The facilities provided by a subsystem cannot generally be used in
a totally arbitrary order -- e.g., the facility which a file system pro-
vides for opening a file must be used prior to the facilities for reading
and writing the file. Thus there are correlations between what happens
in one sequential message transmission sequence and what may happen in
another sequential message transmission sequence. (Note that these
sequences may pertain to the subsystem's use of its environment as well
as to the use, by others, of the facilities provided by the subsystem.)
A specification of these correlations is a specification of the sub-
system's global behavior since it concerns more than just the activity
of a single part of the subsystem for a relatively short period of time.

Global behavior must be specified non-procedurally since it can
rarely be expressed succinctly as some controlled sequence of operations
invoked by the subsystem. Necessarily, it concerns the operation of
other subsystems which are in the subsystem's environment. It also per-
tains to operations that are distributed over time, stemming from different
sequential algorithms. Procedural descriptions would therefore be both
misleading and complicated.

Global behavior is specified in DDN in terms of events, activities
that may be observed external to the subsystem. Usually an event is

(16)

the transmission of a message through a port, and thus may be iden-
tified with the execution of a send or receive operation in one

of the control process models. In general, an event may be assoc-
ijated with the execution of any one of the instructions in a control
process model. (Recall that since control process models are used
as part of the external description of a subsystem, they are known
to an external observer.)

Global behavior is specified by defining a set of sequences

of events. Note that this is similar to what was accomplished pro-
cedurally via the coiirel process models -- each model defines a set
of sequences of messane transmissions where each sequence corresponds
to an execution of the model. Formal languace theory provides a base
for the non-procedural specification of behavior, since the set of
events may be considered to be an alphabet and a behavior is then a
language over this alphabet [19].

Two aspects of global behavior---one mandatory for correct
operation and the other stemming from a design decision -- need to
be specified for [knowledge source] subsystems. First, interactions
with the data base occur subsequent to the reception of an activation
signal indicating that an entry in the data base has been changed.
Second, the interactions with the data base should be ordered such
that no request is lodged while there is an outstanding request
which has not been answered -- that is, interactions with the data
base are to be ordered so that its facilities are utilized in a
Subroutine fashion.

To describe this behavior, we first define some events as
indicated in figure 6. The statement labels define names for events
which correspond to the execution of the labelled statement.

Note the use of the NULL instruction to allow denotation of the
event "a sequence of interactions with the data base is begun".

(17)

"[knowledge_source]: SUBSYSTEM CLASS”

Tistener: ARRAY [1::# values] OF CONTROL PROCESS;
MODEL; ITERATE
hear: RECEIVE await(MY_INDEX);
END ITERATE;
END MODEL;
END CONTROL PROCESS;

"[knowledge source]: SUBSYSTEM CLASS'

requestor: ARRAY [T1::# servers] OF CONTROL PROCESS
MODEL; ITERATE
start: NULL;
ITERATE WHILE PERHAPS
request (MY INDEX) SET TO modify OR inspect;
ask: SEND make_request(MY_INDEX);
get: RECEIVE get_answer(MY_INDEX);
END ITERATE;
END MODEL;
END CONTROL PROCESS:

Figure 6

More macroscopic events are needed to conveniently define the
global behavior. These are defined by the textual unit shown in
figure 7. The SEQUENCE operator denotes that the events which are its
arguments are sequenced in the specified order. The REPEAT operator
denotes that the consult event may be repeated zero or more times within
each hear_and_do_something sequence. Thus, the hear_and_do_something
event corresponds to a signal arriving from the data base being fol-
Towed by the interactions with the data base.

[knowledge source]: SUBSYSTEM CLASS'

EVENT DEFINITIONS;
consult: SEQUENCE(ask, get),
hear_and_do_something:
SEQUENCE (hear, start, REPEAT(consult))
END EVENT DEFINITIONS;

Figure 7

(18)

With these events defined, the global behavior may be specified
as in figure 8. The first part of the specification
indicates that, for any particular instance, up to #_servers hear_and_
do_something events may be proceeding at any point in time, i.e., that
servicing may go on in parallel up to the limit imposed by having only
#_servers servicers. The second part indicates that a consult event
for any particular instance must be exclusive of any other consult
event for any instance of class [know1edge;source],i.e., that the
interactions with the data base are ordered in time.

"[knowledge source]: SUBSYSTEM CLASS'

DESIRED BEHAVIOR;
POSSIBLY #_servers CONCURRENT
(hear_and_do_something, hear and do something),

MUTUALLY EXCLUSIVE (consult, [knowledge-source]]consult)
END DESIRED BEHAVIOR; '

Figure 8

This example has used only a portion of the facilities avail-
able in DDN for behavior specification. Events may be associated
with other aspects of a subsystem's operation, more complex relation-
ships among events may be defined, relationships between events defined
for different subsystems may be established, and events which are not
associated with any computational part of a system may be described.
A complete description of DDN facilities for non-procedural, event-
based behavior specification is given in [38].

To review, a subsystem's global behavior is specified by de-
scribing the sequencing among observable events that relate to the
operation of the subsystem. Global behavior may concern either the
operation of the subsystem over a period of time or the interactions
among different subsystems, or both. In any case, the sequencing is

specified non-procedurally by defining a language over an alphabet
of events.

The techniques for behavior specification used in DDN are a
modification of event expressions as defined in [19]. Event ex-

(19)

pressions provide a means of defining a behavior by algebraically de-

fining a Tanguage over a set of event names. FEssentially all of the de-
scriptional capabilities of event expressions are available in DDN, but
they have been put in a form which makes them more easily used.

The DDN behavior specification constructs have also borrowed
some concepts from path expressions [4]. In particular, the
specification of behavior as a set of partial specifications
is taken from path expressions. However, the specification of
behavior in DDN is radically different 1in intent from path ex-
pression behavior description. Path expressions were originally
developed as a programming Tanguage construct for imposing scheduling
and synchronization constraints upon a community of concurrent
processes. Behavior specification in a DDN description is not pre-
scriptive in this sense -- the specification's intent is to report
the desired behavior rather than to lead to the automatic generation
of synchronization code. Thus, the behavior specification prescribes
necessary scheduling and synchronization only in the sense that it
indicates the subsystem designer's intentions as to what behavior
is legal.

Internal Description of a Subsystem

A subsystem's external description provides a definition of how
the subsystem may be used and how it will interact with other sub-
systems in its environment. It provides all the information about
the subsystem that one is allowed to know when developing other sub-
systems which execute concurrently with the defined subsystem.

An internal description, however, gives details about the
internal componentry of the subsystem and the manner in which the
components interact to create the effects defined in the subsystem's
external description. The internal description is what would
typically be produced by a series of steps in a top-down design method.

A subsystem's internal description must define three aspects of
the subsystem's internal operation. First, it must define the com-
ponents which comprise the subsystem. These will be both subsystem

(20)

components and shared data objects. In this paper, we focus ex-
clusively upon subsystem componentsS. The second aspect which must

be defined is the communication pathways among the subcomponents.

This involves the definition of 1links and the attachment of ports to
1inks so that messages may flow among the subcomponents. Finally,

the message flow into and out of the subsystem must be related to the
message flow into and out of the collection of subcomponents. This is
done by establishing controllers which distribute incoming messages
among the subcomponents and collect messages from the subcomponents
and pass them out through the subsystem's out ports.

Subcomponent Declaration

Subcomponents will themselves be instances of some other class
of subsystems. Thus a definition of the subcomponents consists of a
set of declarations, each specifying a name for a subcomponent and

indicating the class of which it is an instance.

The declaration of one possible set of subcomponents for
[know]edge_source] subsystems appears in figure 9. The activator
subcomponent receives the signals sent by the data base and evaluates
a logical condition to determine whether or not one of the manipulator
objects is to be activated. The manipulator objects await activation
by the activator and then interact with the data base to effect any
necessary changes.

"[knowledge source]: SUBSYSTEM CLASS”

SUBCOMPONENTS 5
activator OF [pre condition (#_servers)],
manipulator ARRAY [1::# servers]
OF [data _base modifier]
END SUBCOMPONENTS;

Figure 9

5 To avoid having to use the awkward term sub-subsystem, the term
subcomponent is used for the remainder of this paper to mean
a subsystem which is a component of the subsystem being described.

(21)

The subcomponentry of this example is relatively simple.
More extensive facilities are available in DDN for describing sub-

components and these are discussed in [22].

Subcomponent Connections

Communication pathways must be established among the sub-
components so that they may interact. Since 1inks are used to
control message transmission, it is necessary to establish the
requisite 1inks and specify which ports are connected to which Tinks.

In DDN, this is accomplished by "plugging" ports together.
For every set of ports that are plugged together, a Tink is estab-
lished and the ports are attached to the 1ink. In the example,
communication pathways may be described by the textual unit
appearing in figure 10. This establishes a set of links, each of
which has an activate port from one of the activator objects and a
watt_for activation port from one of the manipulator objects
attached to it. This leads, when there are three servers, to
the communication pathway structure depicted in figure 11.

"[knowledge source]: SUBSYSTEM CLASS™

CONNECTIONS; :
FOR ALL i IN [1::#_servers]
PLUG (activator | activate (i), manipulator (i)
END FOR; ‘ wait _for_activation) 5

END CONNECTIONS;

Figure 10

The control constructs provided for writing programs in a con-
nection textual unit are essentia]]y those provided for writing
control process models except that non-deterministic constructs are:
not allowed. Also, the variables that are referenced in a plug pro-
gram must be able to be evaluated prior to subsystem "execution"
since the structure of a subsystem is static and may not change
during the running of the system.®

Elle have investigated extensions to the DDN modelling language which
would allow the description of dynamic system structure [37], but have
not incorporated these extensions in the current version of DREAM.

(22)

B L
o Mot

- W‘“’%%
A g,
o "y
o {M \N%&.
e ka
'fﬁ "%%%
3"’ %
) / ("»‘&%
4
/ \
/ \
| \
j ACTIVATOR \
| |
g
R |
i ;
ff
activate(3)
activate(2) wait for activation
W/"/’ i uw,.%%‘ -
Y /
§! %‘:
/ | i
g wait_fopwactivation % E
JUS |
\ MANIPULATOR(1) - BN \ MANIPULATOR(3)
) / %h\-e. %"x »
/S %”‘n%_ “‘a‘%
\“"\\i f,«" ,z" / 7 + "x& x‘\%
‘m%"‘m.w .M“”M

subcomponents are represented by circles containing the
subcomponent name in capital Tetters

Tinks are represented by boxes

Figure 11

(23)

The facilities provided by DDN for establishing communi-
cation pathway structures permit any (static) pathway structure
to be defined. Note that it is only through the control of the
pathway structure that message transmission may be directed from
one subcomponent to another -- the send operation cannot specify
which subcomponent is to ultimately receive a message. Thus the
pathway structure itself defines all of the possible communication
interactions. This is beneficial for the purpose of defining a
system's structure. Operations, such as defined in [8], which
permit constraint of the ultimate receiver could lead to more
efficient system implementations but would obscure the definition of
the interactions. Thus, DDN uses relatively primitive constructs
which force the explicit representation of interactions.

Message Distribution

The messages which flow into the subsystem are received by the
subcomponents and the messages flowing out of the subsystem are
produced by the subcomponents. Thus there are some relationships
among the ports of the subcomponents and the vorts of the subsystem.
In many cases, this is a simple identification of a port in a sub-
system with a port in one of the subcomponents so that, for instance,
when the subcomponent sends a message through its port, the message
flows out through the subsystem's port. This simple identification
occurs when there is no intermediate processing required as the
message passes out of the subsystem. More complex cases arise when
intermediate processing is required -- for example, an incoming
message may need to be broken up into parts which are distributed
among the subcomponents.

For the simple cases in which a subsystem port is identified
with a port in a subcomponent, DDN allows ports to be overlaid as
shown in figure 12. The OVERLAY statements establish an equiva1ence
between one of the ports of the subsystem and one of the ports
within a subcomponent. When the ports are overlaid, no overhead
processing is incurred in order to get messages into and out of

(24)

the subcomponents since they have direct paths to the subsystem's
ports and hence to the environment . in which the subsystem is operating.

"[knowledge source]: SUBSYSTEM CLASS '

CONNECTIONS;
FOR ALL i IN [1::#_servers]
OVERLAY (manipulator (i) | request_out,
make request(i));
OVERLAY (manipulator (i) | answer in, get answer(i));
END FCR;
END CONNECTIONS;

Figure 12

More complex message distribution among the subcomponents
is described in DDN by establishing special subcomponents which
control the flow of messages between the subsystem's ports and
the ports of the subcomponents. Since the purpose of control
processes is to control the flow of messages through the sub-
system's ports, these special subcomponents are described as
bodies for the control processes. For our example, this is
shown in figure 13. The body of a control process is a control
program over 1) send and receive operations upon the subsystem's
ports and the control process' ports and 2) operations upon the
buffer and data object components of both the subsystem and the
control process. Note that the operation assign has been invoked
upon the db_signal buffer, passing as a parameter the value of the
signal buffer -- the operation assign must be among the operations
defined for the class [on off signal]. The control constructs that
are available for stating control process bodies are the same as
those for specifying control process models except that the non-
deterministic constructs may not be used.

The textual units given in this section give rise to a set
of communication paths among the subcomponents. For # servers
being 3 and # values being 4, the paths would appear as pictured

(25)

'[know?edge“source]: SUBSYSTEM CLASSY

Tistener: ARRAY [1::#_values] OF CONTROL PROCESS;
pass.on: LOCAL OUT PORT; _
BUFFER SUBCOMPONENTS ;
db_signal OF [on_off_signal]
END BUFFER SUBCOMPONENTS;
END OUT PORT;
MODEL; ITERATE
hear: RECEIVE await(MY INDEX);
END ‘ITERATE;
END MODEL;
BODY; ITERATE
RECEIVE await(MY“INDEX);
db_signal.assign(signal (MY INDEX));
SEND pass_on; -
END ITERATE;
END BODY;
END CONTROL PROCESS;

"[knowledge_source]: SUBSYSTEM CLASS

CONNECTIONS;
FOR ALL 1 IN [1::#_values] :
PLUG (Iistener(i)[pass_on, activator|get signal);

END FOR;
END CONNECTIONS;

Figure 13

in figure 14. In comparing figure 6 and figure 13, notice that the
Listener control processes define, in this impTementation, actual sub-
components whereas the reguester control pProcesses do not. This 1is
because each Iistener control Process models the operation of a single
subcomponent and this subcomponent can most naturally be described as
the body of the control process. Thus control process definitions
serve two purposes. First, they may define, through a model textual
unit, the message transfer effect of the operation of the subcomponents.
Second, they may specify, through a body textual unit, the operation

of an actual subcomponent.

§
{
\ . /// ACTIVATOR

aCtiVi:ii;l/” , \\\iiii:jte(3)
wait for actlvatlon \\\\M MXA walt for activation /
o, V‘w"’/ \%\ f

activate(2) //f a\ //

MANIPULATOR(B) \ //f

7
wait for actlvatlon ;

MANIPULATOR(1) g
£
i
f

answer in

requestﬁpqtp \\ngwer in
get answer (1) \{NMMWM,M”” / ~— T
™, % MANIPULATOR(2)

request out

make request(3)

.
make request(1) N”mm \ get_answer (3)
N answer_ in request_out
N\m ‘,,w'
'“»»MM \.M“"M

o

make request(2)

Figure T4

Analysis of Subsystems

The scheme that we have developed. for describing col-
Tections of sequential processes affords many opportunities for
rigorous analysis.? The simplest forms of analysis involve checks
that can be made without interpretation of the text describing a
subsystem's operation. Since such analysis would not account for
the dynamic, run-time characteristics of the subsystem, it can be
called static analysis. One example is the derivation of graphs

such as in figure 14. Such paraphrasing of the subsystem's des-
cription in a form different from that used by the designer is
frequently valuable in uncovering inconsistencies in the organ--
ization of a collection of subcomponents.

Another static analysis that could be performed is a check
that referenced entities, such as ports or classes, have actually
been defined. Such an analysis is a check of the completeness of
the subsystem's design, rather than a correctness check, since
the designer may not have yet designed the referenced entity.
This indicates that much of the analysis performed during design
is feedback analysis [20] in which it is left to the designer to
conclude whether correctness or incorrectness of the design can
be determined, based upon the derived information.

Of much more value to a designer is dynamic analysis in

which information is derived about the run-time characteristics

of the system under design. While dynamic analysis could be
delayed until the system is completely designed, it is of more
value when performed early in the design process, at which point

it serves to predict the system's eventual run-time characteristics
and offers the opportunity to uncover errors when they may more
easily be corrected. The discussion of dynamic analysis will be
with respect to this context -- in particular, implicit in the
discussion is that dynamic analysis will be used as an integral
part of a top-down design method.

7 A general taxonomy of different types of analysis that would
be useful is given in [35].

(28)

One form of dynamic analysis consists of checking the con-
sistency among the various parts of a subsystem's external des-
cription. While the desired behavior construct of DDN is intended
for a different purpose than the control process model construct, one
way to achieve the redundancy necessary for consistency checking is
to give a desired behavior specification of the behavior specified
by the control process models. Such redundancy may also arise from
desired behavior specifications appearing elsewhere in the DDN de-
scription of the system which have implications for the behavior
that can legally be specified by the subsystem's control process
models.

A check of the consistency between the desired behavior
specification and the control process models would proceed as
follows. Using an algorithm similar to that defined in [19],

a description of the sequences of events defined by a control
process model would first be derived. The desired behavior
specification and the control process model would then be con-
sistent if., for those events common to the two descrjptidns, all
sequences defined by the control process model are also defined

by the desired behavior specificatidn§:

Another dynamic analysis that could be performed is a check
of the consistency of the interfaces among a collection of sub-
systems. A subsystem's external description may be used to
indicate both how it responds to messages from other subsystems
and what responses it expects from other subsystems. Therefore,
once a configuration of subcomponents has been established, the
consistency of the subcomponents' external descriptions can be
checked. This analysis could be performed in the same manner as
described above. The event sequences resulting from the operation
of the control process models could be determined and then these
sequences can be checked for inclusion in the sets of sequences
kspgcified'by the desired behavior descriptions.

& The requirement that sequences defined by control process models
be included in the set of sequences defined by desired behavior
descriptions follows from the constraint nature of desired
behavior descriptions.

(29)

A final form of dynamic analysis is the checking of the
consistency between the external description of a subsystem's be-
havior and the behavior actually created by the subsystem's imple-
mentation. This would involve using the bodies of the control
processes and the external descriptions of the subcomponents to
determine the actual sequences of message flow through the ports.
This would be consistent with the control process model definition
of the subsystem's behavior as long as this set of message flow
sequences was a subset of the set defined by the control process
models. ?

Alternatively, the event sequences caused by the operation of
the internal components could be determined and compared to the
event sequences specified as desired behavior. This can be done as
long as event definitions exist which relate the events defined for
the subsystem and the events defined for the subcomponents. With
such definitions, the set of event sequences for the subcomponents
could be mapped onto a set of event sequences for the subsystem.
This set could then be compared, for containment, with the set of
event sequences specified by the desired behavior description.
(This type of analysis is used in the TOPD program development
system [11].)

These dynamic analysis techniques all require some means of
comparing two sets of sequences. In general, this comparison can-
not be performed algorithmically [19]. Therefore, either algorithms
for special situations would have to be used and cases which did not
fall into these situations would have to go unanalyzed, or the
comparison would have to be performed by the designer. The latter
approach may not be unreasonable, as the designer may have the in-
sight and intuition necessary to show equality or inclusion or find
counter-examples.

9 Alternatively, it could be required that the two sets be equal,
reflecting a more strict condition that all, as well as only, the
specified behavior is actually achieved.

(30)

The inability to algorithmically perform the entire analysis
is not necessarily a serious Timitation. First, in the absence of
rigid interpretations imposed by specific analysis techniques, a de-
signer is free to impose whatever relationships between the sets of
sequences are deemed appropriate.lo Thus designers may adjust the
analysis to either their own style of design or the nature of the
behavior being described. For example, a designer might use the
desired behavior descriptions to indicate bounds upon the actual
behavior such that part of the specified behavior must be achieved
and part of it would be legal but is not required.

Second, simulation-based analysis may be used when formal
(or informal) analytic techniques do not exist or are computa-
tionally unattractive. Simulation is possible since the pro-
cedural descriptions of a subsystem (i.e., the control process
bodies) provide rigorous definitions of its operation. Several
constructs have been included in DDN in order to increase the
effectiveness of simulation. First, the buffer conditions can
be checked, during simulation, whenever a message passes through
the port associated with the buffer condition. Second, a history
of the events occurring during the simulated execution could be
checked against the set of desired sequences. In addition, the
DDN notation could be extended to allow its use in the prediction
of a subsystem's performance characteristics, following an
approach defined in [29]. The description scheme would be aug-
mented with constructs for associating probabilities with non-
deterministic operations and time distributions with modelled
operations. Once this was done, the simulator could accumulate
statistics concerning characteristics such as running time,
resource utilization and queue sSizes.

1071t is our belief that any fixed set of predetermined inter-
pretations would omit some relationships significant to some
designers, leaving those relationships to be checked by the
designers themselves, without assistance.

Conclusions

We have presented a scheme for describing collections of
asynchronous sequential processes. The scheme provides for the
description of the communication pathways among the processes in
the collection and hence the interactions among the processes.
This allows the description of the internal, operational details
of the collection. The scheme also provides for the description
of the behavior of the collection as a whole in terms of the
message flow into and out of the collection. This allows the de-
scription of the ways in which the collection may be used without
a description of how this behavior is achieved.

We have used this scheme in formulating descriptions for a
variety of software systems ([51,[6],[231,[31]1,[36]1,[37]), and
have also used it in one exercise [34] which attempted to simulate
a design effort. We feel that the scheme demarcates an important
set of facilities for the description of software systems and
that it provides a valuable basis for a variety of tools to aid
designers of large-scale software systems.

We feel that effective design aid tools based upon this
modelling scheme should allow the derivation of information help-
ful in determining whether or not the design being developed is
correct. Some of this information may be a paraphrase of the de-
signer's description in a form that allows the designer to more
easily see inconsistencies which may exist. More helpful informa-
tion is that which indicates the dynamic, run-time behavior of the
system in a form which allows algorithmic or heuristic comparison
with the behavior which the designer intends to have happen.

In and of itself, the description scheme introduces a rigor
into the design of large-scale software systems which allows the
designer to more carefully develop and expand the design. In
this regard, the scheme is particularly useful in conjunction with
a top-down design method. The ability to analyze the design and
derive information that is not explicitly represented provides

(32)

the designer with a means of checking the appropriateness of the
design at each design step. This incremental analysis of the
design affords the opportunity to check design decisions as they
are made rather than at the end of the design process.

Acknowledgements

The development of abstract process types was greatly facilitated
by the contributions and constructive criticism of Jack Wileden,
Alan Segal, Allan Stavely, John Sayler, Dirk Kabcenell and

Victor Lesser.

N

(8]
N

10.

11.

12.

14.

(33)

REFERENCES

A.L. Ambler, et al. GYPSY: A Language for Specification and
ImpTementation of Verifiable Program. ICSCA-CMP-2, Certifiable
Minicomputer Project, Univ. of Texas, Austin, January 1977.

P. Brinch Hansen. The Programming Language Concurrent Pascal.
IEEE Trans. on Software Engineering, 1, 2 (June 1975), 199-207.

P. Brinch Hansen. The Architecture of Concurrent Programs.
Prentice-Hall, Englewood Cliffs, N. J., 1977.

R.A. Campbell and A.N. Habermann. The Specification of Process
Synchronization by Path Expressions. Lecture Notes in Computer
Science, 16, Springer Verlag, Heidelberg, 1974.

J.Cuny. A DREAM Model of the RC4000 Multiprogramming System.
RSSM/48, Dept. of Computer and Comm. Sciences, Univ. of Mich.,
Ann Arbor, July 1977.

J.Cuny. The GM Terminal System. RSSM/63, Dept. of Computer and
Comm. Sciences, Univ. of Mich., Ann Arbor, August 1977.

0. Dahl and K. Nygaard. SIMULA -- an ALGCL-Based Simulation
Language. Comm. ACM, 9, 9 (September 1966), €71-678.

J.A. Feldman. A Programming Methodology for Distributed Com-
puting (among other things). TR9, Dept. of Computer Science,
Univ. of Rochester.

R. Fennel and V. Lesser. Parallelism in Artificial Intelligence
Problem Solving: A Case Study of Hearsay II. IEEE Trans. on
Computers, C-26, 2 (February 1977).

A.N. Habermann. Introduction to Operating System Design.
SRA, Chicago, 1976.

P. Henderson. Finite State Modelling in Program Development.
Proc. 1975 International Conf. on Reliable Software, Los Angeles,
April 1975.

P. Henderson, et al. The TOPD System. Tech. Report 77, Computing
Laboratory, University of Newcastle upon Tyne, England,
September 1975.

C.A.R. Hoare. An Axiomatic Basis for Computer Programming.
Comm. ACM, 12, 10 (October 1969), 576-580, 583.

C.A.R. Hoare. Notes on Data Structuring. In Dahl, Dijkstra
and Hoare, Structured Programming, Academic Press, New York, 1973.

15.
16.

17.
18..

19.

20.

21.

22.

23.
24,
25.

26. .

27.

(34)

C.A.R. Hoare. Monitors: An Operating System Structuring Concept.
Comm. ACM, 17, 10 (October 1974), 549-557.

J.J. Horning and B. Randell. Process Structuring. Computing
Surveys, 5, 1 (March 1973), 5-30. ‘

B.H. Liskov and S.N. Zilles. Specification Techniques for Data
Abstractions. IEEE Trans. on Software Engineering, SET1, 1
(March 1975), 7-19.

D.L. Parras. - Information Distribution Aspects of Design
Methodology. Proc. IFIP Congress 71, Ljubljana, August 3971,
pp. TA-3-26-TA-3-30.

W.E. Riddle. An Approach to Software System Modelling, Behavior
Specification and Analysis. RSSM/25, Dept. of Computer and Comm.
Sciences, Univ. of Michigan, Ann Arbor, July 1976 (revised
November 1977).

W.E. Riddle. A Formalism for the Comparison of Software Analysis
Techniques. RSSM/29, Dept. of Computer and Comm. Sciences,
Univ. of Michigan, Ann Arbor, July 1977.

W. Riddle, J. Sayler, A. Segal and J. Wileden. An Introduction
to the DREAM Software Design System. Software Engineering Notes,
2, 4 (July 1977).

W. E. Riddle. Hierarchical Description of Software System
Structure. RSSM/40, Dept. of Computer Science, Univ. of
Colorado at Boulder, November 1977.

W.Riddle. DREAM Design Notation Example: The T.H.E. Operating
System. RSSM/50, Dept. of Computer Science, Univ.of Colorado,
Boulder, April 1978.

W.Ridd1le, J. Sayler, A. Segal, A. Stavely and J.Wileden. A De-
scription Scheme to Aid the Design of Collections of Concurrent
Processes. Proc. National Computer Conf., Anaheim, June 1978.

W.Riddle, J.Wileden, J.Sayler, A.Segal and A.Stavely. Behavior
Modelling During Software Design. IEEE Trans. on Software
Engineering, SE-4, 4 (July 1978).

W.Riddle, J.Say]er, A.Segal, A.Stavely and J. Wileden. DREAM:
A Software Design Tool. Proc. 3rd Jerusalem Conf. on Information

Technology, Jerusalem, August 1978.

W. Riddle. DDN User's Guide. RSSM/37, Dept. of Computer

“Scienge, Univ. of Colorado at Boulder, in preparation.

w.'Ridd1e. .Abstract Monitor Types. RSSM/41, Dept. of Computer
Science, Unlv. of Colorado at Boulder, in preparation.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40,

(35)

J. Sanguiﬁetti. Performance Prediction in an Operating System
Design Methodology. RSSM/32 (Thesis), Dept. of Computer and Comm.
Sciences, Univ. of Michigan, Ann Arbor, May 1977.

J. Sayler. Philosophy of the DREAM System. RSSM/39, Dept. of
Computer and Comm. Sciences, Univ. of Michigan, January 1977.

| A.Segal. DREAM Design Notation Example: A Multiprocessor

Supervisor. RSSM/53, Dept. of Computer and Comm. Sciences,
Univ. of Michigan, Ann Arbor, August 1977.

A. Segal. Design Description Management. RSSM/45, Dépt. of Com-
puter and Comm. Sciences, Univ. of Michigan,in preparation.

H.A. Simon. The Architecture of Complexity. Proc. Am. Phil. Soc.,
1g§3 (December 1962), 467-482. Also in Simon, Sciences of the
Artificial, MIT Press, Cambridge, 1969. o

A.M.Stavely. DREAM Design Notation Example: An Aircraft
Engine Monitoring System. RSSM/49, Dept. of Computer and
Comm. Sciences, Univ. of Michigan, Ann Arbor, July 1977.

A.M. Stavely. Feedback Aids in Software Design Ajd Systems.
RSSM/60, Dept. of Computer and Comm. Sciences, Univ. of Michigan,
Ann Arbor, November .1977.

J.Wileden. DREAM Design Notation Example: Scheduler for a
Multiprocessor System. RSSM/51, Dept. of Computer and Comm.
Sciences, Univ. of Michigan, Ann Arbor, October 1977.

J.Wileden. Modelling Parallel Systems with Dynamic Structure.
RSSM/71 (Thesis), Dept. of Computer and Comm. Sciences, Univ.
of Michigan, Ann Arbor, January 1978.

J. Wileden. Behavior Specification in a Software Design Aid
System. RSSM/43, Dept. of Computer and Informatien Science,
Univ. of Massachusetts, August 1978.

N. Wirth. Modula: a Language for Modular Multiprogramming.
Software - Practice and Experience, 7, (1977), 3-35.

b

W.A. Wulf, R.A. London and M. Shaw. Abstraction and Verification
in ALPHARD: Introduction to Language and Methodology.

Report 76-46, Information Sciences Inst., Univ. of Southern
California, 1976.

Abstract

Abstract process types are introduced as a means of giving
high-level descriptions of the components in Targe-scale software
systems. Abstract process types provide facilities for the descrip-
tion of a system's processing components that are analogous to the
facilities which abstract data types provide for describing a system's
data storage components. In particular, abstract process types pro-
vide a basis for approaches to verification that parallel the ap-
proaches developed in conjunction with abstract data types.

Key Words and Phrases

abstract process types, abstract data types, hierarchical system
description, non-procedural specification, verification, DREAM

(1)

Introduction

The design and implementation of large-scale software systems
requires description schemes which allow the abstract, high-Tevel
specification of the system. Without the ability to capture the
essence of the various processing and data structuring components, a
system's description quickly becomes complicated and incomprehensible.
It is only through a description of the system as a collection of
less-complex parts which interact in well-defined ways that anyone
trying to understand the system can succeed within a reascnable period
of time.)

Abstract data types have recently emerged as an important facil-
ity for abstract description in the domain of sequential programs.
The basic concept originally appeared in the simulation language SIMULA
[7] and was introduced into programming languages as a facility to support
structured programming [14]. Their recent refinement has taken three
directions. First, they have been developed to support top-down design
methods [17]. Second, they have been extended so as to provide a
basis for formal verification [40]. Finally, they have been used as
the basis for a tool to aid program development [12] which admits
rigorous, but perhaps incomplete, analysis [11]. The variety of these
uses indicates the breadth of the benefits which accrue from facilities
for high-Tevel, abstract description.

Abstract data types are ideally suited to the high-Tevel des-
cription of a software system's data storage components. But they are
not adequate for the succinct description of those system components
which are intended more for the processing of data than for the storage
of data. This is particularly true when the components operate con-
currentlyl. The major problem is that abstract data types are oriented
toward describing components as structures of data which are operated
upon via procedure calls. Many components -- e.g. a file system in a
multiprocessor computing facility -- are not naturally described as
collections of data objects which are accessed in a basically sequential

manner,

1By concurrent we mean parallelism which may actually be achieved by
running the system in a multiprocessing environment or which may only
be apparent at abstract levels of description of the system.

(2)

Extensions and modifications to abstract data types could be
developed to increase their effectiveness in describing processing
components in software systems -- this has been done in the Gypsy
system [1] and the Modula programming language [39]. In this paper,
however, we develop a description scheme that retains many of the
concepts of abstract data types but is based upon the concept of a
sequential process [16]. This leads to a means of abstractly des-
cribing processing structures which focuses upon describing a sys-
tem as collection of interacting, concurrent subsystems.

In the next section, the view of a system as a collection of
interacting subsystems is made more concrete as we describe the
various ways in which the subsystems may interact. Following
that, the various aspects of abstract process descriptions are
presented. First, the external description of a subsystem in terms
of how it interacts with other subsystems is discussed. Then, the
discussion turns to the manner in which an internal description of
a subsystem may be given in terms of coordinated interactions among its
(sub-)subsystems. In the final section, we suggest that the scheme admits
approaches to verification which are similar to those developed in

conjunction with abstract data types.

The constructs discussed here are part of the design language
developed for the Design Realization Evaluation and Modelling
(DREAM) system ([19], [24]-[26]). DREAMis a too1?ﬂn“thédesignof]argew
scale software systems, providing the designer with bookkeepina and
analysis aid. A description in the DREAM Design Notation (DDN) con-
sists of a collection of (nested) description fragments, called
textual units. DREAM provides facilities which allow the user (or users,

in the case of a design being carried out by a design team) to modify
the information in a data base on a textual unit basis.

The focus of this paper is upon the DDN constructs for des-
cribing abstract process types. Other aspects of DDN are discussed
in [22], [28], [32], and [38]. Also the focus is upon
the use of the constructs -- their syntax is covered in [27]. Some
justifications for the constructs are given; others Tie within the
DREAM system's general philosophy which is discussed in [26] and [30].

An Abstract View of Systems

A convenient view of software systems is that they are composed
of parts, subsystems, which operate concurrently and asynchronously.
This may be made concrete by viewing the subsystems as interacting
solely through the sending and receiving of messages and the sharing
of data objects. This is a bit redundant since the shared data objects
could be viewed as subsystems which receive read and write commands as
messages and send messages containing the requested value in response
to a read command. But recogn{zing shared data objects as distinct
from subsystems allows message exchange to be used to focus upon con-
trol interactions among subsystems. Also, data objects are needed to
describe the structure of the messages transmitted among the subsystems.

This paper focuses upon the description of control interactions
among asynchronously operating subsystems. We assume, therefore, the
existence of a scheme for describing data objects that may be shared by
a community of concurrent subsystems. (Several such schemes have been
developed, e.q., [2], [15], [39]. A scheme that was developed in con-
junction with the work discussed here is described in [28].) Only two
aspects of the scheme are dimportant here. First, a definition of a
data object specifies all the procedures which may be invoked upon it.
Second, data objects have built-in synchronization mechanisms which
can be used to preclude interference among the operations performed
upon the object.

Communication among asynchronous message senders and receivers
requires a transmission controller that is able to store both messages
that have been sent but not yet received and requests for messages
which have been lodged but not yet satisfied. In DDN, an idealized
controller, called a link, is provided. Links holdmessages and
requests in (unbounded) bag data structures. Thus they do not nec-
essarily pass messages on in the order the messages were sent, nor do
they necessarily service requests for messages in the order the requests
were Todged.

(4)

As an exampie of this view of software systems, consider the
following description of HEARSAY [9], a multiprocessor speech pro-
cessing system developed at Carnegie-Mellon University. HEARSAY may
be decomposed into two major parts. The first is a data base, called
the blackboard, which contains all the information about the utterance
being processed and the hypotheses which have been made as to its lin-
guistic structure. The second part is a collection of processing sub-
systems, each called a knowledge source. A knowledge source inspects
the information in the data base and augments or modifies it according
to rules which it is programmed to enforce. The subsystems in this
description of HEARSAY are therefore the blackboard and the knowledge
sources. Note that the blackboard could alternatively be described as
a shared data object since its primary function is the storage of data
and the operations performed upon it by the knowledge sources must be
synchronized in some way. We ignore this design choice and focus upon
the knowledge sources.

The interactions among the HEARSAY subsystems arise as follows.
It would be wasteful to have each knowledge source constantly inspect
the data base to see if it should perform any processing upon it.
Therefore, the data base is programmed to know which data base entries
are of interest to each knowledge source and to send a signal to a know-
ledge source when one of the data base entries of interest to it changes
value. When a knowledge source is awakened in this way, it inspects
the data base and makes any modifications deemed necessary.

Multiprocessing systems, such as HEARSAY, may naturally be des-
cribed in the manner advocated here since these systems actually
have subsystems which interact by message exchange. But this view
is also appropriate, as evidenced by two recent texts ([3], [10]),
when it is only a logical one and the system actually runs in a uni-
processor environment. In this case, the view facilitates the decom-
position of the system and hence the mastery of its complexity [33].
The transmission of messages may never really take place, and message
interchange may be used only as a model of the actual interactions.

This is the primary reason that a more sophisticated transmission -
control mechanism is not defined within DDN.

(5)

In the f011owing'sections, a DDN description of the knowledge
source subsystems of HEARSAYZ will be developed. A1l of the knowledge
source subsystems are similar with respect to their interactions with
the data base. Therefore, the description is of the class of knowledge
source subsystems. To reflect that different instances of this class
vary with respect to their details, such as the number of entries in the
data base that are of interest to the knowledge source, we define a para-
meterized class. This means that part of the class definition is a speci-
fication of qualifiers which may be assigned values when an instance of
the class is created. Class definitions and qualifiers are discussed in [22].

External Description of a Subsystem

An external description of a subsystem defines the ways in which
the subsystem interacts with other subsystems in its environment.

In keeping with the principle of information hiding [18], the external
description indicates only the effect of the combined operation of the
subsystem's internal components and defines nothing as to the manner in
which the internal components are organized or actually interact.

The external description also serves to guide the implementation
of the subsystem. Being, by definition, a complete specification of
the subsystem, it provides the designer with a definition of the
(minimal) behavior which must be implemented. It may also guide the
designer's decision making, helping in the determination of the set
of decisions to be made and the inter-relationships among the decisions.

The external description must define three aspects of the subsystem.
First, it must specify the interfaces to the subsystem not only in terms
of the format of the information flowing through each interface but also
in terms of what information may legally flow through each interface.
Second, it must specify the correlation between the information flowing
through one interface and the information flowing through another inter-
face. Finally, it must relate the system's operation at one point in
time to its operation at a previous point in time -- that is, it must
specify the more qlobal aspects of the subsystem's operation.

2 The description is an approximation of the structure and operation of
knowledge sources actually in HEARSAY. It refiects our understanding of
the description which appears in [9], but has also been tailored 'so as

to provide examples of the facilities in DDN.

{6)

Subsystem Interfaces

An interface to a subsystem is a port through which messages may
flow. Conceptually, a port is a named communication Tine along which
messages flow, one at a time, and which does not have any message
storage capabilities. Ports correspond to one-way communication lines
and therefore have a direction in or out.

The messages which flow through a port are sets of data objects.
Each port therefore has associated with it a set of buffers, each able
to store one data object. The set of buffers is ordered, in the same
sense and with the same implications as the ordering among a set of
parameters to a procedure. The set of buffers indicates the types of
data objects which comprise a message and the order in which the data
objects are composed to form a message.

The messages that may legally flow through a port are specified
by giving buffer conditions for the port. A buffer condition is a

predicate over the buffer data objects, indicating the set of legal
values for the buffer data objects as well as the legal correlations
among the values. OR'ed together, the buffer canditions associated
with an in-port (out-port) are analogous to a pre-condition (post-
condition) [13].

In DDN, a port is defined by giving a textual unit which specifies
the port's name and direction and which has nested textual units which
specify the buffers and the buffer conditions associated with the port.
A set of ports is defined in figure 1 for objects of class3 [knowledge_
source]. If an object of this class were created with # values having

the value 4 and # servers having the value 3, then the object would
appear as pictured in figure 2. There are ten ports, grouped into

three arrays and each port has a singleton set of buffers associated
with it. Notice that defining an array of ports implies that there is
an array of sets of buffers, one set for each port. The buffer condi-
tions associated with the make request ports indicate that messages
flowing out through these ports will have only the values inspect or
modify. The absence of buffer conditions associated with the other

3 1t is convention in DDN to enclose an identifier in square brackets
when it is used to name a class.

[knowledge source]: SUBSYSTEM CLASS;

QUALIFIERS;

DOCUMENTATION;
#_values is. the number of values monitored
for this knowledge source; # servers is
the number of parallel servers in this
knowledge source
END DOCUMENTATION;

#_values, #_servers

END QUALIFIERS;

await: ARRAY [1::#_values] OF IN PORT;
BUFFER SUBCOMPONENTS;
signal OF [on_off_switch]
END BUFFER SUBCOMPONENTS;
END IN PORT;

make_request: ARRAY [1::#_servers] OF OUT PORT;
BUFFER SUBCOMPONENTS;
request OF [data_base_operation]
END BUFFER SUBCOMPONENTS;
BUFFER CONDITIONS;
- request=inspect,
request=modify
END BUFFER CONDITIONS;
END QUT PORT;

get_answer: ARRAY [1::#_servers] OF IN PORT;
BUFFER SUBCOMPONENTS;
answer OF [data.base-response]
END BUFFER SUBCOMPONENTS;
END IN PORT;

END SUBSYSTEM CLASS;

Figure 1

signal(3)

signal(2)

await (4)

signal(4)

signal(l)

s

answer (1) /L/”f
//// \<:\l\, request (3)

request (1)

. make request(3)

get answer(l) answer (3)

answer (2)

\ request (2).

make request (1)

get answer (3)

get answer (2)

ports are represented by labelled arcs

Figure 2

(9)

ports indicates that there are no restrictions on the values of the
data objects which compose messages flowing throuagh these ports - this
freedom could be reduced as the subsystem is further desianed.

A port definition is comparable to a heading for a procedure
stated in a programming language. It is similar in that it specifies
a name by which the port (procedure) may be referenced and the number,
type and order of the data objects (parameters) in messages (parameter
1ists) processed by the internal components (procedure body). It differs
because ports allow one-way, asynchronous communication whereas proce-
dures provide two-way, synchronous communication.

The buffer conditions of DDN are analogous to entry and exit
specifications of Alphard [40] with the additional aspect that they
are required to be valid whenever a message flows through the port.

Buffer conditions may be viewed as assumptions which may be made while
formally verifying either a design of the subsystem or a design of
another subsystem which uses the subsystem. Or they may be viewed as
indicating checks to be made during the execution or simulation of
the subsystem. They have been included in DDN with the intent of
using them in both these ways.

Message Flow Through a Subsystem

The role that a subsystem plays within a community of subsystems
is specified by a definition of the correlations among the messages
flowing into and out of the subsystem. This can serve to define either
the facilities provided by the subsystem or its utilization of the
facilities provided by the other subsystems. Note that this means there
will be a redundant specification of the interaction among subsystems,
with a definition of the interaction within both the users and the
provider of a facility. This is useful redundancy, affording the
opportunity to perform verification as will be discussed later.

Succinct definition of the subsystem's control of message flow
is frequently procedural in nature -- this is especially true when
programmers are the intended audience, since such descriptions are
quite natural to them. This leads to an ambiguity as to whether the
description is actually an external one or whether it is not also

(10)

describing the system's internal operation. While a procedural
definition may correspond very closely to the subsystem's internal
operation, it may also differ radically. Thus, it is serving as a
convenient description of the effect of the subsystem's internal
operation and, in and of itself, indicates nothing that may be relied
upon regarding the way that effect is achieved.

Some of the message flow characteristics of a subsystem may be
defined in terms of sequences of message transmissions through the
subsystem's ports. This is analogous to defining a procedure in
terms of a set of parameter/result pairs. More complex character-
istics, called global characteristics, must be defined in terms of

the corre]at%ons between transmissions occurring in different

message transmission sequences. This is analegous to specifying, for

a collection of stack manipulation procedures, that only certain com-
binations of procedure executions are legal -~ for example, it should

be specified that each pop operation must be preceded, at some point

in time, by a corresponding push operation. In this section, the con-
cern is with the more easily specified sequential message transmission
characteristics.. The specification of global messaqe flow character-
istics is treated in the next section.

Sequential message transmission characteristics are specified
by a set of "programs", each of which is an abstract model of a sequen-
tial process. Although these contro] process models are in the form

of programs for an abstract machine, their purpose is not to provide
(or even suggest) a definition of the operational detail of the sub-
system. Rather, they provide a pseudo- -procedural definition of the
effect of the subsystem's operation by means of an algorithmic def1n1~
tion of the message flow through the subsystem's ports.

Each control process model may be viewed as a sequential process
which controls communication between a subsystem and other subsystems
in its environment. This communication may generally be partitioned
into several message transmission streams which are arbitrarily inter-
lTeaved. A subsystem is therefore generally described by several con-

trol process models with each describing a single message transmission
Stream.

(1)

In a control process model, messages flow in and out through
ports as a result of operations called receive and send. When a send
operation is performed, a message is first composed using the values
of the buffers associated with the port that is named in the send
operation. Then, the message is placed in the link to which the port
is attached and thereby made available for reception by some subsystem.
(The link is an object which is not a part of any of the subsystems
which utilize it. The process of attaching ports to links will be
covered in a subsequent section.) Control passes to the operation
following the send operation once the message is constructed and placed
in the 1ink. Since links have infinite storage capacity, this delay
is relatively short and the send operation can therefore be considered
to be a non-blocking operation.

When a receive operation is performed, flow of control is sus-
pended until a message is retrieved, decomposed and distributed among
the buffers associated with the port specified in the receive operation.
Since it is possible that a request for a message may be lodged when
none is currently available, the receive operation can cause relatively
lTong delays.

Prior to a send operation, the values of the data objects which
compose the message must be placed in the buffers. The computation
which is actually carried out to accomplish this may be lengthy and
complicated, but neither its time consumption nor its detail are of
interest in defining sequential message transmission characteristics.
The only aspects of interest are the result of the computation and the
relationship of the result to any messages previously received. Thus,
in a control process model, computational detail is suppressed by
modelling it with a set-to operation which may be applied to a buffer
data object and which results in the buffer assuming a value prescribed
in the set-to operation. The dependency of the value upon previously
received or computed values is modelled by conditioning the flow of
control upon the values of the buffer data objects and hence upon
previously received or "computed" messages.

To describe the sequential message transmission characteristics
of [know]edge~§ource] subsystems, two sets of control processes are

(12)

needed. The first, specified* in figure 3, models the consumption
of messages which arrive at the await port. This models the sub-
s}stem‘s operation with respect to signals sent to indicate a change
of some data base entry of interest to the knowledge source.

v[know]edge_source]:KSUBSYSTEM CLASSY

Tistener: ARRAY [1::# values] OF CONTROL PROCESS;
MODEL: ITERATE
RECEIVE await (MY IMDEX);
END ITERATE;)
END MODEL ;-
END CONTROL PROCESS;

Figure 3

The second set of control processes is specified in figure 4.
These Tatter control processes model the operation of the servicers
of the incoming signals, indicating that they present a request to
the data base through one of the make request ports and receive
answers to the request through one of the get answer ports. The
entity MY INDEX is a variable which has a value in the range de-
clared as the bounds of the array of control processes and is used
to make each control process model distinct with respect to the buffers
and ports to which it refers.

"I knowledge source]: SUBSYSTEM CLASS'
requestor: ARRAY [1::# servers] OF CONTROL PROCESS;

MODEL; ITERATE ‘ ,
request(MY_INDEX) SET TO modify OR inspect;
SEND make request(MY_INDEX);
RECEIVE get answer(MY INDEX);
END ITERATE;

END MODEL
END CONTROL PROCESS;

Figure 4

* The quoted prefix in the textual unit of figure 3 indicates that
this textual unit gives further information about the class
[knowledge source].

(13)

The control process structure of a [knowledge source] subsystem
in which # servers is 3 and # values is 4 may be pictorially repre-

sented as in figure 5.

Each model 1is a control program over send and receive operations
on ports and set-to operations upon buffers. When necessary for the
accurate modelling of a subsystem's sequential message transmission
behavior, operations defined for the class of objects of which a buffer
is an instance can also be invoked upon that buffer. The control con-
structs used in control procéés models are Algol-Tike. There are con-
structs for definite iteration: an "ITERATE n TIMES" contruct and a
"FOR ALL i IN set of values" construct. WHILE and UNTIL constructs
are available for indefinite iteration. Since many subsystems are de-
signed to never terminate, there is also an "ITERATE" construct for
infinite iteration. Conditional control may be specified by the usual
forms of the IF construct. There is also a generalized CASE construct
which allows "labelling" of the cases with logical expressions.

AT11 of the control constructs have a nondeterministic version.
For example, the construct "ITERATE n OR MORE TIMES" indicates that
the number of times, while known before iteration begins, can be any
number greater than or equal to n. A nondeterministic variant of the
WHILE construct (see figure 6) is obtained in a way in which many of

the nondeterministic versions are obtained, by using the nondeterministic

boolean expression PERHAPS. Nondeterminism may also be specified in
the set-to operation (see Figure 4) by giving a logical expression
which specifies the set of values which could possibly be assigned to
the data object.

Control process models provide for the nondeterministic, pseudo-
procedural modelling of a subsystem. Nondeterminism is used because
it contributes to the clarity of the model, allowing succinct definition
of the subsystem. A pseudo-procedural description scheme is also used
to enhance the clarity of the description. The resulting procedure-
oriented modelling scheme is quite natural for describing the effect
of a subsystem's operation in terms of its sequential message trans-
mission characteristics. (As will be seen in the next section; DDN

await(2)

await (3)

Listenen|(?) Listenen|3)

. await(l) await (4),

get_answer(l) ' &equaétan(Z)u

make request(1l)

get_answer (3)

get_answer (2) make request(2)

control processes are represented by circles containing the
control process name in script

Figure 5

(15)

relies heavily upon non-procedural specifications for defining global

message transmission characteristics.)

A multiprocessor system programming Tanguage (for example, [1]
and [8]) typically provides a variety of operations for the synchron-
ization of message transmission. In the DDN modelling lanquage, how-
ever, we have provided only two relatively simple,but sufficient,
synchronization operations, send and receive. While this makes it
necessary for designers to develop DDN descriptions of other synchron-
ization operations, we feel that this has the beneficial effect of
forcing the designers to develop the details of the operations with
consideration given to the ways in which they will be used to effect
synchronization.

Global Behavior

The facilities provided by a subsystem cannot generally be used in
a totally arbitrary order -- e.g., the facility which a file system pro-
vides for opening a file must be used prior to the facilities for reading
and writing the file. Thus there are correlations between what happens
in one sequential message transmission sequence and what may happen in
another sequential message transmission sequence. (Note that these
sequences may pertain to the subsystem's use of its environment as well
as to the use, by others, of the facf]ities provided by the subsystem.)
A specification of these correlations is a specification of the sub-
system's global behavior since it concerns more than just the activity
of a single part of the subsystem for a relatively short period of time.

Global behavior must be specified non-procedurally since it can
rarely be expressed succinctly as some controlled sequence of operations
invoked by the subsystem. Necessarily, it concerns the operation of
other subsystems which are in the subsystem's environment. It also per-
tains to operations that are distributed over time, stemming from different
sequential algorithms. Procedural descriptions would therefore be both
misleading and complicated.

Global behavior is specified in DDN in terms of events, activities
that may be observed external to the subsystem. Usually an event is

(16)

the transmission of a message through a port, and thus may be iden-
tified with the execution of a send or receive operation in one

of the control process models. In general, an event may be assoc-
jated with the execution of any one of the instructions in a control
process model. (Recall that since control process models are used
as part of the external description of a subsystem, they are known
to an external observer.)

Global behavior is specified by defining a set of sequences

of events. Note that this is similar to what was accomplished pro-
cedurally via the conircl process models -- each model defines a set
of sequences of messane transmissions where each sequence corresponds
to an execution of the model. Formal lanquace theory provides a base
for the non-procedural specification of behavior, since the set of
events may be considered to be an alphabet and a behavior is then a
language over this alphabet [19].

Two aspects of global behavior---one mandatory for correct
operation and the other stemming from a design decision -- need to
be specified for [knowledge source] subsystems. First, interactions
with the data base occur subsequent to the reception of an activation
signal indicating that an entry in the data base has been changed.
Second, the interactions with the data base should be ordered such
that no request is lodged while there is an outstanding request
which has not been answered -- that is, interactions with the data
base are to be ordered so that its facilities are utilized in a
subroutine fashion.

To describe this behavior, we first define some events as
indicated in figure 6. The statement labels define names for events
which correspond to the execution of the labelled statement.

Note the use of the NULL instruction to allow denotation of the
event "a sequence of interactions with the data base is begun".

"[knowledge source]: SUBSYSTEM CLASS'

Tistener: ARRAY [1::# values] OF CONTROL PROCESS;
MODEL; ITERATE
hear: RECEIVE await(MY INDEX);
END ITERATE;
END MODEL;
END CONTROL PROCESS;

'[know1edge_source]: SUBSYSTEM CLASS'

requestor: ARRAY [1::# servers] OF CONTROL PROCESS
MODEL; ITERATE)
start: NULL;
ITERATE WHILE PERHAPS
request (MY INDEX) SET TO modify OR inspect;
ask: SEND make request(MY_INDEX);
get: RECEIVE get _answer(MY INDEX);
END ITERATE;
END MODEL;
END CONTROL PROCESS;

Figure 6

More macroscopic events are needed to conveniently define the
global behavior. These are defined by the textual unit shown in
figure 7. The SEQUENCE operator denotes that the events which are its
arguments are sequenced in the speéified order. The REPEAT operator
denotes that the comsult event may be repeated zero or more times within
each hear _and do_something sequence. Thus, the hear_and do something
event corresponds to a signal arriving from the data base being fol-
Towed by the interactions with the data base.

[knowledge sourcel: SUBSYSTEM CLASS'

EVENT DEFINITIONS;
consult: SEQUENCE(ask, get),
hear_and_do_something:
SEQUENCE (hear, start, REPEAT(consult))
END EVENT DEFINITIONS;

Figure 7

(18)

With these events defined, the global behavior may be specified
as in figure 8. The first part of the specification
indicates that, for any particular instance, up to #_servers hear and_
do_something events may be proceeding at any point in time, i.e., that
servicing may go on in parallel up to the 1imit imposed by having only
_servers servicers. The second part indicates that a comsult event
for any particular instance must be exclusive of any other consult
event for any instance of class [knowledge source] i.e., that the
interactions with the data base are ordered in time.

"[knowledge source]: SUBSYSTEM CLASS'

DESIRED BEHAVIOR;
POSSIBLY # servers CONCURRENT
(hear_and_do_something, hear and do something),
MUTUALLY EXCLUSIVE (consult, [knowledge-source]|consult)
END DESIRED BEHAVIOR:

Figure 8

This example has used only a portion of the facilities avail-
able in DDN for behavior specification. Events may be associated
with other aspects of a subsystem's operation, more complex relation-
ships among events may be defined, relationships between events defined
for different subsystems may be established, and events which are not
associated with any computational part of a system may be described.
A complete description of DDN facilities for non-procedural, event-
based behavior specification is given in [38].

To review, a subsystem's global behavior is specified by de-
scribing the sequencing among observable events that relate to the
operation of the subsystem. Global behavior may concern either the
operation of the subsystem over a period of time or the interactions
among different subsystems, or both. In any case, the sequencing is
specified non-procedurally by defining a language over an alphabet
of events.

The techniques for behavior specification used in DDN are a
modification of event expressions as defined in [19]. Event ex-

(19)

pressions provide a means of defining a behavior by algebraically de-

fining a Tanguage over a set of event names. Essentially all of the de-
scriptional capabilities of event expressions are available in DDN, but
thev have been put in a form which makes them more easily used,

The DDN behavior specification constructs have also borrowed
some concepts from path expressions [4]. In particular, the
specification of behavior as a set of partial specifications
is taken from path expressions. However, the specification of
behavior in DDN is radically different in intent from path ex-
pression behavior descriptiob. Path expressions were originally
developed as a programming language construct for imposing scheduling
and synchronization constraints upon a community of concurrent
processes. Behavior specification in a DDN description is not pre-
scriptive in this sense -- the specification's intent is to report
the desired behavior rather than to Tead to the automatic generation
of synchronization code. Thus, the behavior specification prescribes
necessary scheduling and synchronization only in the sense that it
indicates the subsystem designer's intentions as to what behavior
is legal.

Internal Description of a Subsystem

A subsystem's external description provides a definition of how
the subsystem may be used and how it will interact with other sub-
systems in its environment. It provides all the information about
the subsystem that one is allowed to know when developing other sub-
systems which execute concurrently with the defined subsystem.

An internal description, however, gives details about the
internal componentry of the subsystem and the manner in which the
components interact to create the effects defined in the subsystem's
external description. The internal description is what would
typically be produced by a series of steps in a top-down design method.

A subsystem's internal description must define three aspects of
the subsystem's internal operation. First, it must define the com-
ponents which comprise the subsystem. These will be both subsystem

(20)

components and shared data objects. In this paper, we focus ex-
clusively upon subsystem components®. The second aspect which must

be defined is the communication pathways among the subcomponents.

This involves the definition of 1inks and the attachment of ports to
links so that messages may flow among the subcomponents. Finally,

the message flow into and out of the subsystem must be related to the
message flow into and out of the collection of subcomponents. This is
done by establishing controllers which distribute incoming messages
among the subcomponents and collect messages from the subcomponents
and pass them out through the subsystem's out ports.

Subcomponent Declaration

Subcomponents will themselves be instances of some other class
of subsystems. Thus a definition of the subcomponents consists of a
set of declarations, each specifying a name for a subcomponent and

indicating the class of which it is an instance.

The declaration of one possible set of subcomponents for
[knowledge source] subsystems appears in figure 9. The activator
subcomponent receives the signals sent by the data base and evaluates
a logical condition to determine whether or not one of the manipulator
objects is to be activated. The manipulator objects await activation
by the activator and then interact with the data base to effect any
necessary changes.

"[knowledge source]: SUBSYSTEM CLASS®

SUBCOMPONENTS;
activator OF [pre condition (# _servers)],
manipulator ARRAY [1::# servers]
OF [data base modifier]
END SUBCOMPONENTS;)

Figure 9

5 7o avoid having to use the awkward term sub-subsystem, the term
subcomponent 1is used for the remainder of this paper to mean
a subsystem which is a component of the subsystem being described.

(21)

The subcomponentry of this example is relatively simple.
More extensive facilities are available in DDN for describing sub-
components and these are discussed in [227.

Subcomponent Connections

Communication pathways must be established among the sub-
components so that they may interact. Since links are used to
control message transmission, it is necessary to establish the
requisite Tinks and specify which ports are connected to which Tinks.

In DDN, this is accomplished by "plugging" ports together.
For every set of ports that are plugged together, a link is estab-
lished and the ports are attached to the link. In the example,
communication pathways may be described by the textual unit
appearing in figure 10. This establishes a set of links, each of
which has an aetivate port from one of the activator objects and a
wait for activation port from one of the manipulator objects
attached to it. This leads, when there are three servers, to
the communication pathway structure depicted in figure 11.

"[knowledge source]: SUBSYSTEM CLASS'

CONNECTIONS; :
FOR ALL i IN [1::#_servers]
PLUG (activator | activate (i), manipulator (i) |
END FOR; wait for activation) ;

END CONNECTIONS;

Fiqure 10

The control constructs provided for writing programs in a con-
nection textual unit are essentially those provided for writing
control process models except that non-deterministic constructs are
not allowed. Also, the variables that are referenced in a plug pro-
gram must be able to be evaluated prior to subsystem "execution"
since the structure of a subsystem is static and may not change
during the running of the system.®

EWe have investigated extensions to the DDN modelling language which
would allow the description of dynamic system structure [37], but have
not incorporated these extensions in the current version of DREAM,

// - %\\"\
// \\\
AN
ACTIVATOR \
i
]
/
‘y‘ /f*
activate(l) ANactivate(3)
,"/}.
\\ M/’f
\““*‘-w-...., e ,M’j

‘ ivate(2
B wait for activation activate(2) wait for - activation
f//// ?

wait_for: . activation
MANIPULATOR(1) T MANTIPULATOR(3)
\\\\\\) é \\ \\\\
) \

L

e
\w//

--...w..._,-»-

MANTPULATOR(2)

N /

\\\\mwmwajf/”

subcomponents are represented by circles containing the
subcomponent name in capital letters

links are represented by boxes

Figure 11

(23)

The facilities provided by DDN for establishing communi-
cation pathway structures permit any (static) pathway structure
to be defined. Note that it is only through the control of the
pathway structure that message transmission may be directed from
one subcomponent to another -- the send operation cannot specify
which subcomponent is to ultimately receive a message. Thus the
pathway structure itself defines all of the possible communication
interactions. This is beneficial for the purpose of defining a
system's structure. Operations, such as defined in [8], which
permit constraint of the ultimate receiver could Tead to more
efficient system implementations but would obscure the definition of
the interactions. Thus, DDN uses relatively primitive constructs
which force the explicit representation of interactions.

Message Distribution

The messages which flow into the subsystem are received by the
subcomponents and the messages flowing out of the subsystem are
produced by the subcomponents. Thus there are some relationships
among the ports of the subcomponents and the ports of the subsystem.
In many cases, this is a simple identification of a port in a sub-
system with a port in one of the subcomponents so that, for instance,
when the subcomponent sends a message through its port, the message
flows out through the subsystem's port. This simple identification
occurs when there is no intermediate processing required as the
message passes out of the subsystem. More complex cases arise when
intermediate processing is required -- for example, an incoming
message may need to be broken up into parts which are distributed
among the subcomponents.

For the simple cases in which a subsystem port is identified
with a port in a subcomponent, DDN allows ports to be overlaid as
shown in figure 12. The OVERLAY statements establish an equivalence
between one of the ports of the subsystem and one of the ports
within a subcomponent. When the ports are overlaid, no overhead
processing is incurred in order to get messages into and out of

the subcomponents since they have direct paths to the subsystem's
ports and hence to the environment in which the subsystem is operating.

"[knowledge source]: SUBSYSTEM CLASS '

CONNECTIONS;
FOR ALL i IN [1::#_servers]
OVERLAY (manipulator (i) | request out,
make request(i));
OVERLAY (manipulator (i) | answer in, get_answer(i));
END FOR;
END CONNECTIONS:

Figure 12

More complex message distribution among the subcomponents
is described in DDN by establishing special subcomponents which
control the flow of messages between the subsystem's ports and
the ports of the subcomponents. Since the purpose of control
procesées is to control the flow of messages through the sub-
system's ports, these special subcomponents are described as
bodies for the control processes. For our example, this is
shown in figure 13. The body of a control process is a control
program over 1) send and receive operations upon the subsystem's
ports and the control process' pdrts and 2) operations upon the
buffer and data object components of both the subsystem and the
control process. Note that the operation assign has been invoked
upon the db_signal buffer, passing as a parameter the value of the
signal buffer -- the operation assign must be among the operations
defined for the class [on off signall. The control constructs that
are available for stating control process bodies are the same as
those for specifying control process models except that the non-
deterministic constructs may not be used.

The textual units given in this section give rise to a set
of communication paths among the subcomponents. For # servers
being 3 and # values being 4, the paths would appear as pictured

"[knowledge source]: SUBSYSTEM CLASS'

1istener: ARRAY [1::#.values] OF CONTROL PROCESS;
pass.on: LOCAL OUT PORT,
BUFFER SUBCOMPONENTS;
db_signal OF [on_off_signal]
END BUFFER SUBCOMPONENTS;
END OUT PORT;
MODEL; ITERATE
hear: RECEIVE await(MY_INDEX);
END ITERATE;
END MODEL;
BODY; ITERATE
RECEIVE awaWt(MY INDEX)
db_signal.assign(signal(MY_INDEX));
SEND pass.on;
END ITERATE;
END BODY;
END CONTROL PROCESS;

"[knowledge source]: SUBSYSTEM CLASS'

CONNECTIONS;
FOR ALL 1 IN [1::#_values]
PLUG (1istener(i) Ipass _on, actwvatorlqet _signal);
END FOR;
END CONNECTIONS;

Figure 13

in figure 14. In comparing figure 6 and figure 13, notice that the
listener control processes define, in this implementation, actual sub-
components whereas the requester control processes do not. This is
because each Zistener control process models the operation of a single
subcomponent and this subcomponent can most naturally be described as
the body of the control process. Thus control process definitions
serve two purposes. First, they may define, through a model textual
unit, the message transfer effect of the operation of the subcomponents.
Second, they may specify, through a body textual unit, the operation

of an actual subcomponent.

e
avait(2) — T

™~

await (3)

e p—

/ mmnmh

await (1)

. get signal
Listener(1) M’”I““\\
ACTIVATOR
T — activate(l) activate(3)
wait_for activation wait for activation
activate(2) \\B<;‘
MANIPULATOR(1) T MANIPULATOR(3)

wait for activation

/ h
request out i Qfswermjn

get answer (1) ~— ~

answer in

request out

make request(3)

. . MANIPULATOR(2)
make_ request (1) . get_answer (3)
., f"l R
™~ answer in request out -
e R !
\\ / ,,,—*/
\\w—-_, i

get answer (2 make request(2)

Figure 14

(27)

Analysis of Subsystems

The scheme that we have developed. for describing col-
Tections of sequential processes affords many opportunities for
rigorous analysis.” The simplest forms of analysis involve checks
that can be made without interpretation of the text describing a
subsystem's operation. Since such analysis would not account for
the dynamic, run-time characteristics of the subsystem, it can be
called static analysis. One example is the derivation of graphs

such as in figure 14. Such paraphrasing of the subsystem's des-
cription in a form different from that used by the designer is
frequently valuable in uncovering inconsistencies in the organ--
jzation of a collection of subcomponents.

Another static analysis that could be performed is a check
that referenced entities, such as ports or classes, have actually
been defined. Such an analysis is a check of the completeness of
the subsystem's design, rather than a correctness check, since
the designer may not have yet designed the referenced entity.
This indicates that much of the analysis performed during design
is feedback analysis [20] in which it is left to the designer to
conclude whether correctness or incorrectness of the design can
be determined, based upon the derived information.

0f much more value to a designer is dynamic analysis in

which information is derived about the run-time characteristics

of the system under design. While dynamic analysis could be
delayed until the system is completely designed, it is of more
value when performed early in the design process, at which point

it serves to predict the system's eventual run-time characteristics
and offers the opportunity to uncover errors when they may more
easily be corrected. The discussion of dynamic analysis will be
with respect to this context -- in particular, implicit in the
discussion is that dynamic analysis will be used as an integral
part of a top-down design method.

7 A general taxonomy of different types of analysis that would
be useful is given in [35].

(28)

One form of dynamic analysis consists of checking the con-
sistency among the various parts of a subsystem's external des-
cription. While the desired behavior construct of DDN is intended
for a different purpose than the control process model construct, one
way to achieve the redundancy necessary for consistency checking is
to give a desired behavior specification of the behavior specified
by the control process models. Such redundancy may also arise from
desired behavior specifications appearing elsewhere in the DDN de-
scription of the system which have implications for the behavior
that can legally be specifﬁed by the subsystem’s control process
models.

A check of the consistency between the desired.behavior
specification and the control process models would proceed as
follows. Using an algorithm similar to that defined in [19],

a description of the sequences of events defined by a control
process model would first be derived. The desired behavior
specification and the control process model would then be con-
sistent if, for those events common to the two descriptions, all
sequences defined by the control process model are>5136 defined

by the desired behavior specificationﬁ.

Another dynamic analysis that could be performed is a check
of the consistency of the interfaces among a collection of sub-
systems. A subsystem's external description may be used to
indicate both how it responds to messages from other subsystems
and what responses it expects from other subsystems. Therefore,
once a configuration of subcomponents has been established, the
consistency of the subcomponents' external descriptions can be
checked. This analysis could be performed in the same manner as
described above. The event sequences resulting from the operation
of the control process models could be determined and then these
sequences can be checked for inclusion in the sets of sequences
specified by the desired behavior descriptions.

8 The.requirement that sequences defined by control process models
be included in the set of sequences defined by desired behavior
descriptions follows from the constraint nature of desired
behavior descriptions.

A final form of dynamic analysis is the checking of the
consistency between the external description of a subsystem's be-
havior and the behavior actually created by the subsystem's imple-
mentation. This would involve using the bodies of the control
processes and the external descriptions of the subcomponents to
determine the actual sequences of message flow through the ports.
This would be consistent with the control process model definition
of the subsystem's behavior as long as this set of message flow
sequences was a subset of .the set defined by the control process
models. 9

Alternatively, the event sequences caused by the operation of
the internal components could be determined and compared to the
event sequences specified as desired behavior. This can be done as
Jong as event definitions exist which relate the events defined for
the subsystem and the events defined for the subcomponents. With
such definitions, the set of event sequences for the subcomponents
could be mapped onto a set of event sequences for the subsystem.
This set could then be compared, for containment, with the set of
event sequences specified by the desired behavior description.
(This type of analysis is used in the TOPD program development
system [11].)

These dynamic analysis techniques all require some means of
comparing two sets of sequences. In general, this comparison can-
not be performed algorithmically [19]. Therefore, either algorithms
for special situations would have to be used and cases which did not
fall into these situations would have to go unanalyzed, or the
comparison would have to be performed by the designer. The latter
approach may not be unreasonable, as the designer may have the in-
sight and intuition necessary to show equality or inclusion or find
counter-examples.

9 Alternatively, it could be required that the two sets be equal,
reflecting a more strict condition that all, as well as only, the
specified behavior is actually achieved.

(30)

The inability to algorithmically perform the entire analysis
is not necessarily a serious Timitation. First, in the absence of
rigid interpretations imposed by specific analysis techniques, a de-
signer is free to impose whatever relationships between the sets of
sequences are deemed appropriate.’® Thus designers may adjust the
analysis to either their own style of design or the nature of the
behavior being described. For example, a designer might use the
desired behavior descriptions to indicate bounds upon the actual
behavior such that part of the specified behavior must be achieved
and part of it would be legal but is not required.

Second, simulation-based analysis may be used when formal
(or informal) analytic techniques do not exist or are computa-
tionally unattractive. Simulation is possible since the pro-
cedural descriptions of a subsystem (i.e., the control process
bodies) provide rigorous definitions of its operation. Several
constructs have been included in DDN in order to increase the
effectiveness of simulation. First, the buffer conditions can
be checked, during simulation, whenever a message passes through
the port associated with the buffer condition. Second, a history
of the events occurring during the simulated execution could be
checked against the set of desired sequences. In addition, the
DDN notation could be extended'to allow its use in the prediction
of a subsystem's performance characteristics, following an
approach defined in [29]. The description scheme would be aug-
mented with constructs for associating probabilities with non-
deterministic operations and time distributions with modelled
operations. Once this was done, the simulator could accumulate
statistics concerning characteristics such as running time,
resource utilization and queue sizes.

101t is our belief that any fixed set of predetermined inter-
pretations would omit some relationships significant to some
designers, leaving those relationships to be checked by the
designers themselves, without assistance.

Conclusions

We have presented a scheme for describing collections of
asynchronous sequential processes. The scheme provides for the
description of the communication pathways among the processes in
the collection and hence the interactions among the processes.
This allows the description of the internal, operational details
of the collection. The scheme also provides for the description
of the behavior of the collection as a whole in terms of the
message flow into and out of the collection. This allows the de-
scription of the ways in which the collection may be used without
a description of how this behavior is achieved.

We have used this scheme in formulating descriptions for a
variety of software systems ([5],(6],[231,[31],[36],[37]), and
have also used it in one exercise [34] which attempted to simulate
a design effort. We feel that the scheme demarcates an important
set of facilities for the description of software systems and
that it provides a valuable basis for a variety of tools to aid
designers of large-scale software systems.

We feel that effective design aid tools based upon this
modelling scheme should allow the derivation of information help-
ful in determining whether or not the design being developed is
correct. Some of this information may be a paraphrase of the de-
signer's description in a form that allows the designer to more
easily see inconsistencies which may exist. More helpful informa-
tion is that which indicates the dynamic, run-time behavior of the
system in a form which allows algorithmic or heuristic comparison
with the behavior which the designer intends to have happen.

In and of itself, the description scheme introduces a rigor
into the design of large-scale software systems which allows the
designer to more carefully develop and expand the design. In
this regard, the scheme is particularly useful in conjunction with
a top-down design method. The ability to analyze the design and
derive information that is not explicitly represented provides

(32)

the designer with a means of checking the appropriateness of the
design at each design step. This incremental analysis of the
design affords the opportunity to check design decisions as they
are made rather than at the end of the design process.

Acknowledgements

The development of abstract process types was greatly facilitated
by the contributions and constructive criticism of Jack Wileden,
Alan Segal, Allan Stavely, John Sayler, Dirk Kabcenell and

Victor Lesser.

™N>

10.

11.

12.

14.

(33)

REFERENCES

A.L. Ambler, et al. GYPSY: A Language for Specification and
Implementation of Verifiable Program. ICSCA-CMP-2, Certifiable
Minicomputer Project, Univ. of Texas, Austin, January 1977.

P. Brinch Hansen. The Programming Language Concurrent Pascal.
IEEE Trans. on Software Engineering, 1, 2 (June 1975), 199-207.

P. Brinch Hansen. The Architecture of Concurrent Programs.
Prentice-Hall, Englewood Cliffs, N. J., 1977.

R.A. Campbell and A.N.;Habermann. The Specification of Process
Synchronization by Path Expressions. Lecture Notes in Computer
Science, 16, Springer Verlag, Heidelberg, 1974.

J.Cuny. A DREAM Model of the RC4000 Multiprogramming System.
RSSM/48, Dept. of Computer and Comm. Sciences, Univ. of Mich.,
Ann Arbor, July 1977.

J.Cuny. The GM Terminal System. RSSM/63, Dept. of Computer and
Comm. Sciences, Univ. of Mich., Ann Arbor, August 1977.

0. Dahl and K. Nygaard. SIMULA -- an ALGOL-Based Simulation
Language. Comm. ACM, 9, 9 (September 1966), €71-678.

J.A. Feldman. A Programming Methodoloay for Distributed Com-
puting (among other things). TR9, Dept. of Computer Science,
Univ. of Rochester.

R. Fennel and V. Lesser. Parallelism in Artificial Intelligence
Problem Solving: A Case Study of Hearsay II. IEEE Trans. on
Computers, C-26, 2 (February 1977).

A.N. Habermann. Introduction to Operating System Design.
SRA, Chicago, 1976.

P. Henderson. Finite State Modelling in Program Development.
Proc. 1975 International Conf. on Reliable Software, Los Angeles,
April 1975.

P. Henderson, et al. The TOPD System. Tech. Report 77, Computing
Laboratory, University of Newcastle upon Tyne, England,
September 1975.

C.A.R. Hoare. An Axiomatic Basis for Computer Programming.
Comm. ACM, 12, 10 (October 1969), 576-580, 583.

C.A.R. Hoare. Notes on Data Structuring. In Dahl, Dijkstra
and Hoare, Structured Programming, Academic Press, New York, 1973.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

(34)

C.A.R. Hoare. Monitors: An Operating System Structuring Concept.
Comm. ACM, 17, 10 (October 1974), 549-557. \

J.J. Horning and B. Randell. Process Structuring. Computing
Surveys, 5, 1 (March 1973), 5-30. -

B.H. Liskov and S.N. Zilles. Specification Techniques for Data
Abstractions. IEEE Trans. on Software Engineering, SEIT, 1
(March 1975), 7-19.

D.L. Parras. - Information Distribution Aspects of Design
Methodology. Proc. IFIP Congress 71, Ljubljana, August 3971,
pp. TA-3-26-TA-3-30.

W.E. Riddle. An Approach to Software System Modelling, Behavior
Specification and Analysis. RSSM/25, Dept. of Computer and Comm.
Sciences, Univ. of Michigan, Ann Arbor, July 1976 (revised
November 1977).

W.E. Riddle. A Formalism for the Comparison of Software Analysis
Techniques. RSSM/29, Dept. of Computer and Comm. Sciences,
Univ. of Michigan, Ann Arbor, July 1977.

W. Riddle, J. Sayler, A. Segal and J. Wileden. An Introduction
to the DREAM Software Design System. Software Engineering Notes,
2, 4 (July 1977).

W. E. Riddle. Hierarchical Description of Software System
Structure. RSSM/40, Dept. of Computer Science, Univ. of
Colorado at Boulder, November 1977.

W.Riddle. DREAM Design Notation Example: The T.H.E. Operating
System. RSSM/50, Dept. of Computer Science, Univ.of Colorado,
Boulder, April 1978.

W.Riddle, J. Sayler, A. Segal, A. Stavely and J.Wileden. A De-
scription Scheme to Aid the Design of Collections of Concurrent
Processes. Proc. National Computer Conf., Anaheim, June 1978.

W.Riddle, J.Wileden, J.Sayler, A.Segal and A.Stavely. Behavior
Modelling During Software Design. IEEE Trans. on Software
Fngineering, SE-4, 4 (July 1978).

W.Riddle, J.Sayler, A.Segal, A.Stavely and J. Wileden. DREAM:
A Software Design Tool. Proc. 3rd Jerusalem Conf. on Information
Technology, Jerusalem, August 1978.

W. Riddle. DDN User's Guide. RSSM/37, Dept. of Computer

“Science, Univ. of Colorado at Boulder, in preparation.

w._Ridd1e. vastract Monitor Types. RSSM/41, Dept. of Computer
Science, Univ. of Colorado at Boulder, in preparation.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

(35)

J. Sanguinetti. Performance Prediction 1in an Operating System
Design Methodology. RSSM/32 (Thesis), Dept. of Computer and Comm.
Sciences, Univ. of Michigan, Ann Arbor, May 1977.

J. Sayler. Philosophy of the DREAM System: RSSM/39, Dept. of
Computer and Comm. Sciences, Univ. of Michigan, January 1977.

A.Segal. DREAM Design Notation Example: A Multiprocessor

Supervisor. RSSM/53, Dept. of Computer and Comm. Sciences,
Univ. of Michigan, Ann Arbor, August 1977.

A. Segal. Design Description Management. RSSM/45, Dept. of Com-
puter and Comm. Sciences, Univ. of Michigan,in preparation.

H.A. Simon. The Architecture of Complexity. Proc. Am. Phil. Soc.,
106, (December 1962), 467-482. Also in Simon, Sciences of the
Artificial, MIT Press, Cambridge, 1969, o

A.M.Stavely. DREAM Design Notation Example: An Aircraft
Engine Monitoring System. RSSM/49, Dept. of Computer and
Comm. Sciences, Univ. of Michigan, Ann Arbor, July 1977.

A.M. Stavely. Feedback Aids in Software Design Aid Systems.
RSSM/60, Dept. of Computer and Comm. Sciences, Univ. of Michigan,
Ann Arbor, November 1977.

J.Wileden. DREAM Design Notation Example: Scheduler for a
Multiprocessor System. RSSM/51, Dept. of Computer and Comm.
Sciences, Univ. of Michigan, Ann Arbor, October 1977.

J.Wileden. Modelling Parallel Systems with Dynamic Structgre.
RSSM/71 (Thesis), Dept. of Computer and Comm. Sciences, Univ.
of Michigan, Ann Arbor, January 1978.

J. Wileden. Behavior Specification in a Software Design Aid
System. RSSM/43, Dept. of Computer and Information Science,
Univ. of Massachusetts, August 1978.

N. Wirth. Modula: a Language for Modular Multiprogramming.
Software - Practice and Experience, 7, (1977), 3-35.

W.A. Wulf, R.A. London and M. Shaw. Abstraction and Verification
in ALPHARD: Introduction to Language and Methodology.

Report 76-46, Information Sciences Inst., Univ. of Southern
California, 1976.

RSSM/42

ABSTRACT PROCESS TYPES

William E. Riddle
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

CU-CS-121-77 (Revised July 78) December, 1977

This work was supported by a grant from Sycor, Inc.

Abstract

Abstract process types are introduced as a means of giving
high-Tevel descriptions of the components in Targe-scale software
systems. Abstract process types provide facilities for the descrip-
tion of a system's processing components that are analogous to the
facilities which abstract data types provide for describing a system's
data storage components. In particular, abstract process types pro-
vide a basis for approaches to verification that parallel the ap-
proaches developed in conjunction with abstract data types.

Key Words and Phrases

abstract process types, abstract data types, hierarchical system
description, non-procedural specification, verification, DREAM

