RSSM/40

HIERARCHICAL DESCRIPTION
OF SOFTWARE SYSTEM ORGANIZATION

WiTliam E. Riddle
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

CU-CS-120-77 Novembeyr, 1977

This work was supported by a grant from Sycor, Inc.

71

HIERARCHICAL DESCRIPTION
OF SOFTWARE SYSTEM ORGANIZATION

William E. Riddle
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

303-492-7108

John H. Sayler
Computer and Communication Sciences Department
University of Michigan
Ann Arbor, Michigan 48105
313-764-8504

Alan R. Segal
Computer and Communication Sciences Department
University of Michigan
Ann Arbor, Michigan 48105
313-764-8504

Allan M. Stavely
Department of Computer Science
New Mexico Institute of Mining and Technology
Socorro, New Mexico 87801
505-835-5126

Jack C. Wileden
Computer and Information Science Department
University of Massachusetts
Amherst, Massachusetts 01003
413-545-0289

This work was supported by a grant from Sycor, Inc.

Abstract

Constructs for hierarchically describing the organization of
Targe-scale software systems are presented. The constructs allow
the explicit specification of subsystem sharing. Descriptions using
these constructs are therefore not necessarily tree-Tike and hence
are frequently more natural and clear. The constructs were developed
as part of a Tanguage for describing a system's design, as opposed to
its implementation. The efficacy of the constructs is argued with
respect to this description task and the constructs are compared to
similar ones available in programming Tanguages.

Key Words and Phrases

hierarchical description, system organization, classes, instantiation
control, DREAM, DDN

Introducticn

Programming languages allow the description of a progranm's
organization in terms «o¢f data structures, which form the
programn's passive data storage portions, and procedures, which
form the program's active data manipulatiocn portions. The trend
in some recently developed programming languages, such as CLI
[1], has been tc unify the description of these different
portions o©of a vprogram through the use of abstract data types
which allow the description cf a <collection of data objects
along with the description of the procedures which operate upon
them. One of the many justifications for incorporating abstract
data types is that they support top-down design wmethods by

allowing the hierarchical develcopment cf programs.

Abstract data types are freguently not coanvenient for
describing the hierarchical organization of large-scale software
systens, particularly when the systems are described as
collections of asynchronous seguential processes. Firﬁt, the
emphasis upen describing the system's crganization in terms of
the organization of its data objects is sometimes inappropriate.
A text editor, for example, is an organizational subunit in many
operating systems but 1s net appropriately viewed as a data
object. Second, abstract data +types lead to a hierarchical
organizaticn which is tree-like and thus do not ailow the clear
description ¢f organizations in which parts of the system are

shared.

13

The enmphasis of this paper is upon the second of these two
problems. General constructs for describing the organization of
large-scale software systems are developed. These constructs
are an extension of ores developed fcr the TOPD program design
system [2], which were themselves an amalgamation of the <class
concept of SINULA {31 and some of the original work on abstract
data types [47. The cerstructs presented here differ
significantly in preoviding a means of explicitly defining
subcomponent sharing. Thus, the constructs lead to descriptions
that are frequently more clear than the tree-like descriptions
typical of other schemes based on user definition of classes of

obiects.

The constructs discussed here are part of the design
language develogped for the Design Realization Evaluation and
Modelling {DREAM) system [57. DREAM is a tool for the design of
large-scale software systems, providing the designer with
hookkeeping and analysis aid. A description in the DEFAM Design
Notation (DDN} consists of a collection of {(nested) description

fraguwents, called textual units. DREAYM provides facilities

which allow the wuser {(or users, in the case of a design being
carried out by a design teanm) to modify the information in a

data base on a textual unit basis.

The focus of this paper 1is upon the DDY¥ constructs for
describing a system's organizZation. Other aspects of DDN are
discussed in [6], [7], [8] and [9]. Also, the focus is upon the

use of the constructs —— their svyntax is covered in {103. Some

T4

justifications for the constructs are given; others lie within
the DREAM system's general philosophy which is discussed in

[111.

Hierarchical System Description

In DDW, a system is considered to be decomposable into
interacting parts, called c¢bijects. This decomposition 1is
hierarchical, with objects being composed of subobjects which
are, 1in turn, composed of sub-subobijects, etc., TFach obiject is
an instance of some general c¢lass of objects and has the

attributes specified in the <c¢lass definition for that class.

These attributes are each specified by a textunal unit.

The textual unit of primary interes here 1is that which

defines the subcomponents of an object in the class. Fach

subcomponent is an object or a {homogeneous) structure of
chijects. Part of a «class definition is a declaration of the
subcomponents of objects in the class. The declaration gives,
for each subcomponent, a name and the c¢lass of which the
subconponent?s objects are instances. If the subcomponents are

not declared for a «c¢lass, then obijects of that class are

primitive ¢hbiects.

A DDN¥ description of a system consists of a «collection of
class definitions. An instance of the system may be created by

a process, called instantiation, which consists of two phases -~

generation and configuration. Fach step in the generation phase

15

consists of creating an instance of a non-primitive object by
creating instances of all of the ohject's primitive subobijects
and causing, at the next step in the generation phase, the
creation of dinstances of all of the object's non-primitive
subobjects. During the configuration phase, objects are equated

to create new, shared objects.

In DDN, class definitions may not be recursive and the
instantiation process 1is therefore guaranteed to terminate.
Also, the instantiation process is carried out before the systen

is executed or interpreted and hence DDN may only be used to

describe systems having a static organization.

L record of the instantiaticn process may be prepared by

drawing a node for each object and a directed arc from node x to

node y 1if the cbiject corresponding to node y 1is a subobiject
within the object corresponding to node x. This record is in

general a directed, acyclic graph called an instantiation graph.

When there are no shared subobjects then the instantiation graph

is a tree and is accordingly called an instaptiation tree. If
there 1is a path from a node ¥ to a node y in the instantiation

graph, then the ohiject corresponding to node y is said to be a

With this brief overview of the DDN approach to describing
a system's hiervarchical structure, we turn to a nmore complete
description of the DDN constructs. Throughout the following

sections, we will be developing, as an example, a description of

T6

part of the Hearsay speech recognition system [12]. This 1is a
rultiprocesscr systenm developed at Carnegie Mellon University.
Tt contains a data base which holds information about the
utterance being recognized and the hypotheses about 1its
linguistic structure. The data base is available to each of
several knowledge sources which operate in parallel. Each
knowledge source inspects the infcrmation in the data base and
modifies it accerding to the rules of speech understanding that
it is programmed to enforce. The data base activates a pre-
defined set c¢f knowledge sources whenever some data base entry
of interest to these kncowledge sources changes value. Tn the
example, we fccus upon describing the organizational attributes

of the knowledge source (sub)systems.

Class Definpiticns

A class is defined in DDN by giving a textual unit for the
class and several textual units nested within it which define
the attributes of objects in the class. For example, sSuppose
that we have a class, called [knowledge_source]!, of
{sub)systems which asynchronously manipulate information in a
shared data base. A textual unit which defines the existence of
this «c¢lass, but does mnot give any information about its

attributes, would he:

1 Tt is a convention in DDN to enclose an identifier in sguare
brackets when it is used to name a class.

o)

[knowledge_sourcel: SUBSYSTEM CLASS;:
ENE SUBSYSTENM CLRSS;

The textual units defining the attributes of obijects in this

class would appear nested within the textual unit.

In DDH, there are three types of classes, two of which are
of concern in this paper. Mconitor classes [6] define objects
which correspond to shared data items. Monitor objects have a
finite set of possible values and a built-in synchronization
mechanism which seguentializes the operations done upon the
obijects. Subsystem classes [7]1 define objects which may operate
asynchronously and concurrentlily, interacting with each other
through message exchange and shared monitor objects. In this
paper, we treat those textual units which are common to

definitions for both these types of classes.

onalified Class Definitions

Frequently, several class definitions will be gquite
simpilar, differing only with respect to minor details. One
example is the <collection of c¢lasses of bounded ranges of
integers which differ with respect to the values which bound the
range. Ancther example is the collection of classes of stacks
which differ with respect to the class of the obijects which nay
be held in the stack. A final example is the collection of

classes of rultiprogramming systems which differ with respect to

the maximur number of proqrams which are simultaneously active.

These exanpples indicate that the detail that varies among

the different classes can concern many different attributes of
the classes -- the possible "values" of objects, the "types" of
the subcomponents or the number of subobjects. The examplas
also indicate that what varies is a relatively uwminute detail

about the <classes -~ 1if the differences were major, then the

class variants would be made distinct.

To allow succinct definition of a set of classes which are
basically +the same but differ with respect to some relatively
minor detail, DDN permits parameterized class definitions. The
parameters are called guyalifiers and are identifiers which may
be used at any point within the class definition where a user-
defined symbol may appear. ¥hen an obidect of the class is

instantiated, values are associated with each of the qualifiers

and these values are used in instantiating the object.

For exanmple, suppose that each [knowledge_source] object is
activated by cne of a number ¢f signals sent from the data base,

BEach signal indicates that the value of some data base entry of

interest to the [knowledge_source] obiject has changed. Snppcs@‘

further that each T[knowledge_scurcel object has a number of
subobjects which receive the sigpals and can simultaneously
perform the function of the (sub)system =-- this allows the
signals to be serviced at a faster rate. The wvariability with
respect to the number of data base entries that are of interest
and the number of parallel subobjects which <can service +the

signals may be specified in DDN as follows:
g ¥ ¢

77

QUAITFIFRS ;

#_values, /¥ the number of entries of interest %/

#_servers /% the number of parallel servicers %/

END QUATIFTRES;:
Declaring an object tc be of class [knowledge_source(3,5)] would
associate the value 3 with the gualifier #_values and the value
5 with the gualifier #_servers. This would lead {with
appropriate use of the gualifiers inside the class definition)
to the creation of an object which could be signalled because of

the changing of any one of three data base entries and which

could service at most five signals at a tinme.

Subconmponents

The subcomponents of each object in a class are declared

within +the subcomponent textual unit for the <class. The

declarations given in the subcompconent textual unit are similar
to declarations which would appear in a program in some
programming language ~—- they specify names for the objects and
indicate the types of the objects, thereby implicitly giving the
attributes o¢f the co¢bjects. But the declarations in a
subconponent textual unit are always interpreted at
instantiation time, prior to "execution" of the system, whereas
in many programming languages declarations may give templates
for the dynanric, run-time creaticn of obijects. Programming
languages generally have a rich set of pre-defined data types
{or classes, to use the terminolcgy of DPDN). In DDN, however,
there are only a few predefined classes (which are discussed in
[6] and [7]) and obijects are usually declared to be of sone

user-defined class. Also, programming languages generally g0

provide a large number of data structuring constructs vwhereas
DDN provides only wmulti-dimensicnal arrays. All of thess
differences stem from the fact that DDN is for the description
of designs rather than programs -- designs are abstractions of a
system and thus the classes are most appropriately developed by
the designer rather than predefined within the description

language.,

The following 1is a possible subccmponent textual unit for
the class [knowledge_source J:
SUBCOMECHNENTS:
activatcer OF [pre_conditicn (#_servers)],
manipulator ARRAY [1::%_servers] OF [data_base_modifier],
coordinator OF [semaphore]
END SUBCCOMPONENTS:
The subcomponent of major importance is the array of
[data_base modifier] chiects. These objects are subsysten
objects which inspect and wodify infeormation in the data base.
The declaration of the subscript range for the manipulator
subcomponent refers tc a predefined wmonitor class, called
interval, and 1indicates that subscripts may lie in the range 1
to #_servers. {(Note that #_servers, being one of the

qualifiers, will receive a value whenever an object of the class

fkncwledge_source] is instantiated.)

The interactions among these subcomponents do not concern
us here since we are focussing upon the description of systen
organization rather than system operation. However, a short
explanation of their intended interaction is needed to help 1in

understanding the exawmple. The objects 1in the subcomponent

gl

10

nlator are activated by the activator subcomponent. This

subcomponent receives the gigpals cowming from the data base and
determines which of the mapipulator objects should be activated.
The coordinatcr subcempcnent is an object of the monitor class

[semaphore] which the manipplatcr obhjects use to coordinate

their concurrent accesses to the data base. As 1ts c¢lass nane
indicates, 1t functions as a =semaphore and is used by the
objects in the pmanipulator subcomponent to mutwally exclude

their interactions with the data base.

Subcowmponent names are local to the definition of the class
in which they are declared. Thus, references to the
subcomponents may appear in almost any other textual unit in the
class definiticn (exceptions are noted in {67 and [70]. While
the scope of subcownponent names normally should be purely local
t6° the <class definition, it 'is sometimes tvequired that the
subcomponents be able to be referenced outside the c¢lass
definition. Subcomponents may therefore be declared to be
"yisible” which means that they can be referenced at any point
at which an obidect of that c¢lass is declared. For inpstance, if
the coordinator subceompenent had been declared as:

coordinator OF [semaphcre] VISIBLE
then this subcomponent could be referenced wherever an object of
class {knowledge_source] has been declared. If, in some other
class, a [knowledge source] object were declared with the nane

sourcel, then the coordinator subcomponent of gourcel could be 99

11

referenced as:
sounrcel | coordinater

a

0

The repeated use of the selection operator 71" specifie
selection dcwn through many levels of subccmponentry. The only
restriction is that at each step of selection, the selected

subcomponent must be visible.

Local Subcomporents

Names of subconmponents are local to the class definition,
but are glchal to¢ the textual units nested within the
definition. DP¥ also allows the definition of subcomponents
which are local to one c¢f these textuyal units. For example,
part of the definiticn of a monitor class is the specification
0of the procedures which may be invoked upon the objects in the
clasgs, I+ is guite natural to declare a collection of

subcomponents which are local to a procedure.

Local subconmponent declaraticns have the same form as
subhcomponent declarations. Tocal subcomponants may not,
however, be declared to be wvisible since this would he

contradictory tc¢ their Dbeing private to a part of a class

description.

[

12

€

In prograpwing languages, variable dinitialization may be
automatically dene or the rules of the language may specify that
all wvariables 1initially have a special valune "undefiped®., 1In
DDN, initial values for objects may not be specified and the
designer using DDY¥ must specify the algorithms for the
initialization of ohjects. DDN provides some help in specifying
the initialization of monitor chijects. Part of a monitor class
definition may be designated as an initialization procedure
which would be automatically invoked at the beginning of systen

execuntion,

Instantiaticn Control

feroeony

Ising subccmponent textual units to guide the instantiation
process gives rise to an instantiation tree since subcomponent
textual units do¢ not permit the description of subcomponent
sharing. Sharing arises when two cbijects are described, for
convenience or clarity, as if they were distinct, but they are
really the same c¢biject during the running of the systen.
Another situation in which sharing arises is when all subobjects
y which are a part of objects in some class [x] are to be the

same obiject during the running of the systen.

In the example, each [knowledge_source] object has a
coordinator subcomponent which the [data_base_modifier] objects

use as a mutual exclusion semaphore toc coordinate their

54

!

modificaticons c¢f the infcrmation in the data base. This obiject

is really a subcomponent of each of the manipulator obijects. It
nead not be described as a subcomponent of [knowledge_source]
objects; this highlights that it is a single object shared among
all of the mapirulator chijects.

One way to describe this sharing of the goordinator

subcomponent 1is to first describe [data_base_nodifier] obijects
as each having a [semaphorel subcomponent:

{data_base_modifierl: SUBSYSTEH CLASS;
SUBCOMPONENTS
mutex OF {semaphore]
EWD SUBCCHPONENTS:
EXD CLASS;

This is a redundant declaraticn since the object is already

=

declared within the [knowledge_source] class definition. But
its declaration here is an explicit statement that a [semaphore]
object is needed. Also, with this definition, the description
of [data_base nodifier] c¢hbijects may explicitly indicate the
manner in which they utilize objects which are actually in the

environment in which they run.

To complete the descriptien of the sharing of the

coordinator subcomponent, an ingstantiation contrel textual unit

o

may e negted within the definition of the class

[knowledge_scurcels

TNSTARNTIATION CCNTROCL:
FOR ALL 1 IN [1::% servers]
SAME {coordinator, manipulator (i) inmutex):
END FOR:
END TNSTANTIATICN CCHNTROL:

This textual unit specifies that the pmutex sub-subcomponents and

!

14

the coordinater subcomponent are all the same object. Thus, for

each object of class [knowledge source] there is only one object
of «class [semaphorel and any reference to either the

subconponent c¢oordinater or the

=]

utex sub-subcomponents is a

i

reference to this single, shared object. An instantiation graph
that would be created by this instantiation control textual unit

is given in figure 1, The multiple labels on the node for the

e i e Y S g S i D A S D s LAY s W < W Gl AR Sl D S % s ARSE bt K s e D s e it S ol s ity 4 s A e S vl e i V. s i s s s v o e iz

k_s OF [knowledge_source{3,2)]

activator (:)

manipulator (M) (:)

manipulater {2)
coordinator

nutex

Figure 1

{semaphore] obiject indicate that 1t may be referenced by

different nawmes from within different objects.

Note that the putex subcomponents need not be declared as

vigible. Through the instantiation control textual units, the
designer is controlling the configuration of the systewnm. In

doing this, he is given the ability to select apy obiject which

is a part of the obijects in the class being defined.

s

o

15

Thus, a designer has broader powers in configuring the
system than he has in preparing the code that executes during
system operation. Of «course, the designhner may misuse this
additional pcwer and intrcduce errors. Rules could be specified
to reduce the possibility of errors -~ for example, it could be
specified that 1if an accessible object 1is eguated to an
inaccessible c¢ne, then the accessibility to the first object is
lost., But, such rules have not been included in DDH since we
have attempted to ririmally constrain the design methods a
designer may ewmploy. Various methodological constraints may be
enforced upon users of the DREAM system [97, but these
constraints are not levied by their definition in +the DD¥

languaqge.

An alternative specification would he:
INSTANTIATION CONTROCL:
SAME (coordinator, [data_base modifier }jmutex) :
END IRSTANTIATICN CONTROL:
since reference to a class pame pay be made in a selector used
in an instantiation control textual unit. Only objects which
are a part of objects in the class being defined may be selected
in this manner. Thus the reference in the last example does not
refer to all obijects cf class [data_base_modifier] but rather
only those declared within [knowledge_source . Another
alternative eguivalent to those already given is:
INSTANTIATION CONTROL;
SAME ([semaphcre],
{data_base_modifier]{{semaphorel);
END INSTANTIATICN:

This c¢ould have a different effect, however. If there were

ancther [semaphore] subconponent of [data_base_modifier] ¥7

16

objects, then it would alsc be selected inp addition to the nutex

subconpcnent.

#hile +the 1instantiatiocn control textual units given above
may sometimes lead to correctly operating [Knowledge_source]
ob1jects, vproper synchronization generally requires that all
mutex sub-subcomponents in all objects of class
[knowledge_scurce]l be the same object. Achieving this would
regquire a SAME statement which selects all mutex sub-
subcomponents 1in all [knowledge_source] obijects. This SANE
statement would be very cowmplicated and a more straightforward
solution is preovided by using ancther instantiation command:

INSTANTIATION CCNTRCL;
OWIQUE ({coordinator) ;
SAME (coordinator, [data_base_modifier]imutex) ;
END INSTANTIATICN CONTRCL:

This gives the «correct structure since the UNIQUE statement

leads to there being only cne coordinater suhcomponent which 1is

shared among all objects of the class [knowledge_source]. A
UNIQUE statement may refer tc any object which 1is part of
objects in the «c¢lass being defined and indicates that the
selected object is unigue cver all objects in the <¢lass Dbeing
defined. An instantiaticn graph which would be created through
the use of this instantiation control textual unit is given in
figure 2. VNotice that a conmponent is unique over instances that

were generated by different gualifier values.

=y

17

coordinator
miutex

Figure 2

Relationship to Other Approaches to System Description

pas

DDN has teen oriented toward the description of a system's
design rather +toward the rprogramming of a system. This
distinction and its ramifications are discussed in general in
{117, In this secticn, we discuss the effect of this

orientation upcn the organization description facilities within

DDN,
The essence of the difference between design description
languages and programming langquages is a difference in

orientation toward representing a system's behavioral aspects
and representing a system's operational detail. In prograaming,

the aim 1s to prepare a detailed specification of the system's

g
)

&

1

13

operation and tée syster's behavioral characteristics are only
implicitly described. During design, however, operational
detail is usually abstracted and the aim is to prepare a
description 1in which a system's behavior is either explicitly
represented or may more easily be inferred. Those parts of DDXN
which allow the explicit description of system behavior are
discussed in {8)]. The effects of DDN's orientation to design
description discussed here relate to the abstraction of

operational detail.

The majcr effect of werking with abstract descriptions is
that one works with larger operaticnal units. For instance,
text editing and file maintenance systemns, rather ihan sorting
and string scanning algerithms, are the units of interest,
Because these higher-level, larger units do not naturally
decompose {at a reasonable level of description} into standard
subunits, DDY does not provide the full set of pre-defined data
types and data structures which are typically found in
programming languages. The user of DDN is able to describe any
obdectt!s decomposition in terms o¢f objects of other classes
which he may explicitly describe. Thus DDNW bears a close
resemblance to programming languages which allow the user to
define data types. But DDN allows the user to define
abstractions c¢f processing structures as well as abstractions of
data structures. Thus the obijects declared in a subcomponent
textual unit are as likely to correspond to what would be a
subroutine in a program as they are to correspond to a data

fragment.

90

gualifiers in ©DDN provide a primitive macro-expansion
facility. In programming languages, macro-expansion facilities
provide the programmer with the ability to define generalized
processing structures, Since this 1s already available to the
DDbH user through the class definition facility, a general macro
facility 1is not necessary. cualifiers therefore provide a
simple text-replacement macro facility. The sophistication of
this facility is greatly rvestricted hecause of the data base
management facilities provided by DREAM (see [9 7). A DREAM user
may enter fragments of a systenmts description into the data base
in an arbitrary crder. Since the description fragments are
syntax checked on entry, it is dimpossible to allow a qualifier

to be used in place of more than cne lexicographic unit since

ey

the definition o the expansicn of the gualifier may not bhe
available. pualifiers therefore. provide a relatively
ungophisticated macro facility, but do serve well their intended

purpose of allcwing the definition of generalized classes.

It is in the contrcl of instantiation that DDN differs nmost
extensively from programming languages. First, as noted
previously, DDN does nct provide for the dynamic, run-tinme
creaticn of c¢bjects. Second, the static instantiation control
provided in programmirg languages is usually implicit and
intended for efficiency of storage utilization {e.g., block-

structure and its implications for the reuse of storage).

Instantiaticn contrel is provided in DDN to allow the

description of object sharing. In programrming languages this is

1

20

usually provided either by a call-by-reference or call-by-name
parameter passing mechapism or by some variant of a capability
schene. But, 1in DDV obiject sharing stems less from this need
for dynamic sharing and more from a need to equat@‘ohjects that
for ease or clarity of description have been defined as 1if they
were separate entities. Tn the [knowledge_source] example, the

coordinator subcomponent cculd be passed as an arqument in

invéking operaticns upon the [data_base_mcdifier] objects. ‘Eut,
if this were taken as a literal ﬁegcri§tion cf the system, then
a straightforward implementation would «contain much more
overhead than necessary. Alsc, since DDN allows the explicit
description of the processing relationships among suboconmponents
{(see [7]) but cnly an implicit description of the relationships
between subcompcnents and objects whose identity becomes Kknown
at run—-time, the description of the <class [data_base_nmodifier]
would be less clear were its mutex subcomponent to be described
as a parameter received‘ at run-tinme. Thus, DDN allows the
description of sharing in the dynamic manner provided by
parameter passing but alsc provides the ability to control
instantiation directly sc that parameter passing need not be

misused to describe more static sharing of obijects.

DDY has been developed as the design language in DREAM, a

tocl to aid designers of large-scale systems, and thus differs

from traditional pregramming languages. DDN shares with
programmning languages the ability to describe a systen'’s

g

21

operation but allows descriptions in which the systen's
operaticn is abstractly specified. This ocrientation to abstract
descripticn leads to constructs which force the DDN user to
explicitly describe the composition and orgamization of a

systen,

DD¥ provides several constructs for describing a system's
organization. Chief among these is a construct for defining the
composition of a c¢lass of objects in terns of their
subcomponents which are obijects of other classes. DDN provides
a primitive @macro facility to allow the definition of
generalized classes. DDN alsc provides for the explicit
description ¢f object sharing during the execution of the

systen,

Acknowledgements

The portions of DDN covered in this report were developed
with the help of Dirk Kabcenell and Mark Welter. The development
of the instantiation control constructs was indirectly contributed
to by Victor Lesser, through his work on a control language for

collections of concurrent processes.

93

22

References

1.

25

10..

11.

12.

Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C. Abstraction
Mechanisms in CLU. Comm. ACM, 20, 8 (August 1977), 564-576.

Henderson, P., Snowdon, R.A., Gorrie, J.D., and King, I.I. The TOPD
System. Tech. Report 77, Computing Laboratory, Univ. of Newcastle
upon Tyne, England, September 1975.

Dahl, 0., and Nygaard, K. SIMULA - An Algol-based simulation language.
Comm. ACM, 9, 9 (September 1966), 671-678.

Hoare, C.A.R. Notes on data structuring. In Dahl, Dijkstra and Hoare,
Structured Programming, Academic Press, New York, 1973.

Riddle, W.E., Wileden, J.C., Sayler, J.H., Segal, A.R., and Stavely, A.M.
Behavior modelling during software design. IEEE Trans. on Software
Engineering, SE-4, 4 (July 1978), 283-292,

Riddle, W.E., Sayler, J.H., Segal, A.R., Stavely, A.M. and Wileden, J.C.
Abstract monitor types. Proc. Specification of Reliable Software Conf.,
Boston, April 1979, pp. 37-43.

Riddle, W.E., Sayler, J.H., Segal, A.R., Stavely, A.M., and Wileden, J.C.
A description scheme to aid the design of collections of concurrent proc-—

esses. Proc. 1978 National Computer Conf., Anaheim, Calif, June 1978,
pp. 549-554.

Wileden, J.C. Behavior specification in a software design system.
RSSM/43, COINS Tech. Rep. 78-14, Dept. of Computer and Info. Sci.,
Univ. of Massachusetts, Amherst, July 1978.

Riddle, W.E., Sayler, J.H., Segal, A.R., and Wileden, J.C. An intro-
duction to the DREAM software design system. Software Engineering Notes,
2, 4 (July 1977), 11-23.

Riddle, W.E. DDN User's Guide. RSSM/37, Dept. of Computer Sci., Uniwv.
of Colorado at Boulder, in preparation.

Riddle, W.E., Sayler, J.H., Segal, A.R., Stavely, A.M., and Wileden, J.C.
DREAM - A goftware design aid system. In Moneta, J., (ed.), Information
Technology, JCIT-3/North-Holland Pub. Co., August 1978.

Fennel, R., Lesser, V.R. Parallelism in artificial intelligence problem
solving: A case study of HEARSAY II. IEEE Trans. on Computers, C-26,
2 (February 1977).

22

References

1. B. H. Liskov, et al. Abstraction Mechanisms in CLU. Proc.
ACM Conf. on Language Design for Reliable Software, Raleigh,

N.C., April 1977. (To appear in Comm. ACM.)

2. P. Henderson, et al. The TOPD System. Tech. Report 77,
Computing Laboratory, University of Newcastle upon Tyne,
England, September 1975.

3. 0. Dahl and K. Nygaard. SIMULA -- an ALGOL-Based Simulation
Language. Comm. ACM, 9, 9 (September 1966), 671-678.

4. C.A.R. Hoare. Notes on Data Structuring. In Dahl, Dijkstra
and Hoare, Structured Programming, Academic Press, New York,
1973.

5. W. Riddle, J. Sayler, A. Segal and J. Wileden. An Introduc-—
tion to the DREAM Software Design System. Software Engineer-
ing Notes, 2, 4 (July 1977).

6. W. Riddle. Abstract Monitor Types. RSSM/41, Dept. of
Computer Science, Univ. of Colorado at Boulder, in prepara-
tion.

7. W. Riddle. Abstract Process Types. RSSM/42, Dept. of

Computer Science, Univ. of Colorado at Boulder, November,
1977.

8. J. Wileden. Behavior Specification in a Software Design
System. RSSM/43, Dept. of Computer and Comm. Sciences,
Univ. of Michigan, in preparation.

9. A. Segal. Design Description Management. RSSM/45, Dept. of
Computer and Comm. Sciences, Univ. of Michigan, in preparation.

10. W. Riddle. DDN User's Guide. RSSM/37, Dept. of Computer
Science, Univ. of Colorado at Boulder, in preparation.

11. J. Sayler. Philosophy of the DREAM System. RSSM/39, Dept.
of Computer and Comm. Sciences, Univ. of Michigan, in pre-
paration.

12. R. Fennel and V. Lesser. Parallelism in Artificial Intelli-
gence Problem Solving: A Case Study of Hearsay II. IEEE
Trans. on Computers, C-26, 2 (February 1977), 98-111.

a4

