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Abstract

A modelling scheme is presented which allows the abstract description
of a collection of concurrent processes (a subsystem). A model in the
scheme provides a specification of a subsystem which desecribes its
behavior in relation to other subsystems but hides the subsystem's
operational detail. A model consists of a definition of the subsystem's
interface, a procedural definition of the legal usage of the interface
and a non-procedural description of the legal uses of the subsysten
over time.

Models in the scheme are rigorous, unambiguous specifications of the
components within a software system. The models may be used to guide
the implementation of the components or to formulate arguments as to
the appropriateness of a system's design.
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Introduction

Abstract data types have recently emerged as an important facility for
the specification of sequential programs. Originally defined in the language
STMULA [1], abstract data types were soon recognized as useful in structured
programming [23. Their recent refinement has taken three directions. First,
they have been developed to support top-down design methods [33. Second,
they have been extended so as to provide a basis for formal verlfiecation I@].
Finally, they have been used as the basis for a tool to aid program develop-
ment [5] which admits rigorous, but perhaps incomplete, analysis [6], The
variety of these uses indicates the breadth of the benefits which accrue
from facilities for high-level, abstract description.

While abstract data types are convenient for the description of a soft-
ware system's data storage components, they are not convenient for the
suceinet description of those system components which are more for the
processing than the storage of data. This is particularly true when the
components operate concurrently} The major problem is that abstract data
types are oriented towards describing components as structures of data which
are operated upon via procedure calls. Many components -=- e.g., a text
editor in an operating system or a file system in a multiprocessor computing
facility ==~ are not naturally described in this manner.

Extensions and modifiecations to abstract data types could be developed
to increase their effectiveness in describing processing components in soft-
ware systems -- this has been done in the Gypsy system [7] and the Modula
programming language [8]. In this paper, however, we develop a description
scheme that retains many of the concepts of abstract data types but builds

upen the concept of a sequential process., Further, the deseription scheme

1. By concurrent we mean parallelism which may be actually achieved by
executing the system in a multiprocessing environment or which way be only
apparent at abstract levels of system description and never achieved during
system execution.
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developed in this paper focuses upon the succinct modelling of a system's
processing components rather than their detailed programming.

The modelling scheme presented here is an extension of a scheme for
deseribing sequential process interaction [9] that was developed as a basis
for software system analysis [10]. It has been prepared for use in the
Design Realization, Evaluation And Modelling (DREAM) systen [ 11] whieh
provides bookkeeping and analysis aid to the designers of large-scale soft=
ware systems. The scheme is part of the DREAM Design Notation (DDN) which
has been developed to permit the incremental development of a system's design

as a serles of design desecription fragments, called textual units.

In the next section, the basis for the modelling scheme iz established
by developing an abstract view of sequential process interaction as occur-
ring through message interchange. The following sections then develop the
model of a subsystem, i.e., a collection of concurrent sequential processes.
Subsystem interfaces and interaction are described first., Then a scheme for
the non~procedural description of a subsystem's behavior is presented. The
paper concludes with a brief discussion of the ways in which the modelling
scheme may be beneficially used during the development of large-scale soft-
ware systems.

The focus of this paper is upon DDN construets for describing collections
of concurrent sequential processes. More éomplete treatment of this material
and discussions of other aspects of DREAM may be found in [127, [137, [1s],
i15], and [16]. Also, the focus is upon the use of the constructs -- their
syntax is covered in [177]. Some justifications for the constructs are given;

others lie in the DREAM system's general philosophy whiech is discussed in
[18].

An Abstract View of Software Systems

A software system may be viewed as composed of parts, subsystems, which
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operate concurrently and asynchronously and which interact either through shared
data objects or by the sending and receiving of messages. This is & natural

way in which te view multiprocessor systems, since these systems actually have
components which interaet by message transmission. But this view is also
appropriate when it is merely a logical one and the system actually runs in

a uniprocessor environment. In this case, the view facilitates the decompo-
sition of the system (and thereby the mastery of its complexity [19]) and
message transmission is used only to model the actual interactions.

As an example of this view of software systems, consider the HEARSAY
speech recognition system [20] developed at Carnegie-Mellon University. One
subsystem within the HEARSAY system is a data base,called the blackboard,
which contains all the information about the utterance being recognlized and
the hypotheses which have been made as to its linguistic struecture. The
other subsystems within the HEARSAY system are processing components called
knowledge sources., Bach knowledge source inspects the information in the
data base and augments or modifies it according to the rules which the
knowledge source 1s programmed to enforce.

The interactions among these subsystems are as follows. Since it would
be wasteful tc have each knowledge source constantly inspect the data base to
determine whether it should perform any processing, the data base is
programmed to know which data base eniries are of interest to each knowledge
source and to send a signal to a knowledge source whenever one of the data
base entries of interest to it changes value. Each knowledge source is re-
entrant and this (conceptually) means that each knowledge source has several
internal servicer subsystems, each of which can perform the processing to be
done by the knowledge source. When a knowledge source is signalled by the
data base, one of these servicer subsystems is activated and it inspects the

data base and makes any appropriate modifiecations. The interactions between
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a servicer and the data base consist of a sequence of message transmissions,
with the data base returning messages in response to the requests sent by the

servicer.

The Modelling Scheme

A modelling scheme based upon this abstract view of software systems
must have facilities for describing subsystems and thelr interactions. In
this paper, we focus upon those subsystem interactions which ocecur through
nessage transfer, We assume, therefore, the existence of a scheme for
deseribing data cobjects that may be shared by a community of concurrent
subsystems% Suech a scheme must be able to deseribe many aspeects of shared
data obJects, but for the present discussion it is only important that the
scheme allow the spécifieation of the possible values of the data objects.

A subsystem medel must describe three aspects of the subsystem. First,
it must speelfy the interfaces te the subsystem net only in terms of the
format of the information flowing through each interface but alse in terms
of what information may legally flow through each interface. Second, it
nust specify the legal sequences of message flow through the Iinterfaces.
Finally, it must relate the subsystem's operation at one point in time to
its operation at a previous point in time -- i.e., it must specify the more
global aspects of the subsystem's operation.

In the following sections, each of these aspects is discussed and
illustrated by examples which, taken together, comprise a description of
the knowledge source subsystems of HEARSAY? Since all of the knowledge

source subsystems are similar with respect to their interactions with the

1. A scheme that was developed in conjunetion with the work reported here
is discussed in [13].

2. The description is an approximatiom of the actual structure and
operation of the knowledge sources in HEARSAY. It reflects our under-
standing of the description which appears in [20], but has also been
conatructed so as to provide examples of the facllities in DDN.
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data base, the description developed in the examples is of the class of
knowledge source subsystems. To reflect that different instances of this
class vary with respect te their details, such as the number of entries

in the data base that are of interest to the knowledge source, we define a
parameterized class. This means that part of the definition of the class
is a specification of gualifiers which may be assigned values when an
instance of the class is created. Class definitions and qualifiers are

discussed more fully in [12].

Subsystem Interfaces

A subsystem's interface consists of a set of ports through which
messages may flow. Conceptually, a port is a communieation line along which
messages flow, one at a time, and which does not have any storage ecapabilities.
Ports correspond to uni-directional communiecation lines and therefore have a
direction in or out.

The messages which flow through a port are (ordered) sets of data
objects. Bach port therefore has assoclated with it a set of buffers, each
able to store one data object. The set of buffers indicates the types of
data objects which comprise a message and the order in which the data objects
are composed to form a message.

The messages which may legally flow through a port are specified by

giving buffer conditions for the port. A buffer condition is a predicate

over the buffer data objects, indicating the set of legal values for the
buffer data objects as well as the legal correlations among the values.
OR'ed together, the buffer conditions assoclated with an in-port (out-port)
are analogous to a pre-condition (post-condition) [217.

In DDN, a port is defined by a textual unit which specifles the port's
name and direction and which has nested textuwal units whieh specify the

buffers and the buffer conditions associated with the port. A set of
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ports is defined in figure 1 for obJects in the class [knowledgeﬂscurca]%

If an object of this class were created with # values having the value 4 and
# servers having the value 3, then the obJect would appear as plctured in
figure 2. Notice that defining an array of ports implies that there is an
array of buffers, one for each port. The condition associated with the

make request ports indicates that messages flowing out through these ports

should have only the value inspect or modify.

A port definition is comparable to a heading for a procedure stated in
a programming language. It is similar in that it specifies a name by which
the port (procedure) may be referenced and the number, type and order of the
data objects (parameters) in messages (parameter lists) processed by the
internal components (procedure body). It differs because ports allow only
one-way communication whereas procedures provide two-way communication.

The buffer conditions of DDN are similar to the entry and exit specificatioens

of Alphard [ 4] with the additional aspect that they are required to be

valid whenever a message flows through the port.

Message Flow Through a Subsystem

The role that a subsystem plays within a community of subsystems is
specified by a definition of the correlations among the messages flowing
inte and out of the subsystem. When this defines the injeection of messages
into the subsystem's environment as a result of the reception of messages,
then it serves to specify the facilities provided by the subsystem. When
it defines the reception of messages subsequent to the injection of messages
into the environment, then it serves to specify the subsystem's utilization
of other subsystems in its environment.

A subsystem's message flow characteristiecs may primarily be defined in

1, It is a convention in DDN to enclose an identifier in square brackets
when it is used to name a class.
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terms of sequences of message transmissions through the subsystem's ports.

This is analogous to defining a procedure in terms of a set of parameter/

result pairs. More complex characteristics, called global characteristies,

concern the correlations between transmissions occurring in different
message transmission sequences. For example, in manipulating a stack, a
pop operation must be preceded, at some point in time, by a push operatien,
In this section, the concern is with the more easily specified sequential
message transmission characteristics. The speeification of global message
flow eharacteristics is treated in the next sectlon.

Sequential message transmission characteristics are specified by giving
a set of programs, each of which is a model of a sequential process, called

a control process. Bach control process model specifies a set of sequences

of message Tlow through the subsystem. A control process is defined by a
nondeterministic, proecedural model which specifies the control process'
message reception and transmission activity. Nondeterminism is allowed
becszuse it contributes to the clarity of the model, allowing succinct
definition of the controel process. A procedural specification is also used
to enhance the clarity of the description.

Messages flow in and out through a subsystem's ports as a result of
receive and send operations. For a send operation, a message is first
composed using the values of the buffers associated with the port that is
specified in the send operation. Then, the message is sent out through
the port to be placed in the link to which the port is attached1 and

thereby made available for reception by some subsystem. The control process

1. Communication among asynchronous message transmitters and recelvers
requires a transmission controller that is able to store messages that

have been sent but not yet received and requests for messages which have been
lodged but not yet satisfied. In DDN, an idealized controller, ecalled a
link, is provided. Links hold messages and requests in (unbounded) bag data
struetures. Thus they do not necessarily pass messages on in the order the
messages were sent, nor do they necessarily service requests for messages in
the order the requests were lodged. Ports may be attached to links by a
process described in [147.
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which invoked the operation is suspended while the message is constructed
and placed in the 1link. Since links have infinite storage capaecity, this
suspension is relatively short and the send operation can therefore be
considered to be a non-blocking operatiocn.

When a receive operation is performed, the control process invoking the
operation is suspended until a message is retrieved from the link to which
the port specified in the receive operation is attached. The message is then
decomposed and distributed among the buffers associated with the port. Since
it is possible to request a message when none is availlable, the recelve
operation can block the control process which invoked it for relatively
long periods.

Prior to a send operation, the subsystem will compute the values of
the data objects which compose the message and place these values in the
buffers. This computation may be lengthy and complicated, but neither its
time consumption nor its detall are of interest in defining sequential
nessage transmission characteristies. Thus, in a control process,
computational detail is suppressed by modelling it with a set-to operation
which may be applied to a buffer data object and causes the buffer to assume
a value prescribed in the set-to operation.

To describe the sequential message transmission characteristies of
[knowledge_aourca] subsystems, two control process types are needed. The
first, speeified in figure 3% models the consumption of messages which
arrive at the await port from the data base. This models the subsystem's
operation with respect to signals sent to indicate a change of some data

base entry of interest to the knowledge source. The variable MY INDEX has

1. The quoted prefix attached to the control process textual unit in
figure 3 indieates that this textual unit is intended to be an additiocnal
part of the definition of the [kncwledge_sourcé] subsystem class. This
prefixing construction allows selective modification of a DREAM design
deseription, thereby permitting incremental elaboration of a seftware
system’'s design.
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a value in the range declared as the bounds of the array of control processes
and is used to make each control process model distinet with respect to the
buffers and ports te which it refers.

The second type of control process is specified in figure 4. These
control processes model the operation of the servieers of the incoming
signals, indicating that they present requests to the data base through one
of the make_request ports and wait for answers to the requests through one
of the get answer ports. Note that nondeterminism may be specifled in the
set-to operation by giving a logical expression which specifies the set of
values which could possibly be assigned to the data object as a result of
the computation modelled by the set-to operation. The control process
structure of a [knowledge*sourcej subsystem in which # servers is 3 and
# values is 4 is graphically represented in figure 5.

Bach model is a control program over send and recelve operations on
ports and set-to operations upon buffers. The centrel construets are
Algol~like. There are constructs for definite iteration: an "ITERATE n
TIMES" construct and a "FOR ALL 1 IN set_of values" construct. WHILE and
UNTIL constructs are available for indefinite iteration. Since many sub-
systems are designed to never terminate, there is also an ITERATE construet
for infinite iteration. Conditional control may be specified by the usual
forms of the TF construct. There is also a generalized CASE construct which
allows "labelling™ of the cases with logical expressions. All of the
control constructs have a nondeterministic version. For example, the
construct "ITERATE n OR MORE TIMES™ may be used to indicate that the number
of times, while known before iteration begins, can be any number greater than

or equal to n.

Global Eehavior

The facilities provided by a subsystem generally cannot be used in a
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totally arbitrary order. For example, the facllity which a file system
provides for opening a file must be used prior to the facilities for reading
and writing the file. Thus there are correlations between what happens in
one sequential message transmission and what may happen in another sequential
message transmission.

This global behavior may be specified in terms of events, activities
that may be observed external to the subsystem. Usually an event is the
transmission of a message through a port, and thus may be identified as the
execution of a send or receive operation in one of the conirol process
models. In general, an event may be assoclated with the execution of any
one of the instructions in a control process model. (8ince
control process models are used as part of the behavior description of a
subsystem, they are known to an external observer.)

Global behavior is specified by defining a set of sequences of events.
Note that this is what was accomplished procedurally via the control
process nmodels ~- each model defines a set of sequences of nmessage
transmissions where each sequence corresponds to an execution of the model.
For the non-procedural specification of behavior, formal language theory
provides several technigues since the set of events may be considered to
be an alphabet and a behavior is then a language over this alphabet [101.

Two aspects of global behavior -- one being required for correct
operation and the other corresponding to a design decision -~ need to be
specified for {knewledgemsource] subsystems. First, a servicer must not
interact with the data base until after it has been activated by a signal
indieating that an entry in the data base has changed. Second, the
interactions with the data base must be ordered such that no request from
any of the servicers is lodged until the previous request has been answered --
the servicers must coordinate thelr interactlions with the data base so that

they utilize its facilities in a subroutine fashion.
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To describe this behavior, we first define some events as indicated in
figure 6. The statement labels define names for events which correspond to
the executlon of the labelled statement. Note the use of the NULL instruction
to allow denotation of the event "a servicer starts a sequence of interactions
with the data base".

More macroscopic events are needed to convenlently define the global
behavior. These are defined by the textual unit shown in figure 7. The
REPEAT operator denotes that the consult event may be repeated zero or more
times. The SEQUENCE operator denotes that the events which are its arguments
are sequenced in the specified order. Thus, the hear and do_something event
corresponds to a signal arriving from the data base and the subsequent
interactions of a servicer with the data base.

Using these events, the global behavior may be specified as in figure
8. The first part of the specification indicates that hear and do something
events may proceed in parallel up to the limit imposed by having only
# servers servicers. The second part indicates that interactions with the
data base are mutually exclusive, i.e., ordered in time.

This example has used only a portion of the facilities available in DDN
for behavior specification. Events may be associated with other aspects of
a subsystem's operation, more complex relationships among events may be
defined, relationships between events defined for different subsystems may
be established, and events which are not assoclated with any computational
part of the system may be defined. A complete description of DDN facilities

for behavior specification is given in (}5].

Conelusion
The modelling scheme presented in this paper allows the abstract
description of a collection of concurrent processes (a subsystem). Models

in this scheme describe the interactions which may take place between
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a subsystem and other subsystems. A model therefore provides a specification
for a subsystem which describes its behavior in relation to its environment
but hides the subsystem's operational detail. A model consists of a definition
of the subsystem's interface, a procedural description of legal usage of the
interface and a non-procedural description of the legal usage of the subsystenm
over time.

Models in the scheme are rigorous, unambiguocus specifications of the
components within a software system. At the very least, the models serve to
record the faclilities which each component is to exhibit and the manner in
which these facilities are to relate. The models provide, therefore,
specifications which may be used to guide the eventual implementation of the
components.

The models may also be used in the formulation of arguments as to the
appropriateness of a system's design. While general technigues for formal
verification cannot be defined, both simulatieon and analytic technigues ecan
be used to derive information concerning the dynamic characteristics of the
interactions among the subsystems [22]. The designer may then use this
information to determine whether or not the specified desired behavior is
actually achieved or to uncover situations in which the desired behavior is
not achieved. This allows the designer to make corrections before proceeding
and to proceed with increased confidence in the validity of the design.

We have found the modelling scheme to be convenient for the description
of a variety of software systems ([23], (247, [25], [26], [27]). We feel
that it demarcates an important set of facilities which are required for the
specification of software systems and that it will prove to be valuable as
a basis Tor a variety of tools to ald designers of large~scale software

systems.
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[ﬁnowledge“sourcéjz SUBSYSTEM CLASS;

QUALIFIERS;

DOCUMENTATION ;
# values is the number of data base entries
monitored for this knowledge source; # servers
is the number of parallel servers in this
knowledge source
END DOCUMENTATION

# values, #_servers

END QUALIFIERS;

await: ARRAY [1::# values| OF IN PORT;
BUFFER SUBCOMPONENTS
signal OF [on_off switch]
END BUFFER SUBCOMPONENTS;
END TN PORT;

make_request: ARRAY [1::# servers| OF OUT PORT;
BUFFER SUBCOMPONENTS
request OF [data_base_operation]
END BUFFER SUBCOMPONENTS j
BUFFER CONDITIONS;
request=inspect,
request=modify
END BUFFER CONDITIONS;
END OUT PORT;

get_answer: ARRAY [1::# servers| OF IN PORT;
BUFFER SUBCOMPONENTS ¢
answer OF [data_base_response ]
END BUFFER SUBCOMPONENTS ;
END IN PORT;

END SUBSYSTEM CLASS;:

Figure 1
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'{knowledge_source]: SUBSYSTEM CLASS'

listener: ARRAY (1::# values] OF CONTROL PROCESS;
MODEL; ITERATE
RECEIVE await(MY INDEX);
END ITERATE;
END MODEL;
END CONTROL PROCESS;

Figure 3

‘[%nowledgemsource ¢ SUBSYSTEM CLASS®

servicer: ARRAY [1::# servers| OF CONTROL PROCESS;

MODEL; ITERATE
request (MY _INDEX) SET TO modify OR inspect;
SEND make_request(MY_INDEX);
RECEIVE get_answer(MY INDEX);
END ITERATE;

END MODEL;
END CONTROL PROCESS;

Figure 4
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await(Z)f’ :await(B)

ﬁéwait(h)

 listener(2) listener(3)

| listener(1) %1istener(4)

servicer(1) 5 servicer(B)f
get_shsvwer(3)
servicer(2) request(3)
—~
make request(2)/ ‘ﬁgetmanswer(z)

Figure 5§
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[knowledge source |: SUBSYSTEM CLASS'
listener: ARRAY [1::# values] OF CONTROL PROCESS;
MODEL; ITERATE
hear:  RECEIVE await(MY_INDEX);
END ITERATE;
END MODEL;
END CONTROL PROCESS;
‘[ knonledge_source]: SUBSYSTEM CLASS'
servieer: ARRAY [1::# servers] OF CONTROL PROCESS;
MODEL; ITERATE
start: NULL;
ITERATE WHILE PERHAPS
request(MY INDEX) SET TO modify OR inspect;

ask: SEND make_request(MY_INDEX);
get: RECETVE get_answer(MY INDEX);
END ITERATE;
END ITERATE;
END MODBL;

END CONTROL PROCESS;:

Figure 6

*[knowledge_source]: SUBSYSTEM CLASS’
EVENT DEFINITIONS;
consult: SEQUENCE(ask, get),
hear and_do_something:
TSEQUENCE (hear, start, REPBAT (consult))
END EVENT DEFINITIONS;

Figure 7

'[knowledge_source]: SUBSYSTEM CLASS'
DESIRED BEHAVIOR;

POSSIBLY # servers CONCURRENT

(hear and_do_something, | knowledge source])
hear_and_do_something),

MUTUALLY EXCLUSIVE ]
(consult, [ knowledge source]|consult)

END DESTIRED BEHAVICR:

Figure 8






