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ABSTRACT

The notion of an
It extends naturally
system with rank and
It turns out that in

hierarchy of classes

ETOL system with rank is defined.
studied already notions of an DOL
of an ETOL system of finite index.
this way one gets an infinite

of languages (each one being a full

AFL) within the class of ETOL languages. This hierarchy

starts with the class of ETOL languages of finite index

and it fills in the class of nonexpansive ETOL languages.

Some other properties of the class of ETOL systems with

rank are also studied.






0. INTRODUCTION

ETOL systems and languages constitute certainly a
central class among various classes of L systems and
languages.

Recently some work has been done investigating the
effect of the classical finite index restriction applied
to ETOL systems. The results obtained so far (see, e.g.,
[41, [51, [6] and [7]) indicate that this class of
systems is quite basic for the theory of L systems as
well as for our understanding of differences between
sequential and parallel rewriting systems.

In a sense this paper continues the research on ETOL
systems of finite index. As a matter of fact it extends
this notion so as to provide an insight into larger
subfamily of the family of ETOL systems and languages.
The starting point is an observation that one can extend
the notion of rank of a DOL system (as introduced in [2])
to ETOL systems. 1In this way one gains a structural
approach to ETOL systems which as it turns out is a
generalization of ETOL systems in the following sense.
While increasing rank in ETOL systems one obtains an
infinite hierarchy of classes of languages which starts
with the class of ETOL systems of finite index and which
fills in the class of nonexpansive ETOL languages. 1In
this sense the ETOL systems with rank play the same role

as the context free grammars of finite index play in the
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theory of context-free languages!! It is instructive to
observé that at the same time this hierarchy properly
extends the hierarchy of DOL systems with rank in the
sense that for each k the class of DOL languages of rank
k contains languages that cannot be generated by ETOL
systems of rank smaller than k.

The paper is organized as follows.

In Section I we introduce some basic definitions and
notations. In Section II the notion of rank of an ETOL
system is defined and a normal form theorem is proved.
It is also shown that (unlike in the finite index case)
the deterministic restriction on ET0L systems with rank
is a proper one. In Section III we show that the notion
of rank gives rise to an infinite hierarchy of classes of
languages. Section IV provides characterization of both
the class of ETOL languages with rank and the class of
ETOL languages of rank 1. Finally we also examine some

closure properties of the classes of languages considered.



NOTATION AND PRELIMINARIES

We assume the reader to be familiar with the rudi-

ments of formal language theory, e.g. in the scope of

[8] and with the basic notions of L systems, see, e.g.[3].
Now we will systematically list some‘basic definitions,
notations and results to be used in the sequel.

(0) First of all, we do not distinguish between a single-
ton and its element. Thus the set {a} will often be
~denoted as a.

(1) For a word x, we denote by minx the set of symbols
that occur in x, |x| denotes the length of x.

(2) For an alphabet A and a word x, #A(X) denotes the
number of occurrences of symbols from A in x.

(3) For an alphabet I and a language L,

Lengch(L) denotes the’set{#z(x) : X e L},

Length (L) is defined by Length(L) = {|x| : x e L}.

(4) Let A be a subset of an alphabet V. Then the homo-
morphisms Pres and Er (denoted Pres

A,V ""—A,V
is understood) are defined as follows:

and Er, if Vv

A A

A iff A € A,

PresA'v(A) =

A iff A e VA,
and

A iff A e V\A,
Er, ;) =

A 1ff A g A.
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(5) Let G = <v,P,S,Z> be an ETOL systen.

(5.1) A symbol A in V is called active if there is a
production in G of the form A+a with a # A. The set of
active symbols in G is denoted by A(G) and the set V\A(G)
of nonactive symbols in G is denoted by NA(G). G is said

to be in Active Normal Form {abbreviated ANF) if

A AG) =¢g.
(5.2) Let p = Tye--T be a word in P and let x e V*.
Then p(x) denotes the set

T T T T
{y = x =£> Xy =£> X2=é>...=2> v}; we also write

P
x => y for every y in p(x). For a language K, p(R) is

difined by p(K) = mej p(x).
xeK

(5.3) The deterministic version (G)D of G is the unique
EDTOL system (G)D = <V,5;S,Z> where Pe P if and only if
P is a homomorphism and P & T for some T in P. TLet A

be a subset of V. We say that G is deterministic in A

if #T(a) = 1 for every T in P and every a in A.

(6) An ETOL system (context free grammar) G is of

index k if for any word in the language of G, denoted L(G),
there exists a derivation such that no intermediate word
in this derivation contains more than k active symbols

(nonterminals). We say that G is of uncontrolled index k

if, for every word in L(G), every derivation of it is
such that no intermediate word in this derivation contains
more than k active (nonterminal) symbols. We say that G

is of (uncontrolled) finite index if it is of (uncon-
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trolled) index k for some k. We will use

L (ETOL) (L(CF) ) to denote the class of languages

FIN FIN

generated by ETOL systems (context free grammars) of
finite index.

(7) An ETOL system G = <V,P,S,I> is in Finite Index
Normal Form (abbreviated as FINF) if and only if it has
the following properties:

(i) G is deterministic,

(ii) G is propagating, -

(iii) G is in ANF, and

(iv) G is of uncontrolled finite index.

The following result was proved in [4]

Theorem 1. There exists an algorithm which, given an
ETOL system G of finite index, produces an equivalent
ETOL system H such that H is in FINF.

(8) Let G = <v,P,S,Z> be an ETOL system.
(8.1) The relation é (or < if G is understood) on V is
defined as follows. For any two symbols a and b from V,
€ V*.

o

1772

a é b if a E> albaz for some o
* *

(8.2) The relations %, < , é (denoted < ,3 if G
G G

Irok

14

is understood) are defined as the reflexive, transitive

and reflexive and transitive closure of é respectively.

(8.3) For an element a from V, [a] denotes the equiva-

*
lence class of a with respect to é , i.e.

[a] = {b eV : a b al. We use [V] to denote the set

QA *
QA *

of all such classes.
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*
(8.4) A letter a from V is called recursive if 3 é a.

*
(8.5) A letter a from V is called useful if S é a.

(9) Let G = <v,P,S,Z> be an ETOL system.

(9.1) The top-down level is a function from [V] into

nonnegative integers denoted by tl and defined inductively
as follows:
(0) Let A e [V]. Then tl(A) = 0 if b é a for some a £ A

implies that b € A.
1

(i+l). Let Y0 = [V]. Let Yi+l = Yi\ tl “(i). Then
tl(A) = i+l if A ¢ Yi+l and there exists a symbol b with
tl({bl) = i such that b < a for some a & A.

(9.2) The bottom-up level is a function from [V] into

nonnegative integers denoted by bl and defined inductively

as follows.
(0). Let A e [V] Then bl(a) = 0 if a é b for some a € A

implies that b € A.

. 3 B , -1
(i+1). Let Y, = [V]. Let ¥, , = Y;\ bl

bl(a) = i+l if A ¢ Yi+l and a é b for some a € A, bg A

(1) . Then

implies that bl ([b]) « 1i.

(9.3) The top-down (bottom-up) level of a symbol from V
is defined as the top-down (bottom-up) level of its class,
i.e. tl(a) = t1l([al) and bl(a) = bl([a]) for all a in V.

(10). Let G = <V,P,S,I> be an ETOL system.

(10.1) The success-language of G, denoted Succ(G), is

*
defined by Succ(G) = {x e V" : (Ty) su (x T> V) 1.

(10.1) For a word o from V* and a subset Z of V,
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we define the sets SUCCS,Z(u) and NSUCCS'Z(aLalso denoted
SUCCZ(a) and NSUCCZ(a) if G is understood, by

*
SUCCS,Z(Q) = {Presz(x) : o §> x and x € Succ(G)} and
NSUCC, , () = {Jw] : w e succgrz(a)},

Hence the success-language of an ETOL system G is the set
of all strings that can derive a terminal word. For an
ETOL system G, an alphabet Z and a word o, the set
SUCCSIZ(a) is obtained from the set of all words in the
success~-language of G that can be derived from o, by

erasing all occurrences of symbols not belonging to Z.
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IT. ETOL SYSTEMS WITH RANK

In this section we define the concept of rank of an
ETOL system. This goes through the notion of the rank
of a symbol in an ETOL system. Roughly speaking, a
symbol is of rank 0 in some ETOL system G, if it can
derive only a finite number of words which are in the
success language of G. A symbol X is of rank 1 in G if
only a finite number of words is obtained by erasing all
occurrences of symbols of rank 0 in all the words in the
success language bf G which can be derived from X. This
definition can then be extended inductively to any positive
integer k. If, in this way we can assign a rank to every
letter in the alphabet of G, then G is said to be of rank
k where k is the rank of the axiom.

Formally it is defined as follows.

Definiton 1. Let G = <V,P,S,I> be an ETOL system.
(I) We define EEEEG (or rank if G is understood) to be
a (partial) function from V into the set of nonnegative

integers defined inductively as follows.

(0). Let z, = V. Then for a in V, rank.(a) = 0 if and

0 G
only if SUCCS,ZO(a) is a finite set.

(i+1l). Let Zigy1 =V N\ {a € Vv : rank(a) < i}. Then for a
in Z; .4, ranks(a) = i+l if and only if SUCCG,Zi+l(a) is
a finite set.

(IT). We say that G is an ETOL system with rank if and

only if rank3 is a total function on V. Moreover we say
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that G is of rank m, denoted rankG= m, if every letter V
is of rank not larger than m and at least one letter

from V is of rank m.

We will use Ri(G) (or R, if G is understood) to denote
the set of all letters which héve rank i in G. Also we
will use (ETOL)RAN(i) (respectively (ETOLRAN) to denote
the class of ETOL systems of rank not larger than i
(respectively of ETOL systems with rank). As usual,
L(ETOL)RAN(i)) and L(ETOL)RAN denote the corresponding
classes of languages.

It is useful to note here that this definition of
rank, whenrestricted to the case of DOL systems, coin-
cides with the corresponding definition of the rank of a
DOL system from [2].

Our next result will provide a normal form for ETOL
systems with rank which will be useful in the sequel.
First we need a definiton.

Definition 2. Let G = <V,P,S,I> be an ETOL system of
rank i(i 2 0). We say that G is in Rank Normal Form,
abbreviated as RNF, if the following holds:

(1) Succ(G) = V¥,

(ii) G is in ANF,

(iii) G is propagating,

(iv) G is deterministic in Ri(G), and

(v) S g a for all a ¢ V.
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Theorem 2. There exists an algorithm which, given
an ETOL system G which is of rank i, will produce an
equivalent ETOL system H of rank not bigger than i which
is in RNF.

Proof .

Let G = V,P,S,Z> be an ET0L system of rank i.
(1) First we note that the stahdard algorithm which,
given an arbitrary ETOL system, produces an equivalent
EPTOL system (see [3]) does not increase the rank of any
symbol from V. Hence we can assume that G is propagating.
(2) Since the construction from Lemma 1 in [4] which
produces an equivalent ETO0L system in ANF does not
increase the rank, we can assume that G is in ANF and
thus, I € RO(G).
(3) One observes that the number of occurrences of
symbols from<Ri(G) in an intermediate word of a successful
derivation is bounded by some constant k. Hence a simi-
lar construction as the one used in the proof of Lemma 2,
in [4] will yield an equivalent ETOL system
G' = <v',P',S',Z> which is deterministic in Ri(G). Again
it is clear that this construction does not increase the

rank of G and also G' is again propagating and in ANF.

. * *

(4) Consider the set U(G') = {min x : S' => x => w ¢ ¥}
G' G*

of useful alphabets of G'. (Note that, as it is shown in

[7], this set can be effectively constructed.)

Let VH = {XA : X ¢ A for some A € U(G') U ¥ be a new

alphabet. For every pair A,A' of useful alphabets and
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for every table T which is such that T(a) N A'* # ¢ for

every a € A, we define a new table T as follows:

AN
TA,A' = {aA Y a,, toa L, a, a € A, a e A'*} U

iJ{ax >a, o x# AYU {a»a: ace 3},

Also for every A € U(G') which is such that A € %, we
define a table T, = {aA ~a : aelAlu

U {ax >a, :ox #Atu {a>a: ac Z};

Let PH be the set of all new tables that can be defined
in this manner.

Consider the ETOL system H = <VH,PH,SS,Z>. It should be
clear to the reader that H is equivalent to G' and also
that ggggﬁﬁﬂ=vz. Furthermore it is easily seen that H is
both propagating and in ANF because the rank of H is not

greater than the rank of G' and that H is deterministic

in Ri(H)' Hence the theorem holds.

The following is an immediate corollary of the defi-
nition of Rank Normal Form.

Corollary 1. Let G =<V,P,S,Z> be an ETOL system of
rank m which is in RNF. Then a é b implies that,

rankg(a) > rankg(b) and, consequently, rank(G) = ranks(s).

When looking at the definition of Rank Normal Form
one notices that a system G of rank i which is in RNF, is
deterministic in Ri(G)w An obvious question to ask then
is whether this can be strengthened to complete determin-
1 1 1 = 2
ism, i.e. is L(ETOL)RAN L(EDTOL)RAN. The next theorem

shows that the answer is negative.
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Theorem 3. There exists a OL language of rank 2
which is not an EDTOL language

Proof .

Let G = <{a,b,0,1},P,a> be a 0L system where
P = {a > ab,b + b0, b > b1,0 > 0,1 » 1}. Clearly G is of
rank 2 and
L(G) = {a,ab}u

u {abbx,bx.bx bx, : n» land, forlg i m, % €{0,1}7}.

1772773
We will show that L(G) is not an EDTOL language.
(i) Let f be a function on positive integers defined by
f(x) = ¢4log2x+l. It was proved in [1] that {O,l}+
contains infinitely many f-random words. Now if each
f-random word x in {0,1}+ is used to build a word x in
L(G) in such a way that x = x;X,...x  and X is the long-

est prefix of abbx bx2...bxn that is in L(G), then we

1
say that L(G) contains infinitely many words that are
4logz—random.

(ii) Let us assume to the contrary that L(G) is an EDTOL
language. Let g be a function on the positive integers
defined by g(x) = 4 logz(x). Then by Theorem from [1]
it follows that there exist positive integers s and t
such that for every g-random word y from L(G) that is

larger than s there exist words Ygrer-YesO with

0’ O¢
Ope--0g # A such that y = Yqe--Yg and for every positive
. m m S S

integer m, 0g¥10y ¥Yg---¥ 0p is in L(G) .

By (i) L(G) contains g-randon words longer than s; let

us consider such a word y. Let o; be a nonempty word
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satisfying the quoted above theorem. There are three
cases to consider.

(1) a ¢ gggldi. Then L(G) would contain words with more
than one occurrence of a; a contradiction.

(2) b e ggglqi. Then L(G) would contain a‘word with a
subword b,z bz,b where z;z, ¢ {0,1}" and Iz = [z,]:

a contradiction.

(3) o, 8‘{O,l}+. Then L(G) would contain words with n

i
m-1

occurrences of b and more than ;?ji occurrences of
i=1

letters from {0,1}; a contradiction.
As each of the three possible cases yields a contra-

diction, L(G) cannot be an EDTOL language.
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IITI. AN INFINITE HIERARCHY IN L(ETOL)RAN

In this section we will show that ETOL systems with
rank do not exhaust all ETOL systems, i.e.
L(ETOL)RAN i:L(ETOL). Furthermore, we will also prove
that L(ET0Ly, 0 . 17 L(ETOL) paye (341) FOT every i » 0, thus
establishing an infinite hierarchy in between

LFIN = L (ETOL) and L(ETOL)

RAN(1) RAN"

The proof of this goes through a sequence of lemmas
containing some results on DOL systems which are interest-
ing on their own.

First we need some definitions.

Definition 3. Given a homomorphism § from an alpha-

bet V into V* we define Hg to be a function from V into
2V defined by Hg = min § fa) . The function g is extended
to the function EG from 2V into 2V by

g (2) = U NENE

a € 2

As usual, to avoid cumbersome notation we will use
the same symbol U to denote both s and its extension
ﬁa. Since we often identify in notation a singleton set
and its element, theh we get that, for example, uﬁ(a)
denotes also ﬁd({a}).

Definition 4. Let G = <V,§,w> be a DOL system with

E(G) = WhrWysens We say that G is instant if
1. min(wi) = min(wj) for all i,j > 0, and
2. “5 = u. .

§2
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Lemma 1. Let G be an instant DOL system. Then

QA
@

Proof.

Let G = <V,6,w0> be as in the statement of the lemma.
Let a,b and ¢ € V be such that a < b < ¢c. Hence

b e ua(a) and ¢c £ u 2(a). Then, by definition
6 N

Cc € ua(a) = Y 2(a) and thus a < c. Hence é is transitive.

§
From Lemma 1 we can conclude immediately the follow-
ing.

Lemma 2. Let G = V,§,w,> be an instant DOL system.

0
Then tl(a) < 1 for every a in V.

The following lemma shows that for an instant DOL
system G and a given symbol a, the function £, ¢ ﬁ¢b-+ﬂ&ﬁ
which associates with n number of occurrences of a in
the (n+l) 'th word of the sequence of G, is either strictly
increasing or constant.

Lemma 3. Let G = <V,6,w0> be an instant DOL system.

then, for everya in v

either #a(wm) < #a(mm+l) for allm > 1,
or #a(wm) = #a(wm+l) for all m > 1.
Proof.

The lemma is trivial if a is not useful. Hence, in
the sequel, we can always assume that every letter is
useful. By Lemma 2 we know that tl(a) < 1 for every a in
V. First we show that the lemma holds for letters a of

top-down level 0.
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(1) Let a £ V be such that tl(a) = 0, hence a ¢ min Wg -
We clain that a is recursive. Indeed, if a would not

be recursive then min w, must contain a letter b # a such
that a ¢ min 6(b), or b < a and, since a { b, tl(a) # 0, a
contradiction.

Since the tl(a) = 0, we know that

#a(wn+l) = ?{7 #b(wn)'#a(é(b)) for every n > 0.
bela]

Since a is recursive, this implies that the function
fa(m) = #a(wn), m > 1 is nondecreasing, moreover fa is
either strictly increasing or constant with the latter
happening only if #[a] = 1 and #aﬁ(a) = 1. Hence the
lemma is true for letters of top-down level 0.
(2) To show that the lemma holds for letters of top-down
level 1, let us divide the set {a ¢ V : tl(a) = 1} into
subclasses CO’Cl"'° as follows, Let C0 be the set of
all letters a of top-down level 1 which are such that
b < a and b ¢ [a] implies that tl(b) = 0. For every i > 0,
let Ci+l be the set of all letters a in
tl-l(l)\\ Kﬁé C; which are such that b < a and b ¢ [a]

1= .

i

implies that b ¢ kmj Cj‘

j=0

Next we show, by induction on i, that the lemma is
, i
true for all letters in \\M} Cj'
3=0
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(2.7) Let a be a letter in C Then for every m > 1,

0

#a(wm+l) = ‘I‘erml+Term2 where

Termy =_§§LM»#b(wm)°#a6(b) and
belal

Term, = L #b(wm) '#aﬁ(b) ,

be A
where A is the set of all letters b in tl_l(O) which

introduce an occurrence of a.

We consider two cases.

(1) a is recursive. Then fa(m) = #a(wm) is a non-
increasing function and either it is strictly growing or
éonstant with the latter happening only if
Term2=:0!-#[a]al.and #aa(a) = 1.

(ii) a is not recursive. Then [a] = {a} and conse-
quently, Terml = 0. Since the lemma holds for letters in
l(O), it follows that Term2 yields either a strictly

growing of a constant function.
(2.2) Assume that the lemma holds for letters in(wmj C..

j=0 *

(2.3) Let a be a letter in C. Then, for m>1,

i+1°

= Terml + Term, where

#a(w 2

m+l)

Terml =:§§Zis#b(m )+ # S(b) and
bela]

Term, = E; (w Vo #,6(b)

3 )
where A is the set of all letters in 350 Cj which intro-
duce an occurrence of a. By an argument as in (2.1) we

can show that the lemma holds for a.

This completes the induction and hence the lemma holds.



~19-

We will refer to the letters satisfying the first
condition from the statement of thé above lemma as
dynamic letters and to the letters satisfying the second
condition as static letters.

Lemma 4. Let G = <V,§,w> be an instant DOL system
of rank k. Then for every a in V, there exists a
polynomial 9, of degree not larger than k such that, for

every positive integer n, #a(wn) = ga(n).

Proof .
The proof goes by induction on the rank of G.

(1) If rankG =0 then the lemma follows immediately

from Lemma 3.

(2) Let us assume that the lemma holds if rank G g k-1

(3) Let rank G =k.

Let us reduce the rank of G by erasing all letters (and

‘productions for them) of rank 0. Let G0 be the so

obtained system. By the inductive assumption the lemma

holds for all the letters from GO' Thus to complete the

proof we have to compute the number of occurrences of the

omitted letters.

First we divide the letters from RO(G) into categories

as follows.

Let a be in RO(G)‘

a is of category 0 if 6(a) = A.
a is of category 1 if §(a) = ajan, where 6(alu2) = A.

For i > 1, a is of category (i+l) if ua(a) contains a
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letter of category i and every other letter in us(a) is
either a itself or a letter of category not larger than
i. Let Cat,(G) denote the set of letters from Ry (G) of
category i. We observe the following.

() If a ¢ RO(G) then a is recursive if and only if

a € Cat,(G). This is proved as follows. Obviously, if

a € gggl(G) then a is recursive. On the other hand, if

a is recursive then &a) = ajaa, and because a ¢ RO(G) and
G is instant, for every b in min Qq0iny
(ii) For i » 3, giEi(G) = . This is proved as follows.

S(b) = A.

Assume, to the contrary, that a ¢ Cat3(G). Then by (i)
a is not recursive and ua(a) contains a letter, say b,

of category 2. Again by (i), u i(a) contains only letters
8

from Cat, (G) . Cat,(G) and so b ¢ u ,(8). But then
é

ua(a) # U 2(a) which contradicts the fact that G is
8

instant.

It is instructive to note here that (ii) cannot be
strengthened since, for example, for the instant DOL
system

G = <{a,b,c,d} ,8,abcd> with §(d) = dabc ,6(c) = A,

§(b) = bc and §(a) = bc we have R,(G) = {a,b,c},

Caty(G) = {c}, Cat;(G) = {b} and Cat,(G) = {a}.

(iii) If a e Cat;(G) and b < a for some b # a, b ¢ Ry (G),
then b e Cat,(G).

This follows immediately from (i) and the fact that b is
in R, (G) .

Now let us proceed to compute the number of occurrences
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of letters from RO(G) in wl,wz,..@

(3.1) Let a e CatZ(G).

Thus, by (i), a is not recursive and so, for n > 1,

0 4q) = = #(6) #_8(b) .

};,<a

#4

By the inductive assumption, the above expression yields
a sum of polynomials of degree not larger than k-1 and so
it yields a polynomial of degree not larger than k-1.
(3.2) Let a € QEEI(G).

Thus, because of (i), a is recursive and so, for n 3 1,

Falop,) = E (@) >k (0 ) 5D .
b<a
G
b#a
By the inductive assumptions the above recursive express-
ion yields a polynomial of degree not larger than k.

(3.3) Let a ¢ CatO(G).

Again we get a formula as for letters in Catz(G):
_ o= )
#a(wn""l) - bé.(a‘ #b(wn) #aé(b) 4

where now the summation may involve polynomials of
degree k (letters b from gggl(G) and so it yields a
polynomial of degree not larger than k.

This ends the proof of the’lemma,

Lemma 5. Let G = <V,§,w> be an instant DOL system of
rank k and let y be a homomorphism on V. Then
Length Y(L(G)) is the range of a polynomial of degree not

larger than k. Moreover, Length(L(G)) is infinite if and
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only if V contains a dynamic letter b such that y(b) # A.
Proof.

For each a £ V, let Ja be the polynomial from Lemma 4

associated with a. Then, for n > 1,

[y | = > v

aev

g, (n).
The second part of this lemma follows from Lemma 3.

Theorem 4. Let K & I* be an ETOL language of rank m.

Let I, & ¥ be such that Length. (K) is infinite. Then
1
there exists a strictly growing polynomial f of degree

(K) .

not larger than m, such that Range f< Length
' 1

X

Proof
Let K and Zl be as in the statement of the Theorem.

Obviously, L(ETOL) 'is closed under homomorphism and

RAN (m)

thus it follows that L = PresZ (K) is an infinite ETOL
1

language of rank not larger than m. Let G be an ETOL
system of rank i, i & m, generating L. Be Theorem 2, we

can assume that G is in RNF. Let (G). = <V,P,S,%.>

D 1

be the deterministic version of G. Clearly (G)D is also
in RNF and, since L is infinite, L((G)D) is infinite.
Hence there exists a derivation D of a word‘w e L such
that there are intermediate words x and y in D with
minx =miny = A and |y| > |x].

> w for some control
D

H s b_. %
ﬂmswehmmfmm:s(GHDX(GE)Y(Q
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words u,p and v in P*.
It is then not difficult to see that for every a in A

there exist positive integers r, and P, such that

. Ty . TPy .
minp “(a) = minp (a). Let k, bi the smal;eiﬁllnteger
such that n_ = kP, >x,. Thus gigx;a(a) = minp a&n .
Let n = L€§na and define a homomorphism § on A* by
§(a) = pn(a) for every a in A. It should then be clear

to the reader that H = <A,§,x> is an instant DOL system
which is obvioulsy of rank not larger than m. Also A
contains dynamic letters (in H) since |[§(x)]| > |x]|. Let
Y be the non-erasing homomorphism on A* defined by
Y(a) = v(a) for every a in A.

The théorem then follows from lemma 5 and the fact

that Length ((L(H)) € Length L = Lengthz (K) .
1

From the previous theorem, the main results of this
section follow now easily.
n
2
. = {a® > : ,
Corollary 2. K = {a n » 0} ¢ L (ETOL) b
Proof.

By Theorem 4, K cannot be generated by an ETOL system

with rank.

Corollary 3. For every i > 0,

HETOL) pan(a) F LOETOL) o 41 -

Proof.

Let i be a nonnegative integer. Define an alphabet
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v ={a a.+2}and a homomorphism § on V by

presedy

6(aj) = aja for all 1 & j & i+l and 6(ai+2) = a5

j+1
Consider the DOL system G = <V,G,al>.

Clearly, K = L(G) & L(ETOL) but Length K is

RAN (i+1)
infinite and Length K = Range f where f is a polynomial

of degree (i+l). Hence by Theorem 4, K # L(ETOL)RAN(i).
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IV. SOME CHARACTERIZATION RESULTS AND CLOSURE PROPERTIES

We start this section by proving two characterization
results : the first one characterizes the class
L(ETOL)RAN(l) of ETOL languages of rank 1, the other
provides a (partial) ‘'structural' characterization of
the class L(ETOL)RAN of ETOL languages with rank.

As it is noted in the introduction, the idea of
rank can be regarded as an extension of the concept of
finite index. 1Indeed, one observés that, given an ETOL
system G, the set RO(G) of symbols which have rank 0 in
G contains the set NA(G) of nonactive symbols in G.
Moreover if follows from the definition of RO(G) that
even if a symbol is of rank 0 but also active, it is
still "not very active" since it can change in only a
finite number of words'during a successful derivation.
Hence the notion of a symbol of rank 0 can be regarded as
an extension of the notion of a nonactive symbol.

On the other hand one could give an' equivalent
definition of an ETOL system of (uncontrolled) finite
index as follows.

An ETOL system G is of uncontrolled finite index if the
set obtained by erasing all occurrences of nonactive
symbols from all the words in the success language of G
that can be derived from the axiom is finite.

This definition closely resembles the definition of a

symbol of rank 1 since one must only replace "nonactive
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symbols" by "symbols of rank 0" and "axiom" by "symbol".
(As a matter of fact one could say informally that a
symbol X is of rank i+l if its "associated" system, take
X as the new axiom, is of uncontrolled finite index "in
the set of all symbols with rank not smaller than i+1".
(That is we consider all other symbols as "not (very)
active").

The following theorem shows that as far as classes of
languages are concerned, this resemblance is translated

as identity.

c
Lemma 6. L(ETOL)FIN - L(ETOL)RAN(l).
Proof.
Let K ¢ L(ETOL)FIN(k) for some k > 0.

Then by Theorem 1 there exists an ETOL system G in FINF
such that L(G) = K. Since G is in Active Normal Fornm,
every terminal in G is rewritten as itself only and so all
terminals are of rank 0 in G. Since G is of uncontrolled
finite index, if a is a nonterminal and u ¢ §§§§G’Zd(a),
then Iu[ € k. Consequently every nonterminal is of rank

at most 1. Thus G 1s of rank 1 and the lemma holds.

Lemma 7. (ETOL) (ETOL) 1y

(e
RAN(1) -~

Proof

Let K e L(ETOL) and let G = «<V,P,S,Z> be an

RAN (1)
ETOL system of rank nor larger than 1 generating K. Since
the lemma trivially holds if G has rank 0, we can assume

that the rank of G is 1. By Theorem 1 we can also assume
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that G is in RNF. First we notice the following

(i) First of all, because G is in RNF, every element

of Z is of rank 0.

(ii) There exists a positive integer k such that if
=3 => P

S G> Wy g QW.G> wt

1 <1<t #R (wi) < k. (This follows immediately from
1

is a useful derivation in G, then for

the definition of the rank of a letter.)
We shall now prove the lemma by constructing an ETOL
system H of index k+1 which is equivalent to G.

* ;
Let K be the set K = {SUCCG,V(X) : X € R;(G) P IRS maxrzG}

for every x in K, let L be defined by

*
L. ={yez* : x=

« &> vy} and let TRACK be the set of all

subsets of (K v {¢})x kw/ LX . where ¢ is a new symbol.
xeK

(Note that it follows from the assumptions that TRACK is
a finite set.)
Let ¥ be a finite substitution from V defined by
{a} if a ¢ R, (G), and
y(a) =

La if a € RO(G)
) +

Also, let MARK = {[x,X] : x ¢ LWJ V' u {¢},. X € TRACK!} be
tsk

a new alphabet and let $ be a new symbol.

For every x = Al"'At € Rl(G)*(t € k) and T € P such that

for 1 € i« t, T(Ai) = q n..Bi O where

. ~B. a.
i,071i,174,1 ,ni l’ni

o, . € RO(G)*(O €i<€t0g3<n),

B. 5 € Rl(G)(l € 1¢nlgick ni) for some ny,...ny



-28—

t
such that;zi; n; < k and for every set
- i=1

Q = {<a,

1,j’Bi,j> 0 £ 1 t0< 3« mi} which is such that

B € Y(a) for every <a,B> in 9, we construct a new table

T as follows.

(x;Q)

(1) Ai+Bi,0Bi;lBi,l°"Bi,niai,ni is in T(x;Q) for every
1 ¢1g t.
(2) a+a is in T(X;Q) for all a in IZ.

(3) Let y & TRACK.

Then [x,Y]~[Pres (T(x)),Z] is in T for every 2
--R1(G)

(x:9)
in TRACK which is such that:

(3.1) Q £ 7z, and
(3.2) for every <a,B8> ¢ Y, there exists a word

a' € (T(a)f\ SUCCG,V(a))(J {¢} such that <a',B> ¢ %.

(4) X~»¢ is in T, for every X in MARK U (VAI) U {$,¢}.

x; Q)

Finally, we construct a special final table T as

fin
follows:

(1) [A,Y]»A is in T for every Y from TRACK which is

fin
such that <o,8> € Y implies a = B.

(2) X+¢ is in T for every X in MARK {J (VA\I) U {¢}

fin
(3) $-+s[s,@] is in Tfin'

(4) a»a is in T for every a in I.

fin
Let P' be the set of all newly defined letters.

Consider the ETOL system H = <Vuf{,$} U MARK,P',S$,I>.

It follows from the construction that H is of (uncontrolled)

index k.

H simulates G as follows.



) n *
LLet D : § = x §“>,.. m=>xn € L be a successful

0
derivation in G.

Then D will be simulated by a successful derivation

D' : § -}-I*m%S[S =Yg 5 - T Y, Hfl

> x which is

such that Pres

(xi) = PresR (G)(y ) = Zi for every

—R, (G)
1 £1ign.

T.

Moreover, & step X. i-1 =L Xy from D will be simulated
(T,)

Pz,

)
> y. where Yi is such that

in the step Yi_1 i W

H
all newly introduced occurrences (in Xi) of symbols of
rank 0 are immediately replaced by their descendent-words
in %1(Qi contains this particular set of "replacements").
Also the marker (at the right hand-side of Yi-1 and yi)
is changed in such a way that it contains these new

replacements (3.1) from the definition of T( and

x;Q))
it also.keeps track of the "evolution" of the earlier

"replacement-guesses" ((3.2) in the definition of T(X;Q))'
Note that the marker disappears only if all the "guessed"
replacements turned out to be correct ((l1) in the defini-

tion of T ).

fin
We leave to the reader the formal proof of the fact that

L(H) = L(G). Hence the lemma holds.

The following theorem is an immediate consequence of Lemma 6

and Lemma 7.
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Theorem 5. L (ETOL) = L(ETOL)FIN’

RAN(1)

Our next result gives a structural characterization
of the class of all languages generated by ETOL systems
with rank.

First we need a definition.

Definition 5. Let G = <V,P,S,L> be an ETOL system

*
We call G expansive if a E> X aX;ax, for some a ¢ V,

X X and X, in V¥, If G is not expansive then it is

called nonexpansive.

The class of nonexpansive ETO0L systems will be

denoted by (ETOL) as usual L(ETOL)NE denotes the

NE?
corresponding class of languages.

Theorem 6. Every nonexpansive ETOL system has a
rank.

Proof.

Let G = <V,P,S,Z> be a nonexpansive ETO0L system.
Let us consider the relation é . We will prove by
induction on the bottom-up level of an equivalence class
of é that every letter a in V has a rank not larger than
bl (a).
(1) Let A be an equivalence class of bottom-up level 0.
We consider two cases.
(1.1) A contains only one element a and a is always
rewritten in G as A. Then clearly rank (a) = 0.

(1L.2) A contains at least one recursive letter (and

hence all elements of A are recursive letters.)
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. = =>_, .=> i
Let a € A Whenever a c z1 G G zt is a successful

derivation from a, then, for 1« i & t’#A(Zi)‘é #A
*

G

> aaBay for some

(otherwise for b in A we would have a => bBby for some

*

o,B.,y € v* and consequently a g

%,B8,Y € V¥; a contradiction).

Thus rank (a) = 0.

(2) Let us assume that every letter from an equivalence
class of bottom-up level i has a rank which is not larger
than i.

(3) Let A be an equivalence class of bottom-up level i+l.
We consider two cases.

(3.1) A contains only one element a and a is always
rewritten as a word consisting only of letters of bottom-
up level not larger than i. It then follows from the
inductive assumption that a has a rank not larger than 1i.
(3.2) A contains at least one recursive letter (hence
all elements of A are recursive).

Let a € A. Again (as in 1.2), whenever a E> zq §>"’E>zt
is a successful derivation from a, then, for

1 g i« t,#A(zi) < #A. From this and the inductive

(a) is a finite (or
i+l

assumption it follows that SUCCZ

empty) set (where Zi+l
rank (a) < i+l.
Thus every letter from V has a rank, which implies that G

has a rank and so the theorem holds.

is as in Definition 1) and consequently



-32-

It is instructive to note that, with the present
definition of nonexpansiveness, the above theorem
cannot be strengthened into an if and only if result.
For example G = <{a,b,c},{a+aab,b»c,c+c},a,{a,b}> is an
expansive EOL system of rank 0. However if one adopts
the definition from [7] of nonexpansiveness, then Theorem 6
can be made into if and only if, using a similar proof
as in the next theorem, which shows that even with the
present definition of nonexpansiveness, the classes

L(ETOL)NE and L(ETOL)RAN are the same.

Theorem 7. L(ETOL)RAN = L(ETOL)NE .
Proof,

<
It follows from Theorem 6 that L(ETOL)NE < L(ETOL)RAN,
To show the other inclusion, let L be in L(ETOL)RAN(i)
for some i > 0 and let G = <V,P,S,I> be an ETOL system of
rank k(k < i) such that L(G) = L. By Theorem 1, we can

assume that G is in RNF. We will show that G is non-

expansive.
Assume the contrary, i.e. a s Xgax;ax, for some a e V,
*
1 * - == 1
Xor¥y and X, in V*. It follows that Pres_{x : a => x} is

an infinite language. Together with the fact that
Succ(G) = V*, this implies that a has no rank; a contra-
diction. Hence the theorem holds.

Next we show that our new classes of languages

L (ETOL) and [ (ETOL) ,0 £ 1§ n, also have nice

RAN RAN (1)

algebraic properties: L(ETOLRAN is a substitution closed

ful AFL and for every 0 ¢ 1 &< m (ETOL) is a full

RAN (1)
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AFL which is closed under substitution with ETOL
languages of finite index.
Theorem 8. For every positive integer i,

L (ETOL) is a full AFL which is closed under

RAN (1)

substitution with [ (ETOL) languages.

RAN (1)
Proof,

Let i be a positive integer.

(1) Closure of L(ETOL) under union, product and

RAN (1)

intersection with regular sets can be established using
the standard techniques from the corresponding proofs
for [(ETO0IL) (see[3]) since these do not increase the rank.

(2) Let L be a language in L[ (ETOL) and . let

RAN (1)
G = <V,P,S,I> be an ETOL system of rank k,k < i,
generating L. By Theorem 1 we can assume that G is in
RNF. Let Z and ¢ be new symbols and define a new table
Ty =12 >z} {X>¢: XevVNI}u {a~>a:ace1i}.
Consider the ETOL system

H = <velz,¢} {75} v {Pu{z > Z,¢ » ¢} : PeP},z,5>.

Clearly the rank of H does not exceed the rank of G and

+

also L(H) = L . Thus L(ETOL) is closed under the +

RAN (1)

operator. The closure of L[(ETOL) under the * opera-

RAN (i)
tor can be established in a similar way.

(3) Let L € * be in L (ETOL)

*

1

RAN (i) and let T be a substi-

tution from ¥ into I such that 7t(a) £ L(ETOL) for

RAN (1)
every a in I.
Let G = <V, P,5,I> be an ETOL system of rank not larger

than i such that L(G) = L. Obviously we can assume that
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G is in RNF. For every a in I, let G, =< va’Pa'Sa’Zl> be
an ETOL system of rank not larger than 1 such that

L(Ga) = t(a). By Theorem 1, we can assume that Ga is in
FINF for all a in ¥. Clearly we can assume that all of
the alphabets V and Va‘\ Zl , a € Xz, and Zi are mnmutually

disjoint. Let ¢ be a new symbol and define
7=Jv, v\,

aglx
Let ¢ be a homomorphism on V defined by ¢(a) = a if
a € VNI, and ¢(a) = Sa if a ¢ .
(1) For every table T from P we define a new table
T' = {a«*;@(oc) : aeV\Z,a£> al u
U{X =+ ¢ : X e VN (Vu El) W {a»>a: ace Zl}

(2) For every a € I and for every table T from Pa we

define a new table T' = Tu {X > X : X € V \ Va}'

Consider the ETOL system H = <V,{T' : T ¢ Puk )Pa},S,Zl>.
aelk

Obviously, L(H) = 1(L). Now we observe the following.

(i) If a e kﬁj vV, then rankH(a) < 1.
acgl

(ii) If a € V is such that £§EKG(a) < 1, then EgEEH(a)~< 1.
Indeed, it is not difficult to see that, in this case,

if a z x € Succ(H) then the number of occurrences of
symbols of rank 1 in x is not greater than k + k maxr(H)-£
where k is the maximal number of occurrences of symbols

of rank 1 in any word of SUCC (a) and where £ is the

’_"—"""'G,v

maximal of all Ga (for a ¢ ).
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From (i) and (ii) it easily follows that H is of rank

not larger than i and thus L(ETOL) is closed under

RAN (1)

substitution with L (ETOL) languages.

RAN (1)

From (1), (2), (3), the fact that LREG < L(ETOL)RAN(I)

from this well-known result which states that a class of

and

languages which is closed under intersection with regular
sets and substitution with regular sets is also closed

under inverse homomorphism, the theorem follows.

Theorem 9. L(ETOL)RAN is a full substitution closed AFL.

Proof.

1

If we use the identity L(ETOL)RAN L(E'I'OL)NE
then the usual constructions (see,e.g.,[3]) are easily

seen to be applicable.
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