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ABSTRACT

This paper continues the research (started in [3]) on elementary
DOL systems. In particular we provide an alternative (and simpler than

the one presented in [1]) proof that the DOL sequence equivalence problem

is decidable.






I. INTRODUCTION

The notion of a homomorphism on a free monoid is a basic notion in
the formal language theory, and it is certainly a central notion in the
theory of L systems (see, e.g., [4]). It must be clear to anyone following
the development of the theory of L systems that our knowledge about the
basic properties of homomorphisms is rather poor. This may be due to the
fact that we have only few basic techniques to deal with them (among these
techniques, e.g., the growth function arguments as in [5] and subword
complexity arguments as in [2]).

In [3] we have proposed a technique which we believe is a basic
technique to deal with homomorphisms (several examples of its usefulness
were demonstrated in [3]). This paper elaborates on this technique as well
as extends it. As an example of its application we provide a proof of
decidability of the DOL sequence equivalence problem. The decidability of
this problem was demonstrated in [1]. Our new proof is entirely different
from the one in [1]. We believe that this proof is simpler, more elemen-
tary and sheds an additional light on the nature of this problem.

We assume the reader to be familiar with rudiments of formal language
theory and in particular with the rudiments of the theory of L systems.

Since the problems considered in this paper are trivial otherwise,

we consider here only DOL systems generating infinite languages.



IT. PRELIMINARIES

Mostly we will use the standard formal language theoretic notation
and terminology. Perhaps the following requires an explanation.
1) For a finite set Z, #Z denotes its cardinality. N and N* denote the
set of nonnegative and positive integers, respectively. Given finite
alphabets Z and A, HOM(Z,A) denotes the set of all homomorphisms from ¥
into A*. If H ¢ HOM(Z,Z) then SemH denoted the semigroup of homomorphisms
generated by H. The composition of homomorphisms h]""’hk is written as
h

--hy. For a homomorphism h in HOM(%z,A) and K < Z*,

K
im K = {a e I (38) [h(B) = al}. Also maxrh = max{[a| : o e im X}

2) For a word o, |a| denotes its length and o\B denotes the word result-
ing from o by cutting off its suffix 8. For a sequence of words

T = Wgsyse - and a nonnegative integer i we use i(t) to denote the i'th
element of © (hence i(t) = wi)‘

3) For an automaton we use the notation A = (Z,Q,é,qin,F) and A is a
finite automaton if its set of states Q is finite. In specifying automata
we always assume that all the transitions not specified by its definition
lead to a special "dead state" D (all transitions from D lead to itself and
D ¢ F). The language of A is denoted by T(A). SUCC(Q) denotes the set of
all states from which one can get to a final state. For a q in Q and a in
Z*, the trace of o started at g is the sequence of states encountered when
following o in A starting with gq. Also PRED(q) denotes the set of all
states in Q from which q can be reached in one transition step.

4) For a DOL system G = (Z,h,w), E(G) denotes its sequence Wy sty s+ e

The following terminology concerning homomorphisms will be used in

the sequel.



Definition 1. Let h,g e HOM(Z,A).

1) Let K be a language over . We say that h,g are K-equal, denoted as
h =g, if for every word o in K h(a) = g(a). In such a case we say that

K is an identifying set for h,q.

2) The maximal identifying set for h,g, denoted as MID(h,g), is defined by

MID(h,g) = { & e 2* : h(a) = g(a) }.
3) lLetrt = Gy a0y e - - be a sequence of words over . MWe say that h,g are

T-equal, denoted h =. 9, if for every i 20 h(ai) = g(ui).

Definition 2. Let h,g ¢ HOM(Z,A) and let o in 7* be such that h(a)

is a prefix of g(o) or g(a) is a prefix of h(a) (in particular it can be
that h(a) = g(a)). Then the delay of h,g on a, denoted de1l g(a), is the
word over A such that

either h(a)del,_ (a) = g(a) or g(oc)_@@lh’g(oc) = h(a).

h,g
The following result follows directly from the above definition.
Lemma 1. Let h,g be homomorphisms on £* and o,a,8 ¢ =¥.

If de]l,g(a) = de]l,g(a) then de1i,g(a8) = de1"g(a6).



ITI. ELEMENTARY LANGUAGES

In this section we generalize the idea of an elementary homomorphism
from [3] by introducing a notion of an elementary language. Then we prove
a basic combinatorial property of elementary languages.

Let us start by recalling from [3] the notion of an elementary
homomorphism.

Definition 3. Let h ¢ HOM(Z,Z). We say that h is simplifiable if

there exists an alphabet A with #A < # and homomorphisms f ¢ HOM(Z,A),

g ¢ HOM(A,%) such that h = gf; otherwise h is called elementary.

This notion generalizes to DOL systems as follows.

Definition 4. Let G = (z,h,w) and G, = (£,h,0) be two DOL systems.

We say that 62 is a simplification of G] if

(i) #% < #z, and

(ii) there exist homomorphisms f ¢ HOM(Z,Z), g ¢ HOM(EZ,Z) such that
f(w) = ©, h = gf and h = fg.

If a DOL system does not have a simplification then we call it elementary.

The following easy result from [3] underlies a lot of our consid-
erations about decidability of various problems considered in this paper.
Lemma 2.
(i) It is decidable whether or not an arbitrary homomorphism is elemen-
tary.

(ii) It is decidable whether or not an arbitrary DOL system is elementary.

The following result was proved in [3].

Theorem 1. If h is a noninjective homomorphism then h is simplifiable.



The idea of a simplifiable (elementary) homomorphism can be generalized
to sets as follows.

Definition 5. Let £ be a finite alphabet and let U ¢ =* be a finite

n

language. We say that U is simplifiable if there exists Z c I* such that

1N

#7 < #U and U < Z*. Otherwise U is called elementary.

Note that for a homomorphism h « HOM(Z,Z),jg%Z is simplifiable or
elementary if h is simplifiable or elementary respectively. This is a
reason that elementary sets are of interest to us, and we move now to
investigate them.

As a direct consequence of Theorem 1 we get the following result.

Lemma 3. Let U = {u],...,uk} be simple. If i],...,in,j1,...,jm

are elements-of {1,...,k} such that

Us «..U: = U. ...uj then m = n and it = for 1 <t < n.

J
Y " 9 m t

The next result turns out to be an important technical result for
this paper.

Theorem 2. Let U = {u],...,uk} be elementary. If 11,...,in is the
sequence of indices from {1,...,k} such that there exist a word y and a

sequence of indices j]”"’jm from {1,...,k} where 1} # j] and

Us «..Us Y = U. ...u. , then
I T 91 I
lu, ~..us | < Jug...u | - k.
iy i 1 k
Proof.

Let us construct the finite sequence of sequences of words TysTose -

(each of which contains (k + 2) words) inductively as follows.



(1)  Let Ty = Uy qs.v.sly 42U u YU U
1 1,1 k,1 1],1 1n],1 31,1 Jm1,]
where u = Ugae..sl = U, ,U. Z Us se.s U = U, ,
1,1 1 k,1 k 1],1 1] 1n],1 "
u. S P T = u, .
Jl’] Jq Jm1’] Im

(ii) Now, for & = 1, given a sequence

TQ, - U-"/Q,...,Uk’gl,u_i ..U

. ; YsU. I ,

1,2 1n,% J],l Jm,z

WheY‘e (]92)3--'9“(92‘),(1 ,,Q,),...,('i an')a(J 32')’---3(j :Q/) € {13-;-3’(}:
1 ny 1 my

satisfying conditions

1) (ke D(r,) = (k+2)(7),

2) (iy,2) # (31.2), and

3) { Xry)s2(ty),....k(ry) } is an elementary set
we define

T

RS B DU RS ERRR L SRS Rt Q+]"'“1n ,2+1Y’uj1,z+1"'”j L+

[ 2+1 Mo+1

as follows.

From the conditions 2 and 3 above it follows that w, Iy F W and so

15 Jys2

1 1
from the condition 1 above it follows that either Wi o is a proper prefix

‘l)
of Wj],g or wj],ﬁ is a (proper) prefix of Wi],z'
(ii.1) Assume that éz is a nonempty word such that ui],gzg = uj1,2' Then

j't(,w for t £ 3y,
for 1 <t <k, EKT2+]) =N§
&

QQ I,for‘t=:j1,

(k + ])(r2+1) = uiz,z"’ui e and
g,

TQ+1) = gkujz,z"’uj e
2



(i1.2) Assume that z, is a nonempty word such that u, .z Then

% J1s272 -

I
[

1-],2:

tlr,) for t # iy,

2)
for 1 <t <k, t(t,,,) =
>+ e
QQ for t = s

(k + 1)(TQ+]) = Qluiz,ﬁ"'ui L and

ny,
(k+2)hkﬂ):lﬁfzn.%m’w
'3
(ii1) Ty Satisfies the conditions 1, 2 and 3 from above. We prove it

as follows (since cases (ii.1) and (ii.2) are symmetric we assume that
(i1.1) holds).

(iii.1) Since (k + 1)(T£) = (k + 2)(12) and both (k + 1)(T2+]),(k + 2)(T£+1)

result by erasing the prefix Wi g in (k + 1)(T£) and (k + 2)(T2) respectively,
"9

we get (k + 1)(12+]) = (k + 2)(TQ+]).

(iii.2) By the construction (and Lemma 3) we have (j1,£+]) = (j],z) and
(1],£+1) = (iz,ﬂ). There are two possibilities to consider.
(iii.2.1) (12,2) # (j1,z). Then (i1,2+1) # (j1,£+1).

(i11.2.2) (i,,8) = (§;52). Then i T Y, T e T u

and so (1],2+1) # (j],2+1).

i],zcz 7

o = Wj],2+1
(i1i.3) { l(TQ+1),...,EjTR+]) } must be elementary since otherwise

{ lﬂTg),...,EﬂTx) } would not be elementary.

(iii.4) Since obviously Ty satisfies condition 1, 2, and 3, (iii) holds.

(iv) We terminate the construction on T such that ((k + 1)T2+1)\Y = A.

+1
Obviously the construction always terminate.

(v) It follows directly from the construction that, for every & > 1,

e DGl = uy peeeue g b= T2 Dl =y eeeuy 1=

]u11...u1n| - Iu]...uk[.
(vi) Now we prove the theorem by contradiction as follows.

Assume that ]ui]...uin[ > |u]...ukl - k, thus Iui]...uinl - Iu]...uk{ > -k.



Hence if T, is such that ((k + 1)(T£))\Y = A, then (v) implies that

2
|u1 g Uy 2[ < k; a contradiction.



IV. HOMOMORPHIC INVERSES OF A LANGUAGE

In this section we briefly investigate the inverse image of a
language by a (not necessarily finite) set of homomorphisms. Formally it
is defined as follows.

Definition 6. Let K be a language, K < £*, and let H be a set of

homomorphisms from &* into £*. The H-inverse of K, denoted as I(K,H), is
defined by I(K,H) = { o e 2* : (Vh)H[h(a) e KJ }.
Theorem 3. Let K ¢ * and let H be a set of homomorphisms from r*
into £*. If K is regular then I(K,H) is regular.
Proof.
Let A = (Z,Q,G,qin,F) be a finite automaton such that T(A) = K.
For each h in H let Ah = (Z,Q,@h,qin,F) be a finite automaton such that
(Va)o(Va),L ¢, (a) = s(h(a)) 1.
Clearly:
1. (Va)z*[ h(a) e T(A) if and only if o « T(Ah) ] and
2. { Ah :heHlisa finite set.
But regular languages are closed under finite intersection, and so

I(K,H) = (,\\ T(Ah) is a regular set.
heH

Corollary 1. It is decidable whether or not L(G) < T(A) for an
arbitrary DOL system G and an arbitrary finite automaton A.

Proof.

Let G = (Z,h,w) and let H = Sem{h}.
Note that one can effectively construct an automaton AH such that

T(A,) = I(L(G),H). This follows from the proof of Theorem 3 and from the

W)

observation that, for each n > 2, A  is obtained from A, in the same way
h h
as A, is obtained from A.
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Hence to decide whether L(G) ¢ T(A) it suffices to check whether
w e I(L(G),H) which can be effectively done because the membership question

for finite automata is decidable.



1

V. THE (h,g)-AUTOMATON

The maximal identifying sets for a given set of homomorphisms turn
out to play a major role in investigating DOL systems. In this section
we present a construction which given a pair of homomorphisms h,g provides
a (not necessarily finite) automaton, called the (h,g)-automaton, which
accepts precisely MID(h,g). Then we prove that if h,g are elementary then
the (h,g)-automaton is finite (and so MID(h,g) is regular).

Definition 7. Let h,g e« HOM(Z,A). Then the (h,g)-automaton, denoted

as Ah,g

the initial connected component of the automaton (Z,Q,é,qin,F) where
Q = 0y u Qg v Qg with 0y = { [A1, D3,
Oy = L [hal : e ¥ and ((33) 40 od e (im2)* 1) 1,

, is a (not necessarily finite) deterministic automaton which equals

Qpg = T [g:0] 0 e A" and ((38) [ of e (im2)* 1) 3,
q-;n = [A]s
F = { [A] }’

and ¢ is defined as follows:
for every a ¢ I,

(i) &(D,a) = D,

(i1) s( [Al,a ) =

(if h(a) = g(a) then [A],

1 ((30),4(35) L h(a)a
14F ((30),4(38) 4T ale)o: = h(a) and o ¢ (in D) 1) then [g,a],

1l

g(a) and o ¢ (im2)" 1) then [h,al,

lelse D.
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(iii) S( [h,al,a ) =

(if ag(a) = h(a) then [A],

if ((38),4(38) e[ wg(a)e = h(a) and BB ¢ (im2)"1) then [g.6],
if ((38),4(38),+[ wg(a) = h(a)g and 6B ¢ (im )" 1) then [h,g],

m

lelse D.
(iv) ¢o( [g,alsa ) =
(if oh(a) = g(a) then [A],
if ((38),4(38) +[ oh(2)8 = g(a) and 8% « (im )" 1) then [h,8],
if ((38)44(38) L an(a) = g(a)p and 68 < (im2)* 1) then [9.],

lelse D.

We will use the following terminology concerning Ah g’

1) If ge Q, then tailg = o where either q = [h,a]l-or g = [g,al.

2) A state q e Q is called deterministic if there is at most one a in I

such that §(g,a) # D. We use DET(Q) to denote the set of all deterministic
states in Q.

The following two technical results explain the usefulness of the
automaton Ah,g'

Lemma 4. T(A. ) = MID(h,q).

h,g
Proof.
It follows from an easy observation that, for every o ¢ Z+,

1) gglh’g(u) # A and h(a)dE1|’g(a) = g(a) if and only if

s( [Al,a ) = [h,al,

2) de1|,g(u) # A and g(a)dell,g(u) = h(a) if and only if

6( [A],OL ) = [gaaja

3) de]l’g(u) = A if and only if 8( [Al,x ) = [A].

This observation implies that, for every a e Z+,

o e T(ﬁh g) if and only if a < MID(h,g).
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Lemma 5. If h and q are elementary homomorphisms then SUCC(Q) is a
finite set.

Proof.

(1) (e)ys(¥adg, [if [tailq| > e then q < DET(Q) ].

Proof of (i).

We prove it by contradiction.
(i.1) Let e, = ( 2maxr(h) + !h(a],az...an)l -n ), where ¢ = {a],...,an},
and assume q = [h,a] 4 DET(Q) but |a| > ey .
Thus
(Hai,aj)Z La; # aj,é(q,ai) # D and S(q,aj) D1 ... (*).
Since |o| > e, > maxrh only the third and the fourth case of the condi-
tional definition of &( [h,al,a) apply to B(q,ai) and G(q,aj). Hence from

(*) it follows that

B Gt Do, ostap)hy = blahley ). hiag )]

and )

(Héj)A*(th)N+(3j]s--"jtz){1,...,n}[ °9(a;)f; = hlaginta; ) h(ajtz)]
(r4)

Let p be the maximal positive integer such that

(30) (g )ohlag by = e 1.
p

(Note that since |a| > 2maxrh such a p exists:)
Then (#**) implies that

| h(ai)h(ai])...h(ai ) | = la| - maxr(h) > | h(aj...a)) | - n. (%xxx)

p
But (***) implies that

(30),40 h(aph(a,

)...h(a
B
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Since i # j and jmzh is elementary (because h is elementary), this together
with (#*%x) contradicts Theorem 2.
(i.2) Similarly if ey = ( 2maxr(g) + lh(a]...an)l - n ) and we assume that

q = [g,a] 4 DET(Q) but |a| > e_, then we get a contradiction.

g’
(i.3) Thus (i) holds if we set e = max{eh,eg}.

(i) (:—lr)N+(Vq)Q2[ if [tailq| > r then PRED(q) < DET(Q) ]

Proof of (ii).

This follows from (i) and from the obvious fact that
(35)N+(vq,a)Q [ if 8(g,a) = q for some a in I
T, 1
then || [tailq| - [tailq]| || <s 1.

(i11) Let ro be the smallest positive integer satisfying (i1) and larger

than e from (i). Then a state g from Q, is called long if |tailq] > " and

it is called short otherwise; LONG(Q) and SHORT(Q) denote the corresponding
subsets of QZ’

(iv) Let g e ( SHORT(Q) ) n (DET(Q) ). Let t = G50y 5Gn5- -G and

in
T = q’GW’aZ”"’qin be two traces starting at q where q = a] is long. Let

iO be the smallest index such that 9; is short. Then for every i < iO
0

Q-i = Ei-i-
Proof of (iv).

This follows directly from (ii).
(v) According to (iv) if g e ( SHORT(Q) ) n ( DET(Q) ) n SUCC(Q) and one
considers a trace starting with q, leading through long states and ending
with a short state, then this trace is unique. Let TRANS(q) denote the set
of states appearing in this unique trace. (Thus in the notation of (iv) we

have TRANS(q) = { 45Gq5---50; } .) Note that TRANS(q) is a finite set.
0
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(vi) If a e T(Ah ) then

, 9
TRACE(a) ¢ SHORT(Q) v L\\_//J TRANS(q) .

qeSHORT(Q)nDET(Q)
Proof of (vi).

This follows directly from (iv).
(vii) Since both components of the right hand side of the containment

relation in (vi) are finite, the lemma follows.

Theorem 4. If h,g are elementary homomorphisms then MID(h,g) is
regular.

Proof.

Let Ah g~ (Z,Q,G,qin,F) and let ¥ be a function from Q into Q
defined by
[A] if q = [A],

v(q) = 99 if q e SUCC(Q),
D otherwise.
Let Bh'g = ( Z,w(Q),Sﬂ,[A],{[A]} ) where Sw is defined as follows:

(Va,a)q(va)yL 8 (a,a) = q if and only if ( v(q),a ) = q .
Obviously T(Bh,g) = T(Ah,g) and so the theorem follows from Lemma 4 and
Lemma 5.

Given two homomorphisms h,g we can effectively construct a sequence

of finite automata approximating Ah hence also approximating MID(h,q).

N
This is done as follows.

Choose a positive integer K.

Let Aﬁ]% be the automaton constructed in the same was as Ah g except that

we take as states [A],D and all short states; all other states of Ah g (and

transitions leading to and from them) are discarded.
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Let for &2 =1,

(241)
An g

the set of states by including all the states g from Q for which

)

be the automaton constructed in the same was as Aﬁ]g but we enlarge

’

|tailg| < ro t %+ k where o is the constant (separating short states
from long) from the proof of Lemma 5. Among these states we discard the
ones from which we cannot reach (staying within this new set of states
only'!) either [A] or D.

In this way we get the sequence
(1) ,(2) 4(3)
Ah,g’Ah,g’Ah,g""

This sequence is denoted as Ak h,g or simply as A whenever the choice of

h,g
k is not important. It is called the approximating sequence of Ah g’ and

the corresponding sequence of languages

(1)1 1)y,

is called the approximating sequence of MID(h,g).

Obviously the following holds.

Lemma 6. The construction of Ah is effective and moreover

: .9
L T(Aéié) = MID(h,g).
iz
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VI. THE DOL SEQUENCE EQUIVALENCE PROBLEM

In this section using the techniques developed so far we prove that
the DOL sequence equivalence problem 1is decidable. Since our proof is
completely different (and simpler) than the pfoof in [1] we believe that
it sheds new 1ight on the nature of this problem.

We start by considering elementary DOL systems.

Lemma 7. Given two elementary DOL systems G] and G2 it is decidable
whether or not E(G]) = E(Gz).

Proof.

Let G, = (Z,h,0) and G, = (Z,9,w) and Tet H = Sem{h}, G = Sem{g}.

= al1) A(2)
ha = PhlgPhag

The following algorithm decides whether or not E(G]) = E(GZ).

Let A

INPUT: G],Gz.
PROCEDURE :
1. Setn: =0.
2. Compute hn(m),gn(w) and construct a finite automaton Bn such that
T(B,) = I(T(Aé?%)%H) n I(T(Aﬁ?é),G),
3. 1f h"(w) # ¢"(w) output E(6y) # E(G,).
4, If we T(Bn) output E(G1) = E(GZ).
5. Else set n: = n+ 1, goto 2.
The effectiveness and correctness of this algorithm follows from
Theorem 3, Corollary 1 (and their proofs) and its termination follows from

Lemma 6.

Theorem 5. It is decidable whether or not h = 9 where h,g are

arbitrary elementary homomorphisms and Tt is a DOL sequence,.
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Proof.
Let H = Sem{h}, G = Sem{g} and let g be a homomorphism and w a word
such that T = w,f(w),f2(w),. ..
Let F = Sem{f} and let Ah,g = Aélé,Aé%é,...
The following algorithm decides whether or not h = 9
INPUT: h,g,T.
PROCEDURE :
1. Set n: = 0.
2. Compute h{ fM(w) ), g( f"(w) ) and construct a finite automaton B, such
that T(B,) = I( T(Aé?g),F ).
3. I h( f(u) ) # 9 f'(w) ) output h #_g.
4. If we T(Bn) output h = 9
5. Else set n: =n + 1, goto 2.
The effectiveness and correctness of this algorithm follows from
Theorem 3, Corollary 1 (and their proofs) and its termination follows from

Lemma 6.

Since it is clear that given a subclass D of the class of DOLésyétems
(of the E1ass of homomorphisms), the sequence equivalence problem for homo-
morphic images of sequences from D is decidable if and only if it is
decidable whether of not two arbitrary homomorphisms from D are equal on
an arbitrary DOL sequence]), Theorem 5 implies the following result.

Theorem 6. It is decidable whether or not h(E(G])) = g(E(GZ))
where h,g are arbitrary homomorphisms and G],G2 are arbitrary elementary

DOL systems.
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The second bart of this result is proved as follows. Let us generate
systematically all sequences 11""’1k from {1,2}+. For each of them let us
find whether or not there exists p],pz,f satisfying conditions of the lemma.
If we succeed we are done; if not we move to the next sequence. The first

part of this proof guarantees that we will eventually succeed.

Now we are able to prove the main result of this section.
Theorem 7. The DOL sequence equivalence problem is decidable.
Proof.

Let Gy = (Z,h],m) and G, = (z, hz,w) be DOL systems with

(2) (2)

Wy Wy e

il

£(6,) = uf i), and E(6y)
Since by Lemma 7 the DOL equivalence problem is decidable for elemen-

tary DOL systems, let us assume that at least one of G],G2 is simplifiable.

Let 1],...,ik,p1,p2,fp],fp2 satisfy the statement of Lemma 8 for h],hz.

Let 91 = h,h. ...h. and g, = hzh “'hi and let for 1 < i < 2,

SRR B (i) k
0333k+1,6.,3'(2,9,w ).
(1) E(G1) = E(GZ) if and only if, for every 0 < j < k + 1, E(G],j) + E(GZ,j?‘
Proof of (i).
1) Obviously E(G]) = E(GZ) implies that E(GT,j) = E(G ) for every
0<j=<k+1.
2) Assume that, for every 0 < j < k + 1, E(G],j) = E(ngj). Then if we

assume that E(G]) # E(Gz) we get a contradiction as follows.
Let m be the minimal integer such that w( ) # w(z).
Ifms< k+ 1 then E(G],m) # E(Gz’m); a contradiction.

If m>k+ 1 then for some & > 1 we have 0 <m - & +» (k+ 1) <k + 1 and

1 2
wézl(k+1)=w§12£(k+1)‘

But then the 2'th element in E(G.],m S e (k4 ])) and the 2'th element in

E(Gz,m -2 . (k + ])) are different; a contradiction.
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(ii) Hence we can decide whether E(G]) = E(G,) if we can decide whether
E(G] ) = E(G2 j) for every 0 < j < k + 1. Let us then fix a j and let
H-] = G-] ’j = (Zag] :b) and H2 = GZ,J = (Z:QZap)'

We get the following situation.
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Let ﬁ1 = (@,fp],ﬂé])) and HZ = (@,fpz,ﬂéz)) where © is the alphabet through
which g, and g, are simplified. Note that H],Hz are simple DOL systems for
which by Lemma we can decide whether or not E(H1) = E(ﬁz).

But if E(H,) # E(H,) then E(H,) # E(H,) (note that E(H;) and E(H,) are
obtained from E(H]) and E(HZ) respectively by the same homomorphism f).
Thus E(H]) = E(HZ) if and only if E(ﬁ]) = E(ﬁz) and py.p, are equal on E(Q]).
Since Py-P, are elementary, Theorem 5 implies that it is decidable whether
Py,P, are equal on E(Q]).

Thus the theorem holds.
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VII. ON AN "EXPLICIT" SOLUTION OF THE DOL SEQUENCE EQUIVALENCE PROBLEM

In a sense a positive solution to the DOL sequence equivalence
problem seems to be natural if (given two arbitrary DOL systems G1,G2)

it provides a way to compute a constant CG G such that G1 and 62 are
1272

equivalent if and only if the first CG],GZ elements in E(G]) and E(GZ) are
identical.

In this section we analyze our solution and provide an algorithm to
compute such a constant explicitely. Clearly we realize that this is not
the best constant (we conjecture that such a constant should not exceed r « n!
where r is the maximal length of the image of an alphabet involved under
one of the homomorphisms and n is the size of the alphabet). Still we
believe that the analysis we give to find such a constant provides some
additional insight into the problem involved.

Theorem 8. There exists an algorithm which given arbitrary two DOL

systems G] and G, provides a constant CG G such that E(G1) = E(GZ) if
1°72

G1,GZ elements of E(G]) and E(Gz) are equal.

and only if the first C

Proof.

The proof of this result goes through a careful analysis of automata
in the approximating sequence Ah,g and an analysis of the proof of Lemma 8.

Accordingly we have the following two Lemmas.

Lemma 9. Let G] = (Z,h1,w) and G2 = (Z,hz,w) be two elementary DOL
systems with E(G1) = wé]),wg]),... and E(GZ) = wéz),w§2),.... Let n = #I,
m = max{maxrh,maxrg}, s = jw| and r be such that max{ [tailq| : g e Qy } =r

where Q2, tailg are defined as in Section V. Let v be a function from N+

, + . UNRERS
into N defined by ¥(x) = s «m + X.

Then E(G]) = E(Gz) if and only if wé]) = wéZ), where



25

r 2 «n" r
u = (lPZ n (an))n ¥ (2 n )'
Proof.
It suffices to show that if ws]) = wéz) then for every v = u,
(1) = (2)
OJV = U)V .
Let B]’BZ"" be a sequence approximating Ah h such that (recall
2
that 4 = A\ al8) 1
1°°2 172 7172
B] = Aé])h s, 1.e., it consists of all the short states of Ah h.

172
and for i = 1,

1272

B is the first automaton encountered in A h which is different from

i+l h], 2
Bi’ i.e., it consists of more states.
Let wé]),wé]),... be the subsequence of E(G]) obtained as follows:
1 2
) is the first element of E(G]) that does not belong to T(Bi).

R~
—d

for i 21, w
i

Clearly there exists an £ such that T(B,) = T(A

N

). Let us estimate %
h h2

'l,
first.
(i) 2<2+n".

Proof of (i).

Note that in Ah h each short state which has a transition to a long
172

state and can lead back to a short state gives rise to a unique trace (path)
in Ah],hz' Hence the number of these paths is bounded by the number of short
states which is clearly bounded by 2 - n". But each Bi+1 results from Bi by
adding at Tleast one such path to Bi' Hence the bound.

Let d(Bi) denote the number of states in Bi'
(1) d(B;) =2 - n".

Proof of (ii).

Obvious.



26

Proof of (iji).

Let us consider the sequence of automata T, = Bi’(Bi)h ’(Bi)hz"" (see
1 1

the notation from the proof of Theorem 3). Then ki is the smallest integer

J such that w ¢~(Bi) j- However the number of all different automata in

hy
n . d(Bi)
the sequence T cannot exceed d(Bi) and hence the bound.
n d(Bi)
. d(B;)
(iv) d(81+]) <s em + d(Bi)'

Proof of (iv).

Going from B, to B, ; we get wki to be in T(Bj+]). In other words wki

gives rise to a trace starting with 9in then coming to a short state from
which a unique path Teads through the sequence of long states (which were
not in Bili) and come back to a short state (which was in Bi)‘ Thus we

added no more than [wk | new states to B; to obtain B, ,. Hence
i

K. k.
d(Bi+]) < Iwkil + d(Bi)' But lwkil <s -m' and so d(Bi+1) <s-em' +d(B.).

d(g. )"+ d(By)

<s em ! + d(B.).

Combining this with (iii) we get d(Bi+1) < ;

(v) Now we complete the proof of the lemma as follows.

) < ¥(d(B.)), hence from (i) it follows that

From (iv) we have that d(Bi+1 ;

Y
d(B,) < ¥% "M (2 . "),

2)
Then from (iii) it follows that

r 2 - " r
kg < ( WZ n (2 - nr))fn y (2 «n’)
But clearly

.

wé]) ¢ T(B,) if and only if
g

(1) : :
w e T(A ) if and only if
kQ h],h2
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for every v = k., w&l) € T(Ah )

1°N2
if and only if, for every v 2 k%,
Hence the Temma holds.

Lemma 10. Let h h2 e HOM(%Z,%) where #2 = n. Let & be a function

1°
from N* into N* defined by (x) =2 « &(x - 1) + 1 for x = 1. Then for
some k < @n(1) there exists a sequence i],...,ik of elements from {1,2}
and homomorphisms f,p1,p2 satisfying the statement of Lemma 8.

Proof .

Since the result is trivial when both h] and h2 are elementary, let
us assume that at least one of hl’hZ is simplifiable (assume, e.g., that
h] is).

Then h] = pf for some f e HOM(Z,G]), P e HOM(G],Z) where #@] < #2 and
h]h] = p1f,h2h1 = pi for some PysPy € HOM(@],Z).
Thus Tet us assume inductively that we are given a sequence 1],...,1k in

{1,2}+ such that

hi "'hi = pf for some f e HOM(Z,Oi ; )s P e HOM(@i ; ,Z)
: K 1Tk 1Tk
where
h.h, ...h. = p,f, hoh, ...h. = p,f for p,,p, ¢ HOM(O. . LI).
1 i Ty 1 2 i T 2 1°F2 Tty

If p],pz,fp1,fp2 satisfy the statement of the lemma we are done. Otherwise
there can be two reasons why the statement of the lemma is not (yet) true.
1) At least one of PysPy is simplifiable.

Thus there exists an alphabet A with #A < #@1 i such that at least one

“lnu.k
of h]h. ...h. 5, h,h. ...h. can be simplified through A. For example
Ty T 2 iy T
hyhi ...h = B, F where £ & HOM(Z,A) and B  HOM(A,Z).
1 k

But then also
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hoh. ...h, hoh, ...h, "and h,h. ...h, h.h. ...h, can be simplified through A.
1 i Ty 1 1 Ty 2 i iy 1 1 iy
Thus in this case we have got a new sequence (i],...,ik,1,11,.;.,ik) of

length 2k + 1 and a new smaller alphabet A = 0; satisfying

1...1kh]...1k
our inductive assumption.

2) At Teast one of fp],fp2 is simplifiable through an alphabet A with

#A < #@i (Assume fp] is.)

1k
Then also
p]fp]f and pzfp1f are simplifiable through A.

Hence we have got a new sequence (11""’1k’]’11""’1k) of length 2k + 1

and a new smaller alphabet A = 0O, satisfying our inductive

1]...1k11]...ik
assumption.

Since we can iterate our procedure at most n = #Z times (and from
the proof of the lemma we know that for a "minimal alphabet” the conditions
of the Temma are satisfied) @n(1) yields us a desired upper bound, M and
the Lemma holds.

Now the two previous lemma together with the proof of Theorem 6 yield

2 +n"
C g =208+ 1)+ (2 M2y YT @)

1°72
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FOOTNOTES

1) The foregoing implication was known to K. Culik II (personal communi-

cation).
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